
Truth Trees for 
Sentence Logic 

Applications 

%I. APPLICATION OF THE RULES TO COMPLEX SENTENCES 

This is going to be a short chapter. You really have all the facts about 
truth trees. It only remains to see how to apply these facts in some new 
ways. 

In the last chapter I was careful to give you only problems in which the 
sentences were very simple. But now that you have the hang of the rules, 
let's see how to apply them in testing the validity of an argument like this: 

I 
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Valid 

-Following the suggestion of working first on nonbranching lines, I be- 
gan with line 2. But what, then, should I do with line l ?  Line 1 is a 
disjunction of conjunctions. Which rule applies? And how? Keep in mind 

what the rules are supposed to do. Our objective is to make line 1 true, 
in all the minimally sufficient ways that this can be done. Because line 1 
is a disjunction, we must do this by making each of the disjuncts true 
along a separate leg of a branch. That is, we must make the full subsen- 
tence 'A&B' true along one branch and the full subsentence '-A&C' true 
along a second branch. The subsentences 'A&B' and '-A&C' are them- 
selves compound sentences to which we must apply the rule for conjunc- 
tion, which I have done in lines 6 and 7. 

How can you tell which rule applies to line l ?  Ask yourself: What do 1 
have to do to the whole sentence appearing on line 1 which will guarantee 
that the whole sentence is true? The answer will direct you to the com- 
ponents which must be written at points farther down on the tree. 

To see more clearly how this works, let us look at some more examples. 
If the sentence is 

I say to myself: This sentence is a conditional, the antecedent of which is 
the conjunction 'A&B' and the consequent of which is the disjunction 
'CVD'. A conditional can be made true by making the antecedent false. 
And it can alternatively be made true by making the consequent true. So 
at the bottom of every open path on which '(A&B)>(CvD)' appears, I 
must write the branch 

What should I do with 

This sentence is a negated conditional. To make it true I must simulta- 
neously make the conditional's antecedent true and its consequent false. 
So at the bottom of every open path on which it appears, I must write the 
stack 

We will look at some nastier examples in a moment. But first let's dis- 
cuss an explicit prescription for applying the rules to sentences no matter 
how complex. Suppose you are faced with a very complex sentence and 
you are not sure which rule applies. Ask yourself the following question: 
In building this sentence up from smaller parts, what was the last step? 
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What was the very last connective that got used in putting together this 
compound sentence from its components? 

I hope that by this time you are recognizing the idea of a sentence's 
main connective from chapter 1. (If you did the chapters on natural de- 
duction, you may find this section repetitious. Please bear with those who 
are learning the tree method without having learned natural deduction 
first.) 

The Main Connective in a compound sentence is the connective which was 
used last in building up the sentence from its component or components. 

To determine which rule applies to a sentence, first determine the sen- 
tence's main connective. If the main connective is not '-' all you have to 
do is to apply the rule for the main connective. If the main connective is 
'-', determine the main connective of the negated sentence. Then apply 
the corresponding rule -v, -&, -3 ,  -=, or --. 

Let us see how the rules apply to a few more examples. Consider 

What is the main connective? It is '3'. But which occurrence of '>'? It's 
the second occurrence. The parentheses tell you that the very last step in 
building u p  this sentence is to take 'A3B' and '(CvA)>B' and to make the 
first the antecedent and the second the consequent of a conditional. 

Here is another example: 

This is a negated biconditional, and the occurrence of '=' to which you 
have to apply the rule is the third. In building the sentence up from its 
parts, the very last thing that was done was to apply the outermost nega- 
tion sign. The step before that was to form a biconditional from the com- 
ponents '(A=-B)=C' and 'C>(-A=B)'. So the rule for negated bicondi- 
tional applies, using '(A=-B)=C' and 'C>(-AEB)' as the components. 
At the bottom of every open branch, we write 

Before turning you loose on some exercises, I should mention a small 
side point. When you worked problem W g ,  one of the open branches 
displayed '-H' and 'K' but neither 'S' nor '-S'. So what counterexamples 

does this branch represent? What happened in this case is that making 
'H' false and 'K' true is already enough to make everything on the branch 
true. If 'H' is false and 'K' is true, the initial sentences are true whether 
'S' is true or false. But, strictly speaking, an assignment of truth values to 
sentence letters for a sentence must assign a truth value to each sentence 
letter in the sentence. So, strictly speaking, a counterexample for this 
problem must specify a truth value for 'S'. Thus we really should say that 
the assignment of truth values which you read off the open branch, 'H' 
false and 'K' true, is an abbreviation for the pair of counterexamples, 
'-H&K&S' and '-H&K&-S'. 

However, having said this, we will record counterexamples by reading 
off the truth values for the sentence letters and negated sentence letters 
which occur on an open branch. If some sentence letters have been left 
out, we know that our list is an abbreviation for all the truth value assign- 
ments which result by arbitrarily assigning truth values for the neglected 
sentence letters. 

EXERCISES 

9-1. Determine the main connective in the following sentences: 

9-2. Test the following arguments for validity. Show your trees, 
showing which paths are closed. Say whether the argument is valid 
or invalid, and if invalid give the counterexamples provided by the 
finished tree. 

Before beginning these problems, you should review the practical 
guides at the end of chapter 8. Also, try to stay clear of the following 
pitfalls that often catch students: A tree is not completed until either 
all branches have closed or until all sentences have been checked. 
Sometimes you can see before completing a tree that there will 
surely be at least one counterexample. (This can happen, for exam- 
ple, when completing the left branch produced by an original sen- 
tence, before the right branch is complete.) But, both for safety and 
to make sure you get plenty of practice, please don't quit on a tree 
until all compound sentences have been checked. 

Sometimes students try to take shortcuts, writing down the results 
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of working on two rules at once. Often this produces mistakes, and 
makes it terribly hard for anyone to correct your papers. Finally, pay 
constant attention to the main connective. Only by correctly identi- 
fying the main connective in a compound sentence will you correctly 
apply the rules. 

e) (RvL)3(GvA) f )  (-I&-D)v-D g) (G>B)&(-GIN) 
R>-G - [(I&-J)v(D&--J)] BV- N 

-(B&-R) 
Nv-B - BvA 

9-2. .OTHER USES FOR TRUTH TREES 

So far we have used truth trees exclusively to test the validity of argu- 
ments. But now that we understand how truth trees work we can easily 
apply them to do all sorts of other jobs. For example, suppose I hand you 
the sentence '-(AvB)&(-A>B)' and ask you whether it is a contradiction. 
You could always work this problem with truth tables. If in all lines of the 
truth table the sentence is false, it is, by definition, a contradiction. If the 
sentence is true in one or more cases it is not a contradiction. But a truth 
tree will get the job done faster. If we make a sentence the initial line on 
a truth tree, we know the truth tree will find us a case in which the sen- 
tence is true, if there is such a case. If there is no such case, all paths on 
the tree will close. Can you see how the truth tree will tell us whether the 
sentence is a contradiction? 

To explain this more thoroughly, we can again use the idea of a coun- 
terexample. A contradiction is false in all cases. So a case in which a sen- 
tence is true constitutes a Counterexample to its being a contradiction. The 
truth tree method applies immediately to look for counterexamples to a 
sentence being a contradiction. We make the sentence to be tested the 
first line of a tree. If there are one or more counterexamples, that is, cases 
in which the sentence is true, the tree method is guaranteed to find them. 
If the tree method does not turn up a counterexample, that is, if all paths 
close, we know there are no cases in which the sentence is true. But if 
there are no cases in which it is true, the sentence is false in all cases; in 
other words, it is a contradiction. We can summarize this test by saying 

To test a sentence for being a contradiction, make the sentence the first line 
of a truth tree. If there is an open path in the tree, this path provides a 
counterexample to the sentence being a contradiction. If all paths close, the 
sentence is a contradiction. 

Applying this test to our example we get 

4AvB)&(-A>B) S (Sentence to be tested 
-(AvB) 1, & for contradiction) 
-A>B 1, & 

-A 2, -v 

X X 

Contradiction 

Is the sentence 'A=(-AvC)' a contradiction? 



X 

Not a contradiction. Counterexample: C&A. 

Note that I have written down the result of my test, that the sentence to 
be tested is not a contradiction. And note how I also put down the coun- 
terexample which shows this. 

A final small point about this example. In the annotation for line 4, 1 
have listed two rules. This is because I applied the rule v to the disjunc- 
tion on the left branch of line 3, and I separately applied the rule -V to 
the separate sentence of line 3 on the right branch. 

Can we use truth trees to determine whether a given sentence is a log- 
ical truth? Sometimes students propose the following test for a sentence 
being a logical truth: List the sentence and see if all branches remain 
open. Close,,but no cigar1 The proposed test mistakenly tells us that 'A' is 
a logical truth. If we make 'A' the initial line of a tree, there is nothing to 
do, and all branches are open. But 'A' is not a logical truth. We also get 
the wrong answer if we apply the proposed test to (Av-A)v(A&-A): 

J1 (Av-A)V(A&-A) 5 (Sentence to be tested for logical truth) 

A 
J 2  AV-A A&-A 1, v 

A I 
3 A -A A 2, v; 2, & 

One branch of this tree does close. But the initial sentence is a logical 
truth, as you can tell from the fact that one of its disjuncts is a logical 
truth. 

However, there is a very simple way to use the tree method to test for 
a logical truth. Just use the test for contradictions1 How? A sentence is a 
bgical truth just in case it is true in all cases. But a sentence is true in all 
cases just in case its negation is false in all cases. So a sentence is a logical 
truth if and only if its negation is a contradiction. Suppose, now, that I 
ask you whether a sentence is a logical truth, for example, the sentence 
of the very last example. Take the negation of the sentence. Determine 
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whether thii negation is a contradiction. If the negation is a contradiction, 
then the original sentence was a logical truth. If the negation is not a 
contradiction, then the original sentence was not a logical truth: 

X 

'-[(Av-A)v(A&-A)]' is a contradiction. Therefore '(Av-A)v(A&-A)' is a logical 
truth. 

Notice that this last tree is an example of a completed tree in which not 
all compound sentences have been checked. I never worked on line 3 
because all branches closed before I got to line 3. Once all the branches 
close, the tree is finished. There is no way to make all the initial sentences 
true. If any sentences have not been worked when all branches close, con- 
tinuing and working them would give us no new information. 

Let us similarly test '(A&B)v-A' to see whether it is a logical truth: 

'-[(A&B)v-A] is not a contradiction. 
Therefore '(A&B)v-a' is not a logical truth. 

Counterexample: A&-B 

How should we understand the counterexample here? The case A&-B 
('A' true and 'B' false) is a case in which '-[(A&B)v-A]', the sentence 
tested for being a contradiction, is true. But '-[(A&B)v-A]' is true in a 
case if and only if '(A&B)v-A', the sentence tested for being a logical 
truth, is false in the case. A case in which a sentence is f&e proves that 
the sentence is not a logical truth. Such a case constitutes a counterex- 
ample to the sentence being a logical truth. So the case A&-B is a coun- 
terexample to '(A&B)v-A' being a logical truth. Clearly, this will hold 
generally: 

For any sentence X, any case which is a counterexample to -X being a 
contradiction will also be a counterexample to X being a logical truth. 
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To summarize the test for logical truth: 

To test a sentence for being a logical truth, make the negation of the sen- 
tence the first line of a truth tree. If d the paths close, the sentence is a 
logical truth. An open path gives a counterexample to the original sentence 
being a logical truth. 

This summary makes no mention of the intermediate role of a test for 
contradiction. If you do not understand the test as just summarized, go 
back over the last two examples and make sure you can see how they fit 
in with the summary I have just given. 

We can do yet more with the truth tree method. Recall that two sen- 
tences are logically equivalent just in case their biconditional is a logical 
truth. Thus we can use the test we have just devised for logical truth to 
determine whether two sentences are logically equivalent: 

To test whether X and Y are logically equivalent, test X=Y for being a 
logical truth. If X=Y is a logical truth, X and Y are logically equivalent. If 
X=Y is not a logical truth, X and Y are not logically equivalent. A counter- 
example to X=Y being a logical truth is also a counterexample to the lo@ 
equivalence of X and Y. That is, it is a case in which one of the two sen- 
tences, X and Y, is true and the other is false. 

Can you see why a counterexample to the logical truth of X=Y is also 
a case in which one of the two sentences, X and Y, is true and the other 
is false? A counterexample to X=Y being a logical truth is a case in which 
X=Y is false. But a biconditional is false if and only if one of its compo- 
nents is true and the other is false, that is, if X is true and Y is false or 
the other way around. Finally, you can see why we would call such a case 
a counterexample to the logical equivalence of X and Y. X and Y are 
logically equivalent if and only if in all cases they have the same truth 
value. So if we have come up with a case in which one sentence is true 
and the other is false, we have a case which proves by counterexample 
that they are not logically equivalent. 

To  illustrate this method of determining logical equivalence, I will use 
it to verify one of De Morgan's rules. To show: '-(A&B)' is logically 
equivalent to '-Av-B'. 

J1 -[-(AM) = (-Av-B)1 -S (Negation of biconditional of the orig- 
inal sentences) 

. . .  
X X X X 

'-(A&B)' is logically equivalent to '-Av-B' 

This section will introduce you to one more notion: 

A set of one or more sentence logic sentences is consistent if and only if 
there is at least one assignment of truth values to sentence letters which 
makes all of the sentences true. 

The truth tree method applies immediately to test a set of sentences for 
consistency. Before reading on, see if you can figure out this test for your- 
self. 

The tree method works by finding a case in which all initial sentences 
on a tree are true, if there is such a case. So, to determine whether the 
sentences in a given set are consistent, list the sentences as the initial part 
of a tree. If there is a case in which all of these sentences are true to- 
gether, the tree method will find it. Such a case constitutes what logicians 
call a Model. which shows the initial sentences to constitute a consistent 
set. If the tree closes, the set of sentences has no model and is Inconsistent: 

A Mo&l of a set of sentence logic sentences is an assignment of truth values 
to sentence letters which makes all of the sentences in the set true. 

To test a finite set of sentences for consistency, make the sentence or sen- 
tences in the set the initial sentences of a tree. If the tree closes, there is no 
assignment of truth values to sentence letters which makes all the sentences 
true (there is no model), and the set is inconsistent. An open branch gives a 
model and shows the set to be consistent. 

To make the statement of the test correct, I have had to use the notion 
of a Finite Set of sentences, that is, a set or collection of a limited, as op- 
posed to an unlimited, number of sentences. You do not need to under- 
stand the distinction between a finite as opposed to an infinite set to un- 
derstand anything in Volume I and Volume 11, Part I of this text. But 
you may explore the idea and its implications for consistency by working 
through exercise 9-7. 

It's time to practice these new applications of truth trees. 

EXERCISES 

9-3. Use the truth tree method to determine which of the following 
sentences are logical truths. Show your completed trees. If a sen- 
tence is not a logical truth, give the counterexample or counterex- 
amples which show this. 
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9-4. Use the truth tree method to determine which of the following 
sentences are contradictions. Show your completed trees, and for 
each sentence you determine not to be a contradiction, give the 
counterexample or counterexamples which show this. 

9-5. Use the information suggested in exercise 4-3 to state a new 
truth tree test for logical equivalence. Comment on the relation be- 
tween this test and the test given in the text. 
9-6. Use the truth tree method to determine which of the following 
pairs of sentences are logically equivalent. You may use either the 
test given in the text or the closely related test you discovered in 
exercise 9-4. Show your completed trees, and when you find a pair 
which is not logically equivalent, give the counterexample or coun- 
terexamples which show this. 

a) A>-A and -A 
b) -(lvJ) and -I&-J 
c) Mv-H and -M> H 
d) -(F&P) and -F&-P 
e) (D&N)>J and D>(N>J) 
f) (I>Q)>D and l>(Q>D) 
g) L&(SvT) and (L&S)v(L&T) 
h) Hv-(-Pv-Q) and (HvP)&(HvQ) 

9-7. Consider the following definition: 

(Cl) A sentence of sentence logic is consistent if and only if it is not a 
contradiction. 

a) Are all logical truths consistent according to definition (Cl)? Ex- 
plain why or why not. 
b) Show that a sentence logic sentence is consistent according to def- 
inition (Cl) if and only if there is at least one assignment of truth 
values to sentence letters which makes the sentence true. 

If you go on in your study of logic, the more general notion of 
consistency already given in the text will turn out to be very impor- 
tant: 

(C2) A set of one or more sentence logic sentences is consistent if and 
only if there is at least one assignment of truth values to sentence 
letters which makes all of the sentences true. 

c) Show that a set of sentences is consistent according to definition 
(C2) if and only if the conjunction of all the sentences in the set is 
consistent according to definition (Cl). 

This last problem seems to show that the two definitions of consis- 
tency come to the same thing. Why, then, did I say that the second 
definition is more general? Actually, there is something not quite 
right about exercise (c). T o  see what this is, you need to understand 
the difference between a finite and an infinite set of sentences. A 
finite set of sentences has some definite number of sentences in it, 
such as 2, or 47, or 1,007,859. In an infinite set of sentences the list 
of sentences goes on without end. There is no integer which gives 
you the number of sentences in an infinite set. 
d) Here is an example of an infinite set of sentences: 

The first sentence is '-A'. The second sentence is '--A'. The third, 
fourth, fifth, and further sentences are 'A' preceded by 3, 4, 5, and 
further negation signs, so that the list goes on forever. Question: Is 
this set consistent? 

The difficulty with exercise (c) is that it makes sense only if you 
assume that the set of sentences is finite. For if the set is infinite, 
there is no sentence which is the conjunction of all its members. This 
is because in sentence logic, all sentences are finite in length. 

Now you can see why definition (C2) is more general than (Cl). 
(C2) gives sense to the consistency of an infinite set of sentences. The 
two definitions really come to the same thing, but only for finite sets 
of sentences. 
e) Describe a consistent infinite set of sentences. 
f) Use the truth tree method to test the following sets of sentences 
for consistency. In each case, show your tree. Write next to your tree 
whether the set is consistent or inconsistent, and when consistent, 
give all the models for the set which the truth tree provides. 



L 

f l )  PvS, P IS  

f2) (-F>S)>F, -F, S 

f 3) K&[(-K&H)vH] 

f4) NvB, Nv-B, -NvB 

From a logical point of view, you should really think of the truth 
tree method as a method for testing a set of sentences for consis- 
tency. This general method then has more specific applications, such 
as testing an argument for validity. This is because 

An argument is valid if and only if the set comprised by the argu- 
ment's premises and the negation of its conclusion is inconsistent. 

We say the same thing in other words by saying that an argument is 
valid if and only if the negation of the conclusion is inconsistent with 
(the set of) the argument's premises. 
g) Explain why the last offset statement is correct. 

Some textbooks first present the truth tree method as a test of 
consistency and then apply it to argument validity. I introduced 
trees as a test for argument validity because I wanted to motivate the 
introduction of trees with something you already know about, 
namely, arguments. It is initially hard for many students to under- 
stand the interest in consistency and inconsistency, but these notions 
will become very important in Volume 11, Part I1 of the text. 

C H A ~ E R  SUMMARY EXERCISES 

Here are the important terms and ideas from this chapter. Write 
your explanations for them as usual. This list repeats some terms 
from previous chapters. 

Main Connective 
Logical Truth 
Truth Tree Test for Logical Truths 
Contradiction 
Truth Tree Test for Contradictions 
Logical Equivalence 
Truth Tree Test for Logical Equivalence 
Consistency 
Model 
Infinite Set of Sentences 
Truth Tree Test for Consistency of a Finite Set of Sentences 


