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8-1. PROVING VALIDITY WITH TRUTH TREES 

You know, from the exercises of chapter 4, that you can use truth tables 
to check the validity of any argument of sentence logic. But such truth 
table checks for validity are extremely tedious. If you read chapters 5, 6, 
and 7, you also know how to establish validity by using derivations. Many 
logicians like this natural deduction technique because (for those with a 
taste for logic) derivations are challenging and fun, and because deriva- 
tions express and make precise informal modes of deductive reasoning. 

In this and the next chapter I will present a third means for determin- 
ing the validity of sentence logic arguments-the truth tree method. This 
method is more nearly mechanical than is natural deduction. This fact 
makes truth trees less fun, because they provide less of a challenge, but 
also less aggravating, because they are easier to do. Tntth trees also have 
the advantage of making the content of sentence logic sentences dear, in 
a way which helps in proving general facts about systems of logic, as you 
will see if you study part I1 of Volume II. 

As a basis for the truth tree method we need to remember two funda- 
mental facts from sections 4-1 and 4-2. We know that an argument is 
valid if and only if every possible case which makes all its premises true 
makes its condusion true. And we know that this comes to the same thing 
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as an argument having no counterexamples, that is, no cases which make 
the premises true and the conclusion false. 

The truth tree method proceeds by looking for counterexamples in.an 
organized way. The method has been cleverly designed so that it is guar- 
anteed to turn up at least one counterexample to an argument if there 
are any counterexamples. If the method finds a counterexample, we 
know the argument is invalid. If the method runs to completion without 
turning up a counterexample, we know there are no counterexamples, so 
we know that the argument is valid. Finally, the method considers whole 
blocks of possible cases together, so in most cases it works much more 
efficiently than truth tables. 

We will introduce the truth tree method with a specific example: 

AvB 
-BvC - 

AvC 

We are trying to find a counterexample to this argument. That is, we are 
looking for an assignment of truth values to sentence letters which makes 
the premises true and the conclusion false. Now, if we try to make some 
sentences true and another sentence false, things are going to get very 
confusing. It would be much more straightforward if we could follow a 
procedure which tried to make all of the sentences considered true. 

Can we do  that and still be looking for a counterexample to our argu- 
ment? Y e s 4 f  we replace the conclusion of the argument with its nega- 
tion. So we begin the truth tree method for looking for a counterexample 
by listing the premises of the argument and the negation of the conclu- 
sion: 

1 AvB P(Premise) 
2 -BvC P (Premise) 
3 -(AvC) -C (Negation of the Conclusion) 

Our method now proceeds by trying to make lines 1, 2, and 3 true. 
"Make true" just means finding an assignment of truth values to sentence 
letters for which the sentences are true. If we succeed, we will have a case 
in which the argument's premises, lines 1 and 2, are true. And this same 
case will be one in which the conclusion is false, because the negation of 
the conclusion, line 3, will be true. So if we can make lines 1, 2, and 3 
true, we will have our counterexample. 

-Note that I have numbered the lines, and written some information off 
to the right of each line which tells you why the line got put there. You 
should always number and annotate your lines in this way so that we can 
talk about them easily. 

Now to work. Let's begin by making line 1 true. We see that there are 
two alternative ways of making 'AvB' true. First, we can make it true just 
by making 'A' true. If we make 'A' true, we have made 'AvB' true, what- 
ever eventually happens to the truth value of 'B'. But the same is true of 
'B'. If we make 'B' true, 'AvB' will be true whatever eventually happens 
to the truth value of 'A'. So making 'A' true is a first and making 'B' true 
is a second, alternative way of making 'AvB' true. We need the truth tree 
method to be guaranteed to find a way of making all initial lines true if 
there is a way. So we must be sure to write down all ways in which a line 
might be true, and if there are alternative ways, we must list them inde- 
pendently. 

We mark this fact by extending the tree as follows: 

J 1 AvB P 
2 -BvC P 

We have split the original path into two paths or branches. Each branch 
will represent one way of making true all the sentences which appear 
along it. The left branch will make line 1 true by making 'A' true. The 
right branch will make line 1 true by making 'B' true. Since the paths 
have branched, they represent alternative ways of making line 1 true. 
What happens along one path will have no effect on what happens along 
the other path below the point at which they branch. 

I have added some notation to the tree. The '1, V' at the right of line 4 
means that I got line 4 from line 1 by working on a disjunction. I have 
checked line 1 to remind myself that I have now done everything which 
needs doing to make it true. I won't have to work on that line anymore. 

Now let's work on line 2. I have to make it true, and I will do this 
exactly as I did for line 1. I will make each of the two disjuncts true; that 
is, I will make '-B' true and I will independently make 'C' true along a 
separate branch. But I have to "add on" the ways of making line 2 true 
to each of the ways of making line 1 true. Remember, we are looking for 
some way of making all the original lines true together. So I must first 
write each of the alternative ways of making line 2 true as an extension 
of the first (left branch) way of making line 1 true. That is, I must extend 
the left branch with two new branches each of which represents one of 
the two ways of making line 2 true. So the left branch will itself split and 
look like this: 
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The same reasoning obviously applies to the right branch. I must add on 
both of the ways of making line 2 true to the second (right branch) way 
of making line 1 true. We represent this by splitting the right branch so 
it looks like this: 

Putting these pieces together, after working on line 2, the tree looks like 
this: 

AvB - BvC 

Each branch represents one of the ways of making line 1 true combined 
with one of the ways of making line 2 true. The leftmost, or first, branch 
makes line 1 true by making 'A' true and makes line 2 true by making 
'-B' true. The second branch makes line 1 true by making 'A' true and 
makes line 2 true by making 'C' true. (Do you see how we combine the 
alternative ways of making the first two lines true?) 

The third branch makes line 1 true by making 'B' true and makes line 
2 true by making '-B' true. Whoops! Surely something has gone wrong! 
Surely we can't make line 1 true by making 'B' true and at the same time 
make line 2 true by making '-B' true. If we were to make '-B' true, this 
would be to make 'B' false, and we just said that along the third branch 
'B' would be made true to make line 1 true. We can't make 'B' both true 
and false. What is going on? 

What has happened is that the third branch represents an inconsistent 
way of making lines 1 and 2 true. Focus on the fact that each branch 
represents one of the four ways of trying to make lines 1 and 2 true 
together. It turns out that the third of these ways won't work. One way of 
making line 1 true is by making 'B' true. One way of making line 2 true 
is by making '-B' true. But we can't combine these ways of making the 
two lines true into one way of making the lines true at the same time, 
because doing this would require making 'B' both true and false. We 

' mark this fact by writing an ' x '  at the bottom of the branch on which I both 'B7 and I-B1 appear. The ' x '  tells us that we cannot consistently 

make true all of the sentences which appear along the branch. We say 
that the branch is Closed. We never have to work on a closed branch again: 

We say that a branch is Closed when a sentence, X, and its negation, -X, 
both appear on the branch. We mark a branch as closed by writing an ' X ' 
at the bottom of the branch. Do not write anything further on a branch 
once it has been marked as closed. 

The sentence X may be an atomic sentence, such as 'A', or a compound 
sentence, such as 'Bv-(C&-A)'. Also note that the sentence and its ne- 
gation which cause a branch to close must both appear as entire sentences 
at points along a branch. If one or both appear as part of some larger 
compounds, that does not count. To illustrate this point, look at the tree 
drawn up to line 4, as presented on page 115. On the right-hand branch 
you see 'B' as the entire sentence at the end of the branch, and '-B' as 
part of a compound on line 2. The branch does not close at this point 
because there is no conflict between line 2 and the right branch at line 4. 
It is perfectly possible for 'B' and '-BvC' both to be true. 

It is the fact that branches can close which gives the truth tree method 
its simplifying power. Here is how simplification occurs. We still have to 
make line 3 true, and we have to combine the ways of making line 3 true 
with the ways of making lines 1 and 2 true. But we can forget about one 
of these ways of (trying to) make lines 1 and 2 true because it turned out 
to be inconsistent. This corresponds to ruling out certain lines of the truth 
table before we have completely worked them out. Because a truth tree 
avoids working out what corresponds to some of the lines of the corre- 
sponding truth table, truth trees often save work. 

Note how I annotated the tree in the last step: I put '2, V' to the right 
of line 5 to indicate that I got line 5 from line 2 by working on a disjunc- 
tion. And I checked line 2 to remind myself that I have done everything 
needed to make line 2 true. I won't need to worry about line 2 anymore. 

Let's complete the tree by working on line 3. What has to be done to 
make line 3 true? Line 3 is the negation of a disjunction. The negation of 
a disjunction is true just in case the disjunction itself is false. So, to make 
'-(AvC)' true, I have to make 'AvC' false. How do I make 'AvC' false? 
According to the truth table definition of 'v', I can do this only by making 
both 'A' false and 'C' false. So the result of making line 3 true will not be 
a branch of two alternative ways of making a sentence true. There is only 
one way to make line 3 true: a stack which first makes 'A' false and then 
makes 'C' false. But to keep things clearly organized I only write down 
true sentences. So what I have to write is a stack which makes '-A' true 
and makes '-C' true.: 
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By making '-A' true followed by '-C' true, I have made 'A' and 'C' 
both false, which makes 'AvC' false, in the only way that this can be done. 
Finally, making 'AvC' false makes '-(AvC)' true, which was what we 
wanted to accomplish. 

Where do I write this stack? I must combine the results of making line 
3 true with all the ways I already have for making lines I and 2 true. 
At first thought, this would seem to indicate that I should write my 
'-A', '-C' stack at the bottom of every branch. This is almost right. But 
I won't have to write the results of working on line 3 at the bottom of 
the closed (third) branch. Remember that the closed branch represents 
a way of trying to make previous sentences true that can't work because 
it is inconsistent. So I only have to write my stack at the bottom of 
every Open Branch, that is, every branch which does not have an ' x '  at 
its bottom: 

A branch which is not closed is Open. 

Adding the stack to the open branches gives a tree that looks like this: 

The '3, -v' means that I got the lines from line 3 by working on a negated 
disjunction. I also checked line 3. 

We have one more thing to do to this tree. Note that now the first, 
second, and fourth branches all have the problem that the third branch 
had. To make all the sentences along the first branch true, I would have 
to make 'A' true and '-A' true. That is, I would have to make 'A' both 
true and false. I can't do that, so I put an ' x '  at the bottom of the first 
branch. I d o  exactly the same to t k  second branch for exactly the same 
reason. The fourth branch has both 'C' and '-C', so I must close it with 
an ' x ' also. The final tree looks like this: 

The argument 
is valid. 

Here is the final result: All branches have closed. That means that every 
possible way of trying to make all the initial sentences true results in a 
conflict. Each way of trying to assign truth values to sentence letters re- 
quires that some sentence be made both true and false, and the rules of 
the game do not permit that. We agreed in chapter 1 that in a given 
problem a sentence letter would be true or false, but not both. Since there 
is no way of making all initial sentences true, there is no way of making 
the argument's premises true and its conclusion false. That is, there is no 
counterexample to the argument. So the argument is valid. 

8-2. THE GENERAL STRATEGY FOR THE RULES 

The example we have just completed contains all the ideas of the truth 
tree method. But explaining two more points will help in understanding 
the rest of the rules. 

First, why did I write a stack when I worked on line 3 and a two-legged 
branch when I worked on lines 1 and 2? Here is the guiding idea: If there 
are two alternative ways of making a sentence true I must list the two 
ways separately. Only in this way will the method nose out all the possible 
different combinations of ways of making the original sentences true. I 
can make line I true by making 'A' true and, separately, by making 'B' 
true. I just list these two alternative ways separately, that is, on separate 
branches. This will enable me to combine the alternatives separately with 
all possible combinations of ways of making the other lines true. 

But when I tried to make line 3 true there was only one way to do it. I 
can make '-(AvC)' true only by making both '-A' and '-C' true. Because 
there is only one way of making line 3 true, line 3 does not generate two 
branches. It generates only one thing: the extension of all existing open 
branches with the stack composed of '-A' followed by '-C'. 

I have just explained how I decide whether to write a branch or a stack 
when working on a sentence. (I'll call the sentence we are working on the 
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"target" sentence.) But how do I decide what new sentence to write on 
the resulting branches or the resulting stack? Since each path represents 
a way of making all the sentences along it true, I should put enough 
sentences to ensure the truth of the target sentence along each branched 
or stacked path. But I also want to be sure that I don't miss any of the 
possible ways of making the target sentence true. 

It turns out that I can achieve this objective most efficiently by writing 
the least amount on a branch which gives one way of making the target 
sentence true. I must then write, along separate branches, all the differ- 
ent ways in which I can thus make my target sentence true with as few 
components as possible. I will express this idea by saying that, when work- 
ing on a sentence, I must write, along separate branches, each tainimally 
sufficient sentence or stack of sentences which ensures the truth of my 
target sentence. This will make sure that no avoidable inconsistency will 
arise. And in this way the method will be sure to find a way of making all 
the initial sentences true if there is a way. 

In sum, in working on a target sentence, I do the following. I figure 
out all the ' ' Uy sufficient ways of making my target sentence true. 
If there is only one such way, I write it at the bottom of every open path 
on which the target sentence appears. If there is more than one, I write 
each separate minimally sufficient way on a separate branch at the bottom 
of every open path on which the target sentence appears. 

This reasoning works to explain all the further rules. 

EXERCISES 

8-1. Use the truth tree method to show that the following argu- 
ments are valid. Show your trees, following the models in the text, 
complete with annotations to the right indicating at each stage which 
rule you have used and what line you have worked on. 

a) D b) -(Mv-N) c) --(FvP) dl Hvl 
J - N - Fv- P -IvJ 

DvJ -JvK - 

8-2. If you ran into a conjunction on a tree, what would you do? If 
you don't see right away, try to figure this out on the basis of the 
description in this section of how the rules work and the two rules 
you have seen. If you succeed in stating the rule for a conjunction, 
try to state the rules for negated conjunctions, conditionals, and ne- 
gated conditionals. If you succeed again, try stating the rules for 
biconditionals and negated biconditionals, which are a little harder. 

8-3. PROVING INVALIDITY WITH TRUTH TREES 

Let us now look at an example of an invalid argument: 

AvB 

Keep in mind that this argument is invalid just in case there is a counter- 
example to it, and that the truth tree method works by searching for such 
counterexamples. 

We begin by listing the premise and the negation of the conclusion. 

An assignment of truth values which makes both of these sentences true 
will constitute a counterexample, demonstrating the invalidity of the orig- 
inal argument. 

We already know what to do with line 1 .  But when we get to line 2 we 
will have a new kind of sentence to work on, a negated conjunction. To 
make the negated conjunction '-(A&B)' true, I must make the conjunc- 
tion '(A&B)' false. Making 'A' false is minimally sufficient for making 
'(A&B)' false, and so for making '-(A&B)' true. So for line 2 I must pro- 
duce one branch which makes 'A' false, which I do by writing a branch 
which makes '-A' true. Making 'B' false is likewise minimally sufficient 
for making 'A&B' false. So for line 2 I also need a second, separate 
branch with '-B' on it. Altogether, the result of working on line 2 will 
look like this: 

I will write this at the bottom of every open path on which line 2 a p  
pears. Note that this rule is very different from the rule for the negated 
disjunction '-(AvB)'. In working on the negated disjunction, '-(AvB)', I 
had to write a stack of the negated disjuncts ('-A' followed by '-B') at 
the bottom of every open branch. This is because only the stack, '-A' 
followed by '-B', is minimally sufficient for making the negated disjunc- 
tion true. In working on the negated conjunction, '-(A&B)', I must write 
a branch with '-A' on one leg and '-B' on the other leg. This is because 
each of the negated conjuncts ('-A' or '-B') is by itself minimally suffi- 
cient for making the negated conjunction true. 



We now know everything we need to test our new argument for valid- 
ity: 

J 1 AvB P 
J 2  

The argument 
-(A&B) -C is invalid. 

A'-'B 1 , "  
Counterexamples: 

3 -B&A, -A&B 

4 -A x /?, - A A B  2 ,  -& 
X 

I first worked on line 1, producing a branch with 'A' on one leg and 'B' 
on the other, representing the two minimally sufficient ways of making 
line 1 true. I checked line 1 to remind myself that I have done everything 
needed to make it true. I then worked on line 2. At the bottom of each 
open path I put a new branch, one leg representing one minimally suffi- 
cient way of making line 2 true, and the second leg representing the sec- 
ond minimally sufficient way of making line 2 true. The annotation on 
the right of line 4 indicates that I got line 4 by applying my rule for a 
negated conjunction to line 2. And I checked line 2 t~ remind myself that 
I have done all that is needed to make it true. Next I inspected each path 
to see if it contained both a sentence and the negation of the same sen- 
tence. The first path has both 'A' and '-A'. The fourth path has both 'B' 
and '-B'. So I marked both these paths closed. At this point I observed 
that there are no unchecked compound sentences which I could make 
true by making some simpler sentences true. 

How does this tree show the argument to be invalid? You see that this 
completed tree has two open paths. What do they mean? Look, for ex- 
ample, at the first open path. Reading up from the bottom, suppose we 
make '-B' h u e  and make 'A' true. This constitutes an assignment of truth 
values to sentence letters ('B' false and 'A' true) which will make the orig- 
inal sentences 1 and 2 true. This is because we made '-F true as one way 
of making line 2 true. And we made 'A' true as one way of making line 1 
true. So by assigning truth values f to 'B' and t to 'A', we make all sen- 
tences along the first open path true. 

This sort of thinking works generally for open paths. Keep in mind 
how we constructed the paths. Each time we found a sentence with an '82 
or a 'v' in it, we wrote a shorter sentence farther down the path. We did 
this in a way which guaranteed that if we made the shorter sentence true, 
the longer sentence from which it came would be true also. So if we start 
at the bottom of a path and work up, making each sentence letter and 
each negated sentence letter true, that will be enough to make all sen- 
tences along the path true. Any sentence longer than a sentence letter or 

negated sentence letter will be made true by one or more sentences far- 
ther down the path. 

Even if we start with very complicated sentences at the top, each sen- 
tence is made true by shorter sentences below, and the shorter sentences 
are made true by still shorter sentences farther down, until we finally get 
to the shortest sentences possible, sentence letters and negated sentence 
letters. Then we can work backward. Making the sentence letters and ne- 
gated sentence letters along the path true will, step by step, also make 
true all longer sentences higher up on the path. 

We have seen that the assignment of f to 'B' and t to 'A' makes all 
sentences along the first open path true. In particular, it makes the orig- 
inal first two sentences true. These sentences were our argument's prem- 
ise and the negation of our argument's conclusion. So making the initial 
two sentences true makes our argument's premise true and its conclusion 
false. In short, 'B' false and 'A' true constitutes a counterexample to our 
argument. Thus the argument is invalid. One counterexample is enough 
to show an argument to be invalid, but you should note that the second 
open path gives us a second counterexample. Reasoning in exactly the 
same way as we did for the first open path, we see that making '-A' true 
and 'B' true makes every sentence along the second open path true. So 
making 'A' false and 'B' true constitutes a second counterexample to the 
argument. 

Our last step is to record all this information next to the completed 
tree. We write 'invalid' next to the tree and write the counterexamples 
which show the argument to be invalid. We can do this most easily with 
the sentences of sentence logic which describe the counterexamples. The 
sentence '-B&A' describes the counterexample given by the first open 
path and the sentence '-A&B' describes the counterexample given by the 
second open path. 

A last detail will conclude this section: The order of the cases in the 
description of the counterexample obviously does not matter. I described 
the first counterexample with the sentence '-B&A' because I read the 
counterexample off the path by reading from the bottom up. As a matter 
of practice, I recommend that you do the same. But in principle the 
equivalent description 'A&-B' describes the same counterexample just as 
well. 

EXERCISES 

8-3. Use the truth tree method to show that the following argu- 
ments are invalid. Show your trees, being careful to show which 
branches are closed. In each problem give any counterexamples 
which show the argument being tested to be invalid. 
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a) F b) C) KvH d) -(l&p) - 
F&K S - K PVF 

H&D IvF 

8-4. THE COMPLETE RULES FOR THE CONNECTIVES 

All we have left to do is to state the rules for the remaining connectives. 
And this further development involves nothing very different from what 
we have done already. The reasoning that enables us to figure out the 
new rules is just like the reasoning we went over in explaining the rules 
for disjunction, negated disjunction, and negated conjunction. 

To see how to state the rules generally, let us start with one we have 
already seen in action: 

Rule V: If a disjunction of the form XVY appears as the entire sentence at 
a point on a tree, write the branch 

at the bottom of every open path on which XVY appears. 

Notice that I have stated the general rule using bold face 'X' and 'Y' 
instead of sentence letters 'A' and 'B'. This is because I want to be able to 
apply the rule to more complicated sentences, which result if we substitute 
compound sentences for the 'X' and the 'Y'. Don't worry about this for 
now. We will work on this complication in the next chapter. 

We continue with a statement of the other two rules which we have 
already seen in action: 

Rule -v: If a negated disjunction of the form -(XvY) appears as the 
entire sentence at a point on a tree, write the stack 

at the bottom of every open path on which -(XvY) appears. 

Rule -&: If a negated conjunction of the form -(X&Y) appears as the 
entire sentence at a point on a tree, write the branch 

at the bottom of every open path on which -(X&Y) appears. 

Did you try your hand at exercise &2? If not, or if you did and had 
trouble, try again, now that you have seen how I have given a general 
statement of the rules we have already worked with. Try to figure out the 
new rules for the other connectives by thinking through what, for exam- 
ple, you would need to do to a tree to make true a conjunction which 
appears on a tree, or a conditional, or a negated conditional. 

In order to make a conjunction true on a path we have to make both. 
conjunct5 true. This is the only minimally sufficient way of making the 
conjunction true. So the rule for conjunction is 

Rule &: If a conjunction of the form X&Y appears as the entire sentence 
at a point on a tree, write the stack 

at the bottom of every open path on which X&Y occurs. 

Now let's try the conditional. How can we make a conditional true? If 
we make the antecedent false, that does it right there. Making the ante- 
cedent false is minimally sufficient for making the conditional true. Simi- 
larly, making just the consequent true is minimally sufficient for making 
the conditional true. Clearly, we need a branch, each fork of which has 
one of the minimally sufficient ways of making the conditional true. One 
fork of the branch will have the negation of the antecedent, and the other 
fork will have the consequent: 

Rule 3 :  If a sentence of the form X 3 Y  appears as the entire sentence at 
a point on a tree, write the branch 

-- 

at the bottom of every open path on which X>Y occurs. 

What about negated conditionals? A negated conditional produces a 
stack as do conjunctions and negated disjunctions. A negated conditional 
can be made true only by making its antecedent true and its consequent 
false at the same time. So our rule for negated conditionals reads , 

Rule - 3 :  If a sentence of the form -(X>Y) appears as the entire sen- 
tence at a point on a tree, write the stack 

at the bottom of every open path on which -(X>Y) appears. 
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The rule for the biconditional is just a bit more complicated. You can't 
make the biconditional X=Y true just by making one component true or 
false. You have to assign a truth value to two components to make it true. 
So far, the rule for X=Y is looking like that for X&Y. But there are two 
independent ways of making X=Y true. We can make it true by making 
both components true, and we can make it true by making both compo- 
nents false. Finally, these are all the minimally sufficient ways of making 
X=Y true. So we will have to make a branch, each fork of which will have 
two sentences: 

Rule =: If a biconditional of the form X=;Y appears as the entire sentence 
at a point on a tree, write the branch 

at the bottom of every open path on which X=Y appears. 

Note that the rule = looks different from all the previous rules. Each 
previous rule instructed you to branch or stack, but not both. The rule = 
requires both branching and stacking. We need a branch with two forks, 
and each fork has a stack of two sentences. Only thus do we get all the 
minimally sufficient ways of making a biconditional true. 

The reasoning behind the rule for the negated biconditional looks very 
similar to that for the conditional. A negated biconditional is true just in 
case the biconditional itself is false. Under what conditions is a bicondi- 
tional false? It's false when the components have different truth values. 
This can happen in two ways: The biconditional is false when the first 
component is true and the second component is false, and it is false when 
the first component is false and the second component is true. This gives 
us the rule 

Rule -a: If a negated biconditional of the form -(X=Y) appears as the 
entire sentence at a point on a tree, write the branch 

at the bottom of every open path on which -(X=Y) appears. 

As with the conditional, we need two branches, each with a stack of two 
segtences. Only in this way will we get all the minimally sufficient ways of 
making a negated biconditional true. 

We need one'last truth tree rule. Consider the following argument and 
the tree for testing its validity: 

A36 j 2  -' Valid 

3 -A --6 1 .  -& 

How did I get the branch on the right to close? We can look at this in 
two equally correct ways. We can note that '--B' is the negation of '-B'. 
Thus we have an inconsistent pair of sentences on the same branch. This 
is what I hope occurred to you when you met double negations in the 
previous exercises in this chapter. I can no more make '-B' and '--B' 
both true than I can make 'B' and '-B' both true. So the branch closes. 
Also, we can observe that '--B' is logically equivalent to 'B'. Clearly, the 
one will be true if and only if the other is true. So we can make '--B' 
true by making 'B' true. We could rewrite the right branch on the above 
tree as follows: 

We will formalize this move in a further rule: 

Rule --: If the sentence --X appears as the entire sentence at a point 
on a tree, write X at the bottom of every open path on which --X appears. 

These nine rules for the connectives tell you what to do when working 
on a sentence which appears as the entire sentence at a point on a tree. 
The examples should give you a pretty good idea of how to go about 
applying these rules. But let's review the basic ideas: 

A truth tree works by looking for an assignment of truth values to sentence 
letters which makes all of the tree's original sentences true. 

We will see in the next chapter that a truth tree can be used for other 
things in addition to checking arguments for validity. But so far we have 
studied only validity checking: 

To use the truth tree method to test an argument for validity, list, as the 
initial sentences of a tree, the argument's premises and the negation of its 
conclusion. 
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You then apply the rules in this way: 

1 )  Starting with a tree's initial sentences, you may apply the rules in any 
order. 

2) After applying a rule to a sentence, check the sentence, to remind 
yourself that you do not need to work on that sentence again. 

3) After working on a sentence, look to see if any paths have closed. Mark 
any closed paths with an ' x '. 

4) Continue working on unchecked sentences until the tree has been 
completed, which happens when either 

a) All paths have closed, 
or b) No unchecked sentences are left to which you can apply a rule. 

Now we need to review how you should interpret a tree once it has 
been completed: 

An open path provides an assignment of truth values to sentence letters as 
follows: Assign the truth value t to each sentence letter which occurs as the 
entire sentence at some point along the open path. Assign the truth value f 
to each sentence letter whose negation occurs as the entire sentence along 
the open path. 

In a completed tree the assignment of truth values to sentence letters pro- 
vided by an open path makes all sentences along the path true. If all paths 
have closed, there is no assignment of truth values to sentence letters which 
makes all the initial sentences in the tree true. 

When we use a tree to test an argument for validity, we apply this last 
general fact about trees, as follows: 

Suppose we have a completed tree whose initial sentences are an argument's 
premises and the negation of the argument's conclusion. An open path in 
this tree provides an assignment of truth values to sentence letters which 
makes all of the initial sentences true, and so makes the argument's premises 
true and its conclusion false. Such an assignment is a counterexample to the 
argument, showing the argument to be invalid. If all of the tree's paths have 
closed, there is no such assignment, hence no counterexample, and the ar- 
gument is valid. 

We will also always use the following practical procedure: 

When using the truth tree method to test an argument for validity, write 
next to your completed tree the word 'valid' or 'invalid' to record what the 
tree shows about the argument. Also, if the tree shows the argument to be 
invalid, write down all the counterexamples which the tree provides to the 
argument. 

Of course, one counterexample is enough to show that an argument is 
invalid. But you should practice your skill at constructing trees, and as 

part of this practice it is useful to read off all the counterexamples a tree 
provides. 

8-5. IN WHICH ORDER SHOULD YOU WORK ON THE 
SENTENCES IN A TREE? 

The summary statement tells you that you may apply the rules in any 
order you like. Indeed, the order does not matter in getting the right 
answer. But the order can make a practical difference as to how quickly 
you get the right answer. In all the examples you have seen so far, I 
started with the first sentence on the tree and worked downward. T o  
show you that order can make a practical difference I am going to redo 
the first example and work on line 3 first: 

AvB P 
-BvC P 
-(AvC) -C 
-A 3. -v 

Compare this tree with the first way I worked the problem, and you 
will see that this one is a good bit shorter. I worked out the problem the 
longer way the first time because I wanted to illustrate how branches get 
stacked on top of several other branches. And I wanted to show you how 
working on the sentences in a different order can make a difference as to 
how quickly you can do the problem. 

But how can you tell what the shortest way will be? I have no surefire 
formula which will work for you all the time. In general, you have to try 
to "look ahead" and try to see how the problem will work out to decide 
on an order in which to work the lines. Your objective is to get as many 
branches to close as quickly as possible. If you don't make the best choice, 
the worst that will happen is that your problem will take a little longer to 
do. 

There are several practical rules of thumb to help you out. First, 

Practical guide: Work on lines that produce stacks before lines that produce 
branches. 



8-5. Zn Which Order S W  You Work on the Scntrncu h a T m ?  131 

Branches make trees messy. Stacks line up more sentences along a path 
and improve your chances of getting a path to close. In the problem 
which I redid I knew I was likely to get a shorter tree by working on line 
3 before working on lines 1 and 2. I knew this because line 3 produces a 
stack while both 1 and 2 produce branches. 

A second suggestion: 

Practical guide: When you have as sentences on which to work only ones 
which are going to produce branches, work first on one which will produce 
at least some closed paths. 

If the first. two suggestions don't apply, here is a final piece of advice: 

Practical guide: If the first two guides don't apply, then work on the longest 
sentence. 

If you put off working on a long sentence, you may have to copy the 
results of working on it at the bottom of many open branches. By working 
on a long sentence early on, you may get away with its long pieces at the 
bottom of relatively few branches, making your tree a little less compli- 
cated. 

Now you should sharpen your understanding of the rules by working 
the following problems. The easiest way to remember the rules is to un- 
derstand how they work. Once you understand the reasoning which led 
us to the rules, you will very quickly be able to reconstruct any rule you 
forget. But you may also refer to the rule summary on the inside back 
cover. You should understand the boxes and circles in this way: When- 
ever you find a sentence with the form of what you see in a box occurring 
as the entire sentence at a point along a tree, you should write what you 
see in the circle at the bottom of every open path on which the first sen- 
tence occu'rred. Then check the first sentence. I have written the abbre- 
viated name of the rule above each rule. 

8-4. Use the truth tree method to determine whether or not the 
following arguments are valid. In each case show your tree, indicat- 
ing which paths are closed. Say whether the argument is valid or 
invalid, and if invalid give all the counterexamples provided by your 
tree. 

g) (KvS) h) J>D i) MEN j) T=I k) -(F&-L) 
-(K&H) K3D MS-N I &A -(L&-c) 

K>H JvK - -Tv-A F-L 
D 

I) F=G m) C>N n) -(Q>D) o) R--S p) O=-F 
G=H L .  -(l>C) -(Q&-B) -(R=T) -(F=K) 

-(Nv-I) F-H 
-(B&-R) R&-S O>K 

-N>-I m-Q 

8-5. The rules, as I have stated them, specify an order for the 
branches and an order for sentences in a stack. For example, the 
rule for a negated conditional, -(X>Y) instructs you to write a stack 

But could you just as well write the stack 

at the bottom of every open path on which -(X3Y) appears? If so, 
why? If not, why not? Likewise, the rule for the conditional, X3Y, 
instructs you to write the branches 

But could you just as well write the branches in the other order, 
writing 

at the bottom of every open path on which X3Y appears? If so, 
why? If not, why not? Comment on the order of branches and the 
order within stacks in the other rules as well. 

I 
8-6. If we allow ourselves to use certain logical- equivalences the 
truth tree method needs fewer rules. For example, we know from 

1 chapter 4 that, for any sentences X and Y, X>Y is logically equiva- 
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lent to -XVY. Now suppose we find a sentence of the form X>Y on 
a tree. We reason as follows: Our objective is to make this sentence 
true by making other (in general shorter) sentences true. But since 
-XvY is logically equivalent to X>Y, we can make X>Y true by 
making -XVY true. So I will write -XVY at the bottom of every 
open branch on which X>Y appears, check X>Y, and then apply 
the rule for disjunctions to -XvY. In this way we can avoid the need 
for a special rule for conditional sentences. 

Apply this kind of reasoning to show that, by appealing to de Mor- 
gan's rules, we can do without the rules for negated conjunctions 
and negated disjunctions, using the rules for disjunctions and con- 
junctions in their place. Also show that we could equally well do 
without the rules for conjunctions and disjunctions, using the rules 
for negated disjunctions and negated conjunctions in their place. 

8-7. In chapter 3 I extended the definition of conjunctionsand dis- 
junctions to include sentences with three or more conjuncts and sen- 
tences with three or more disjuncts. But we have not yet stated truth 
tree rules for such sentences. 

a) State truth tree rules for conjunctions of the form X&Y&Z and 
for disjunctions of the form XvYvZ. 
b) State truth tree rules for conjunctions and disjunctions of arbi- 
trary length. 

8-8. Write a truth tree rule for the Sheffer stroke, defined in section 
3-5. 

CHAPTER SUMMARY HERCISES 

Here are this chapter's important new ideas. Write a short explana- 
tion for each in your notebook. 

Truth Tree 
Counterexample 
Branching Rule 
Nonbranching Rule 
Closed Branch (or Path) 
Open Branch (or Path) 
Rule -- 
Rule & 
Rule -& 
Rule v 

k) Rule -v 
1) Rule 3 

m) Rule -3 
n) Rule - 
0) Rule -2 




