
Finite Automata

Mark V. Lawson
Heriot-Watt University, Edinburgh

November 4, 2009





Contents

Preface vii

1 Introduction to finite automata 1
1.1 Alphabets and strings . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Language operations . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Finite automata: motivation . . . . . . . . . . . . . . . . . . . 14
1.5 Finite automata and their languages . . . . . . . . . . . . . . 17
1.6 Summary of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . 25

2 Recognisable languages 27
2.1 Designing automata . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Automata over one letter alphabets . . . . . . . . . . . . . . . 30
2.3 Incomplete automata . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Automata that count . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Automata that locate patterns . . . . . . . . . . . . . . . . . . 41
2.6 Boolean operations . . . . . . . . . . . . . . . . . . . . . . . . 45
2.7 Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 51

3 Non-deterministic automata 53
3.1 Accessible automata . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Non-deterministic automata . . . . . . . . . . . . . . . . . . . 60
3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 71

4 ε-automata 73
4.1 Automata with ε-transitions . . . . . . . . . . . . . . . . . . . 73
4.2 Applications of ε-automata . . . . . . . . . . . . . . . . . . . . 79

iii



iv Contents

4.3 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 82

5 Kleene’s Theorem 83
5.1 Regular languages . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 An algorithmic proof of Kleene’s theorem . . . . . . . . . . . . 89
5.3 Summary of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . 100

6 Minimal automata 101
6.1 Partitions and equivalence relations . . . . . . . . . . . . . . . 101
6.2 The indistinguishability relation . . . . . . . . . . . . . . . . . 105
6.3 Isomorphisms of automata . . . . . . . . . . . . . . . . . . . . 114
6.4 The minimal automaton . . . . . . . . . . . . . . . . . . . . . 117
6.5 The method of quotients . . . . . . . . . . . . . . . . . . . . . 121
6.6 Summary of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . 129

Solutions to exercises 131
S.1 Introduction to finite automata . . . . . . . . . . . . . . . . . 131

S.1.1 Alphabets and strings . . . . . . . . . . . . . . . . . . 131
S.1.2 Languages . . . . . . . . . . . . . . . . . . . . . . . . . 134
S.1.3 Language operations . . . . . . . . . . . . . . . . . . . 134
S.1.4 Finite automata: motivation . . . . . . . . . . . . . . . 137
S.1.5 Finite automata and their languages . . . . . . . . . . 138

S.2 Recognisable languages . . . . . . . . . . . . . . . . . . . . . . 140
S.2.1 Designing automata . . . . . . . . . . . . . . . . . . . 140
S.2.2 Automata over one letter alphabets . . . . . . . . . . . 141
S.2.3 Incomplete automata . . . . . . . . . . . . . . . . . . . 143
S.2.4 Automata that count . . . . . . . . . . . . . . . . . . . 144
S.2.5 Automata that locate patterns . . . . . . . . . . . . . . 146
S.2.6 Boolean operations . . . . . . . . . . . . . . . . . . . . 149

S.3 Non-deterministic automata . . . . . . . . . . . . . . . . . . . 151
S.3.1 Accessible automata . . . . . . . . . . . . . . . . . . . 151
S.3.2 Non-deterministic automata . . . . . . . . . . . . . . . 152
S.3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . 154

S.4 ε-automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
S.4.1 Automata with ε-transitions . . . . . . . . . . . . . . . 156
S.4.2 Applications of ε-automata . . . . . . . . . . . . . . . . 158

S.5 Kleene’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 158
S.5.1 Regular languages . . . . . . . . . . . . . . . . . . . . . 158



Contents v

S.5.2 An algorithmic proof of Kleene’s theorem . . . . . . . . 160
S.6 Minimal automata . . . . . . . . . . . . . . . . . . . . . . . . 162

S.6.1 Partitions and equivalence relations . . . . . . . . . . . 162
S.6.2 The indistinguishability relation . . . . . . . . . . . . . 164
S.6.3 Isomorphisms of automata . . . . . . . . . . . . . . . . 165
S.6.4 The minimal automaton . . . . . . . . . . . . . . . . . 167
S.6.5 The method of quotients . . . . . . . . . . . . . . . . . 168

2008 Exam paper 173

Solutions to 2008 exam 175

Bibliography 180

Index 185



vi Contents



Preface

The theory of finite automata is the mathematical theory of a simple class of
algorithms that are important in mathematics and computer science. Three
papers laid the foundations of finite automata theory: Turing’s 1936 paper
[49] in which algorithmic problems are defined as those which can be solved
by mechanical means in terms of what are now known as Turing machines;
McCulloch and Pitts’ paper [25] of 1943 in which a mathematical model
of brain neurons was constructed; and Kleene’s paper [20], developing his
RAND report of 1951, in which McCulloch and Pitts’ model was subjected
to a detailed mathematical makeover resulting in the finite automata of this
course.1

Applications of finite automata and their languages are legion:

• The book by Petzold [36] is an elementary introduction to circuit de-
sign.

• Aho, Sethi, and Ullman [1] explain how finite automata form one of
the ingredients in designing compilers.

• Friedl [11] describes the thousand-and-one uses of regular expressions
to professional programmers — such expressions are equivalent to finite
automata as we shall prove in Chapter 5.

1If you want to know more about the history of finite automata, the essay by Perrin
[35] is interesting, and there are surveys of important papers in Brauer [4]. The collections
of papers that appear in [43] and [31] convey something of the flavour of the early work.
References to work on automata theory in the former Soviet bloc can be found in [12] and
[13] as well as Brauer [4].

The theory of finite automata is an established part of theoretical computer science, and
so any book dealing with this subject will contain accounts of finite automata to a greater
or lesser extent. Textbooks that contain chapters on finite automata, at approximately
the same level as this course, are [5], [8], [18], [21], [22], [40], and [46].

vii



viii PREFACE

• Searching for patterns in texts can be carried out efficiently using au-
tomata [9].

• The collection of papers to be found in [39] demonstrates the usefulness
of finite automata in natural language processing.

• Lind and Marcus [23] show how finite automata, under the alias of
‘sofic system,’ can be used in encoding information, a further useful
introduction to these ideas is [3].

• von Haeseler [15] uses finite automata to generate sequences of num-
bers.

• Sims [45] uses finite automata to describe some algorithms in group
theory.

• Epstein et al [10] explain how finite automata form an important tool
in combinatorial group theory and geometry.

• Thurston [48] interweaves groups, tilings, dynamical systems, and finite
automata; Grigorchuk et al [14] actually build groups from automata.

• Pin [37] develops the algebraic theory of recognisable languages within
finite semigroup theory.

This course is based around two main theorems: Kleene’s Theorem,
proved in Chapter 5, and the theorem that states that two reduced accessible
automata recognising the same language are isomorphic, proved in Chapter 6.
Kleene’s Theorem is the first main theorem of theoretical computer science,
whereas the second theorem can be used to show that every recognisable
language is accepted by an essentially unique minimal automaton.



Chapter 1

Introduction to finite automata

The theory of finite automata is the mathematical theory of a simple class of
algorithms that are important in mathematics and computer science. In this
chapter, we set the scene for the entire course by explaining what we mean
by a finite automaton and the language recognised by a finite automaton. In
order to define languages, we have first to define alphabets and strings. One
of the goals of this chapter is to explain why the notion of ‘language’ is an
important one.

1.1 Alphabets and strings

Most people today are familiar with the idea of digitising information; that
is, converting information from an analogue or continuous form to a discrete
form. It is well-known that computers deal only in 0’s and 1’s, but users
of computers do not have to communicate with them in binary; they can
interact with the computer in a great variety of ways. For example, voice
recognition technology enables us to input data without using the keyboard,
whereas computer graphics can present output in the form of animation.
But these things are only possible because of the underlying sequences of
0’s and 1’s that encode this information. We begin this section therefore by
examining sequences of symbols and their properties.

Information in all its forms is usually represented as sequences of symbols
drawn from some fixed repertoire of symbols. More formally, any set of
symbols A that is used in this way is called an alphabet, and any finite
sequence whose components are drawn from A is called a string over A or

1



2 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

simply a string.1 We call the elements of an alphabet symbols or letters. The
number of symbols in an alphabet A is denoted by |A |. The alphabets in
this course will always be finite.

Examples 1.1.1 Here are a few examples of alphabets you may have en-
countered.

(1) An alphabet suitable for describing the detailed workings of a computer
is {0, 1}.

(2) An alphabet for representing natural numbers in base 10 is

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

This alphabet is one of the great human inventions.

(3) An alphabet suitable for writing stories in English is

{a, . . . , z, A . . . , Z, ?, . . .},

upper and lower case letters together with punctuation symbols and a
space symbol to separate different words. Alphabets, whether Latin,
Greek, Hebrew etc, are another great human invention.

(4) An alphabet for formal logic is {∃,∀,¬,∧, . . .}. This alphabet is impor-
tant in writing mathematics.

(5) The alphabet used in describing a programming language is called the
set of tokens of the language. For example, in the C language, the
following are all tokens:

main, printf, {, }.

(6) DNA is constructed from four main types of molecules: adenine (A), cy-
tosine (C), guanine (G), and thymine (T). Sequences of these molecules,
and so strings over the alphabet {A,C,G, T}, form the basis of genes.

2

1The term word is often used instead of string.



1.1. ALPHABETS AND STRINGS 3

The symbols in an alphabet do not have to be especially simple. An
alphabet could consist of pictures, or each element of an alphabet could
itself be a sequence of symbols. Thus the set of all Chinese characters is an
alphabet in our sense although it is not an alphabet in the linguistic sense, as
is the set of all words in an ordinary dictionary — a word like ‘egalitarianism’
would, in this context, be regarded as a single symbol. An important example
of using sequences of symbols over one alphabet to represent the elements
of another alphabet occurs with ASCII encoding, and also forms the basis
of data-compression and error-correction codes. You might wonder why,
when all information can be encoded in binary, we do not just stick with
the alphabet {0, 1}. The reason is one of convenience: binary is good for
computers and bad for people. That said, most of the alphabets we use in this
course will just have a few elements but, again, that is just for convenience.

A string is a list and so it is formally written using brackets and commas
to separate components. Thus (0, 1, 1, 1, 0) is a string over the alphabet
A = {0, 1}, whereas (to, be, or, not, to, be) is a string over the alphabet whose
elements are the words in an English dictionary. The string () is the empty
string. However, for the remainder of this course, we shall write strings
without brackets and commas and so for instance we write 01110 rather
than (0, 1, 1, 1, 0). The empty string needs to be recorded in some way and
we denote it by ε. The set of all strings over the alphabet A is denoted by
A∗, read A star, and the set of all strings except the empty one is denoted
by A+, read A plus.

Two strings u and v over an alphabet A are equal if they contain the
same symbols in the same order. More formally, x = y iff either x = y = ε
or |x| = |y| = n > 0 and for 1 ≤ i ≤ n we have that xi = yi.

Given two strings x, y ∈ A∗, we can form a new string x · y, called the
concatenation of x and y, by simply adjoining the symbols in y to those in
x. For example, if A = {0, 1} then both 0101 and 101010 are strings over A.
The concatenation of 0101 and 101010 is denoted 0101 · 101010 and is equal
to the string 0101101010. We shall usually denote the concatenation of x and
y by xy rather than x · y. The string ε has a special property with respect
to concatenation: for each string x ∈ A∗ we clearly have that εx = x = xε.

There is one point that needs to be emphasised: the order in which
strings are concatenated is important. For example, if A = {a, b} and
u = ab and v = ba then uv = abba and vu = baab and clearly uv 6= vu. We
have all been made painfully familiar with this fact: the spelling of the word
‘concieve’ is wrong, whereas the spelling ‘conceive’ is correct. This is because



4 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

‘order matters’ in spelling. In the case where A consists of only one letter,
then the order in which we concatenate strings is immaterial. For example,
if A = {a} then strings in A∗ are just sequences of a’s, and clearly, the order
in which we concatenate strings of a’s is not important.

Given three strings x, y, and z, there are two distinct ways to concatenate
them in this order: we can concatenate x and y first to obtain xy and then
concatenate xy with z to obtain xyz, or we can concatenate y and z first
to obtain yz and then concatenate x with yz to obtain xyz again. In other
words, (xy)z = x(yz). We say that concatenation is associative.

Remark A set S equipped with an associative binary operation is called a
semigroup. Depending on the set S, we might use other symbols to denote
the binary operation: +, ×, ◦, ∗ etc. When proving results about arbitrary
semigroups we usually use concatenation to denote the binary operation. An
identity element in the semigroup S is an element e such that es = s = se for
all s ∈ S. It can be easily proved that if a semigroup has an identity then it
has exactly one. A semigroup with an identity is called a monoid. It follows
that A∗ is a monoid with respect to the binary operation of concatenation
and with identity the empty string. This monoid is called the free monoid
(on the set A). Clearly A+ is just a semigroup and it is called the free semi-
group (on the set A).

If x is a string then we write xn, when n ≥ 1, to mean the concatenation
of x with itself n-times. We define x0 = ε. For example, if x = ba then
(ba)2 = baba. The usual laws of indices hold: if m,n ≥ 0 then xmxn = xm+n.

If w is a string then |w | denotes the total number of symbols appearing in
w and is called the length of w. If a ∈ A then |w |a is the total number of a’s
appearing in w. For example, | ε | = 0, and | 01101 | = 5; | 01101 |0 = 2, and
| 01101 |1 = 3. If x, y ∈ A∗ then |xy | = |x |+ | y |; when we concatenate two
strings the length of the result is the sum of the lengths of the two strings.

When discussing strings over an alphabet, it is useful to have a standard
way of listing them. This can easily be done using what is known as the
tree order2 on A∗. Let A = {a1, . . . , an} be an alphabet. Choose a fixed
linear order for the elements of A. This is usually obvious, for example, if
A = {0, 1} then we would assume that 0 < 1 but in principle any ordering of

2Also known as the ‘length-plus-lexicographic order,’ which is more of a mouthful, and
the ‘ShortLex order.’



1.1. ALPHABETS AND STRINGS 5

the elements of the alphabet may be chosen, but if a non-standard ordering
is to be used then it has to be explicitly described. We now grow a tree,
called the tree over A∗, whose root is ε and whose vertices are labelled with
the elements of A∗ according to the following recipe: if w is a vertex, then
the vertices growing out of w are wa1, . . . , wan. The tree order on A∗ is now
obtained as follows: x < y if and only if |x| < |y|, or |x| = |y| and the string
x occurs to the left of the string y in the tree over A∗. To make this clearer,
we do a simple example. Let A = {0, 1}, where we assume 0 < 1. The first
few levels of the tree over A∗ are:

00 01 10 11

0

BBBBBBBB

1

||||||||

ε

AAAAAAAA

}}}}}}}}

Thus the tree order for A∗ begins as follows

ε < 0 < 1 < 00 < 01 < 10 < 11 < . . . .

This ordering amounts to saying that a string precedes all strictly longer
strings, while all the strings of the same length are listed lexicographically,
that is to say the way they are listed in a dictionary3 based on the ordering
of the alphabet being used.

Let x, y, z ∈ A∗. If u = xyz then y is called a factor of u, x is called a
prefix of u, and z is called a suffix of u. We call the factor y proper if at least
one of x and z is not just the empty string. In a similar fashion we say that
the prefix x (resp. suffix z) is proper if x 6= u (resp. z 6= u). We say that the
string u is a substring of the string v if u = a1 . . . an, where ai ∈ A, and there
exist strings x0, . . . , xn such that v = x0a1x1 . . . xn−1anxn. Let x ∈ A∗. We
call a representation x = u1 . . . un, where each ui ∈ A∗, a factorisation of x.

Example 1.1.2 Consider the string u = abab over the alphabet {a, b}. Then
the prefixes of u are: ε, a, ab, aba, abab; the suffixes of u are: ε, b, ab, bab, abab;
and the factors of u are: ε, a, b, ab, ba, aba, bab, abab. The strings aa, bb, abb
are examples of substrings of u. Finally, u = ab · ab is a factorisation of u;
observe that I use the · to emphasise the factorisation.

3Also known as a lexicon.



6 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

Exercises 1.1

1. Write down the set of prefixes, the set of suffixes, and the set of factors
of the string,

aardvark,

over the alphabet {a, . . . , z}. When writing down the set of factors,
list them in order of length. Find three substrings that are not factors.

2. Let A = {a, b} with the order a < b. Draw the tree over A∗ up to and
including all strings of length 3. Arrange these strings according to the
tree order.

3. Let A be an alphabet. Prove that A∗ is cancellative with respect to
concatenation, meaning that if x, y, z ∈ A∗ then xz = yz implies x = y,
and zx = zy implies x = y.

4. Let x, y, u, v ∈ A∗. Suppose that xy = uv. Prove the following hold:

(i) If |x| > |u|, then there exists a non-empty string w such that x = uw
and v = wy.

(ii) If |x| = |u|, then x = u and y = v.

(iii) If |x| < |u|, then there exists a non-empty string w such that
u = xw and y = wv.

5. In general, if u, v ∈ A+, then the strings uv and vu are different as we
have noted. This raises the question of finding conditions under which
uv = vu. Prove that the following two conditions are equivalent:

(i) uv = vu.

(ii) There exists a string z such that u = zp and v = zq for some
natural numbers p, q > 0.

You can use Question 4 in solving this problem. Proving results about
strings is often no easy matter. More combinatorial properties of strings
are described in [24].

6. Prove that in a semigroup there is at most one identity.



1.2. LANGUAGES 7

7. Determine which of the following are semigroups and which are not,
and give reasons.

(i) The set T (X) of all functions defined from the set X to itself
equipped with the binary operation of composition of functions.

(ii) The set Mn(R) of all n × n real matrices equipped with matrix
multiplication.

(iii) The set of all three dimensional vectors equipped with the vector
product.

1.2 Languages

Before defining the word ‘language’ formally, here is a motivating example.

Example 1.2.1 Let A be the alphabet that consists of all words in an En-
glish dictionary. So A contains a very large number of elements: of the order
of half a million. As we explained in Section 1.1, we can think of each En-
glish word as being a single symbol. The set A∗ consists of all possible finite
sequences of words. An important subset L of A∗ consists of all sequences
of words that form grammatically correct English sentences. Thus the se-
quence (to,be,or,not,to,be)∈ L whereas (be,be,to,to,or,not) /∈ L. Someone
who wants to understand English has to learn the rules for deciding when a
string of words belongs to the set L. We can therefore think of L as being
the ‘English language.’4 2

This example motivates the following definition. For any alphabet A,
any subset of A∗ is called an A-language, or a language over A or simply a
language.

Examples 1.2.2 Here are some examples of languages.

(1) In elementary arithmetic we use the alphabet,

A = {0, . . . , 9} ∪ {+,×,−,÷, =} ∪ {(, )}.
We can form the language L of all correct sums: thus the sequence
2 + 2 = 4 is in L whereas the sequence 1÷ 0 = 42 is not. Any totally
meaningless string such as ÷+ = 98 = also fails to be in L.

4In reality, membership of this set is sometimes problematic, but the languages we meet
in practice will be formal and always clearly defined.



8 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

(2) In computer science, the set of all syntactically correct programs in a
given computer language, such as Java, constitutes a language.

(3) Both ∅ and A∗ are languages over A: the smallest and the largest, re-
spectively.

2

We have seen that languages arise as natural languages, and as computer
languages, but perhaps the most important class of languages in mathematics
are those that arise from the theory of algorithms. Problems come in all
shapes and sizes. For example, the problem of finding the prime factors of a
natural number involves input, in the form of a natural number n, and output
let us say the nondecreasing sequence of prime factors of n. For example, if we
input 12 the output will be 2, 2, 3. Some problems give much more restricted
outputs. For example, the problem ‘is n ≥ 2 a prime’ outputs ‘yes’, if n
is a prime, and ‘no’, if n is composite. Problems whose outputs are either
‘yes’ or ‘no’ are a special class of problem called decision problems. Decision
problems might seem a little feeble compared with problems that deliver
honest-to-goodness outputs, but in fact they are very useful for two reasons.
First, decision problems can be used to generate output: for example, to find
the prime factors of a number n I can use a sequence of decision problems
such as ‘is n divisible by 2?’, ‘is n divisible by 3?’ and so on. Thus information
about decision problems can be used to get information about problems which
are not themselves decision problems. Second, decision problems are much
easier to handle mathematically; this is because decision problems are really
languages in disguise. The reason is that the inputs to a decision problem
can be coded as strings. Those strings whose corresponding inputs give the
answer ‘yes’ then form the language corresponding to the decision problem.
Thus languages can be viewed as decision problems wearing a false beard,
and decision problems are important.

But we are not just interested in problems, we are much more interested
in methods, or better algorithms, for solving problems. Informally, an algo-
rithm is a step-by-step procedure for solving a problem: programs are good
examples of algorithms. Thus the decision problem ‘is n ≥ 2 a prime’ can
be solved by the algorithm: try dividing n by each m ≤ √n; if none of them
works then n is prime, and if one of them does work then n is not prime. An
important goal of mathematics is to try to find good algorithms for solving



1.3. LANGUAGE OPERATIONS 9

decision problems, which translates into trying to find good algorithms for
determining whether a string belongs to a language. As we shall see, those
languages which can be accepted by a finite automaton admit a very good
algorithm for deciding whether a string belongs to them or not: namely, any
finite automaton that recognises the language. We shall also find that not
all languages can have their membership problem decided by an automaton.

1.3 Language operations

In Section 1.2, we introduced languages as they will be understood in this
course. We shall now define various operations on languages: that is, ways
of combining languages to make new ones.

If X is any set, then P(X) is the set of all subsets of X, the power set of
X. Now let A be an alphabet. A language over A is any subset of A∗, so
that the set of all languages over A is just P(A∗). If L and M are languages
over A so are L ∩M , L ∪M and L \M (‘relative complement’). If L is a
language over A, then L′ = A∗ \ L is a language called the complement of
L. The operations of intersection, union, and complementation are called
Boolean operations and come from set theory. Recall that ‘x ∈ L∪M ’ means
‘x ∈ L or x ∈ M or both.’ In automata theory, we usually write L + M
rather than L ∪M when dealing with languages.

Notation If Li is a family of languages where 1 ≤ i ≤ n, then their union
will be written

∑n

i=1 Li.

There are two further operations on languages that are peculiar to au-
tomata theory and extremely important: the product and the Kleene star.

Let L and M be languages. Then

L ·M = {xy: x ∈ L and y ∈M}

is called the product of L and M . We usually write LM rather than L ·M .
A string belongs to LM if it can be written as a string in L followed by a
string in M . In other words, the product operation enables us to talk about
the order in which symbols or strings occur.

Examples 1.3.1 Here are some examples of products of languages.

(1) ∅L = ∅ = L∅ for any language L.



10 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

(2) {ε}L = L = L{ε} for any language L.

(3) Let L = {aa, bb} and M = {aa, ab, ba, bb}. Then

LM = {aaaa, aaab, aaba, aabb, bbaa, bbab, bbba, bbbb}

and
ML = {aaaa, aabb, abaa, abbb, baaa, babb, bbaa, bbbb}.

In particular, LM 6= ML in general.

2

For a language L we define L0 = {ε} and Ln+1 = Ln · L. For n > 0 the
language Ln consists of all strings u of the form u = x1 . . . xn where xi ∈ L.

The Kleene star of a language L, denoted L∗, is defined to be

L∗ = L0 + L1 + L2 + . . . .

We also define
L+ = L1 + L2 + . . . .

Examples 1.3.2 Here are some examples of the Kleene star of languages.

(1) ∅∗ = {ε} and {ε}∗ = {ε}.

(2) The language {a2}∗ consists of the strings,

ε, a2, a4 = a2a2, a6 = a2a2a2, . . . .

In other words, all strings over the alphabet {a} of even length (re-
member: the empty string has even length because 0 is an even num-
ber).

(3) A string u belongs to {ab, ba}∗ if it is empty or if u can be factorised
u = x1 . . . xn where each xi is either ab or ba. Thus the string abbaba
belongs to the language because abbaba = ab · ba · ba, but the string
abaaba does not because abaaba = ab · aa · ba.

2



1.3. LANGUAGE OPERATIONS 11

Notation We can use the Boolean operations, the product, and the Kleene
star to describe languages. For example, L = {a, b}∗ \ {a, b}∗{aa, bb}{a, b}∗
consists of all strings over the alphabet {a, b} that do not contain a doubled
symbol. Thus the string ababab is in L whereas abaaba is not. When lan-
guages are described in this way, it quickly becomes tedious to keep having
to write down the brackets { and }. Consequently, from now on we shall
omit them. If brackets are needed to avoid ambiguity we use ( and ). This
notation is made rigorous in Section 5.1.

Examples 1.3.3 Here are some examples of languages over the alphabet
A = {a, b} described using our notational convention above.

(1) We can write A∗ as (a + b)∗. To see why, observe that

A∗ = {a, b}∗ = ({a}+ {b})∗ = (a + b)∗,

where the last equality follows by our convention above. We have to
insert brackets because a+ b∗ is a different language. See Exercises 1.3.

(2) The language (a + b)3 consists of all 8 strings of length 3 over A. This
is because (a + b)3 means (a + b)(a + b)(a + b). A string x belongs to
this language if we can write it as x = a1a2a3 where a1, a2, a3 ∈ {a, b}.

(3) The language aab(a+b)∗ consists of all strings that begin with the string
aab, whereas the language (a+ b)∗aab consists of all strings that end in
the string aab. The language (a + b)∗aab(a + b)∗ consists of all strings
that contain the string aab as a factor.

(4) The language (a + b)∗a(a + b)∗a(a + b)∗b(a + b)∗ consists of all strings
that contain the string aab as a substring.

(5) The language aa(a + b)∗ + bb(a + b)∗ consists of all strings that begin
with a double letter.

(6) The language (aa + ab + ba + bb)∗ consists of all strings of even length.

2



12 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

REMEMBER! The symbol + means or, whereas the symbol · means fol-
lowed by. If you muddle them up, you will get the wrong answer.

Exercises 1.3

1. Let L = {ab, ba}, M = {aa, ab} and N = {a, b}. Write down the
following.

(i) LM .

(ii) LN .

(iii) LM + LN .

(iv) M + N .

(v) L(M + N).

(vi) (LM)N .

(vii) MN .

(viii) L(MN).

2. Determine the set inclusions among the following languages. In each
case, describe the strings belonging to the language.

(i) a + b∗.

(ii) a∗ + b∗.

(iii) (a∗ + b∗)∗.

3. Describe the following languages in words:

(i) a∗b∗.

(ii) (ab)∗.

(iii) (a + b)(aa + ab + ba + bb)∗.

(iv) (a2 + b2)(a + b)∗.

(v) (a + b)∗(a2 + b2)(a + b)∗.

(vi) (a + b)∗(a2 + b2).

(vii) (a + b)∗a2(a + b)∗b2(a + b)∗.



1.3. LANGUAGE OPERATIONS 13

4. Let L be any language. Show that if x, y ∈ L∗ then xy ∈ L∗.

This is an important property of the Kleene star operation.

5. Let L ⊆ A∗. Verify the following:

(i) (L∗)∗ = L∗.

(ii) L∗L∗ = L∗.

(iii) L∗L + ε = L∗ = LL∗ + ε.

Is it always true that LL∗ = L∗?

6. Prove that the following hold for all languages L,M , and N .

(i) L(MN) = (LM)N .

(ii) L(M + N) = LM + LN and (M + N)L = ML + NL.

(iii) If L ⊆M then NL ⊆ NM and LN ⊆MN .

(iv) Prove a more general version of (ii) above: products distribute
over arbitrary (not just finite) unions.

7. Let L,M,N be languages over A. Show that L(M ∩N) ⊆ LM ∩ LN .
Using A = {a, b}, show that the reverse inclusion does not hold in
general by finding a counterexample.

8. Let A = {a, b}. Show that

(ab)+ = (aA∗ ∩ A∗b) \ (A∗aaA∗ + A∗bbA∗).

9. Let A be an alphabet and let u, v ∈ A∗. Prove that uA∗ ∩ vA∗ 6= ∅ if
and only if u is a prefix of v or vice versa; when this happens explicitly
calculate uA∗ ∩ vA∗.

10. For which languages L is it true that L∗ = L+?

11. Let S be a monoid with identity 1. A submonoid T of S is a subset
such that 1 ∈ T and if a, b ∈ T then ab ∈ T . Let L ⊆ A∗. Prove that
L∗ is the smallest submonoid of A∗ containing L.

By ‘smallest’ I mean that if T is any submonoid of A∗ containing L
then L∗ ⊆ T .



14 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

12. Is P(A∗) a monoid?

A zero in a semigroup S is an element z such that zs = z = sz for all
s ∈ S. Show that if a semigroup has a zero then it has a unique zero.

Does P(A∗) contain a zero?

1.4 Finite automata: motivation

An information-processing machine transforms inputs into outputs. In gen-
eral, there are two alphabets associated with such a machine: an input al-
phabet A for communicating with the machine, and an output alphabet B
for receiving answers. For example, consider a machine that takes as input
sentences in English and outputs the corresponding sentence in Russian.

There is however another way of processing strings, which will form the
subject of this course. As before, there is an input alphabet A but this time
each input string causes the machine to output either ‘yes’ or ‘no.’ Those
input strings from A∗ that cause the machine to output ‘yes’ are said to be
accepted by the machine, and those strings that cause it to output ‘no’ are
said to be rejected. In this way, A∗ is partitioned into two subsets: the ‘yes’
subset we call the language accepted by the machine, and the ‘no’ subset we
call the language rejected by the machine. A machine that operates in this
way is called an acceptor.

Our aim is to build a mathematical model of a special class of acceptors.
Before we give the formal definition in Section 1.5 we shall motivate it by
thinking about real machines and then abstracting certain of their features
to form the basis of our model.

To be concrete, let us think of two extremes of technology for building
an acceptor and find out what they have in common. In Babbage’s day the
acceptor would have been constructed out of gear-wheels rather like Bab-
bage’s ‘analytical engine,’ the Victorian prototype of the modern computer;
in our day, the acceptor would be built from electronic components. De-
spite their technological differences, the two different types of component
involved, gear-wheels in the former and electronic components in the latter,
have something in common: they can only do a limited number of things. A
gear-wheel can only be in a finite number of positions, whereas many basic
electronic components can only be either ‘on’ or ‘off.’ We call a specific con-
figuration of gear-wheels or a specific configuration of on-and-off devices a



1.4. FINITE AUTOMATA: MOTIVATION 15

state. For example, a clock with only an hour-hand and a minute-hand has
12× 60 states that are made visible by the position of the hands. What all
real devices have in common is that the total number of states is finite. How
states are represented is essentially an engineering question.

After a machine has performed a calculation the gear-wheels or electronic
components will be in some state dependent on what was being calculated.
We therefore need a way of resetting the machine to an initial state; think
of this as wiping the slate clean to begin a new calculation.

Every machine should do its job reliably and automatically, and so what
the machine does next must be completely determined by its current state
and current input, and because the state of a machine contains all the in-
formation about the configurations of all the machine’s components, what a
machine does next is to change state.

We can now explain how our machine will process an input string a1 . . . an.
The machine is first re-initialised so that it is in its initial state, which we
call s0. The first letter a1 of the string is input and this, together with the
fact that the machine is in state s0, completely determines the next state,
say s1. Next the second letter a2 of the string is input and this, together
with the fact that the machine is in state s1, completely determines the next
state, say s2. This process continues until the last letter of the input string
has been read. At this point, the machine is now ready to pass judgement on
the input string. If the machine is in one of a designated set of special states
called terminal states it deems the string to have been accepted; if not, the
string is rejected.

To make this more concrete, here is a specific example.

Example 1.4.1 Suppose we have two coins. There are four possible ways
of placing them in front of us depending on which is heads (H) and which is
tails (T):

HH, TH, HT, TT.

Now consider the following two operations: ‘flip the first coin,’ which I shall
denote by a and ‘flip the second coin,’ which I shall denote by b. Assume
that initially the coins are laid out as HH. I am interested in all the possible
ways of applying the operations a and b so that the coins are laid out as
TT. The states of this system are the four ways of arranging the two coins;
the initial state is HH and the terminal state is TT. The following diagram



16 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

illustrates the relationships between the states and the two operations.

// HHWVUTPQRS a //

b

��

THWVUTPQRS
a

oo

b

��

HTWVUTPQRS
b

OO

a //
TTWVUTPQRSONMLHIJK

b

OO

a
oo

I have marked the start state with an inward-pointing arrow, and the terminal
state by a double circle. If we start in the state HH and input the string aba
Then we pass through the following states:

HH
a−→ TH

b−→ TT
a−→ HT.

Thus the overall effect of starting at HH and inputting the string aba is to
end up in the state HT. It should be clear that those sequences of a’s and
b’s are accepted precisely when the number of a’s is odd and the number of
b’s is odd. We can write this language more mathematically as follows:

{x ∈ (a + b)∗: |x |a and |x |b are odd}.

2

To summarise, our mathematical model of an acceptor will have the fol-
lowing features:

• A finite set representing the finite number of states of our acceptor.

• A distinguished state called the initial state that will be the starting
state for all fresh calculations.

• Our model will have the property that the current state and the current
input uniquely determine the next state.

• A distinguished set of terminal states.

Exercises 1.4



1.5. FINITE AUTOMATA AND THEIR LANGUAGES 17

1. This question is similar to Example 1.4.1. Let A = {0, 1} be the input
alphabet. Consider the set A3 of all binary strings of length 3. These
will be the states. Let 000 be the initial state and 110 the terminal
state. Let a1a2a3 be the current state and let a be the input symbol.
Then the next state is a2a3a; so we shift everything along one place to
the left, the left-hand bit drops off and is lost and the right-hand bit is
the input symbol. Draw a diagram, similar to the one in Example 1.4.1,
showing how states are connected by inputs.

1.5 Finite automata and their languages

In Section 1.4, we laid the foundations for the following definition. A complete
deterministic finite state automaton A or, more concisely, a finite automa-
ton and sometimes, just for variety, a machine is specified by five pieces of
information:

A = (S,A, i, δ, T ) ,

where S is a finite set called the set of states, A is the finite input alphabet,
i is a fixed element of S called the initial state, δ is a function δ: S ×A→ S
called the transition function, and T is a subset of S called the set of terminal
states (also called final state). The phrase ‘finite state’ is self-explanatory.
The meanings of ‘complete’ and ‘deterministic’ will be explained below.

Remark The definition makes sense without the restriction to a finite num-
ber of states although this course will deal almost exclusively with the finite
state case.

There are two ways of providing the five pieces of information needed to
specify an automaton: ‘transition diagrams’ and ‘transition tables.’

A transition diagram is a special kind of directed labelled graph: the
vertices are labelled by the states S of A; there is an arrow labelled a from
the vertex labelled s to the vertex labelled t precisely when δ(s, a) = t in A.
That is to say, the input a causes the automaton A to change from state s
to state t. Finally, the initial state and terminal states are distinguished in
some way: we mark the initial state by an inward-pointing arrow, // i?>=<89:;,
and the terminal states by double circles t?>=<89:;/.-,()*+ .5

5Another convention is to use outward-pointing arrows to denote terminal states, and



18 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

Example 1.5.1 Here is a simple example of a transition diagram of a finite
automaton.

// s?>=<89:;@AGFa ED�� b //
t?>=<89:;/.-,()*+ BCED bGF��

a
oo

We can easily read off the five ingredients that specify an automaton from
this diagram:

• The set of states is S = {s, t}.

• The input alphabet is A = {a, b}.

• The initial state is s.

• The set of terminal states is {t}.

Finally, the transition function δ: S × A→ S is given by

δ(s, a) = s, δ(s, b) = t, δ(t, a) = s, and δ(t, b) = t.

2

In order to avoid having too many arrows cluttering up a diagram, the
following convention will be used: if the letters a1, . . . , am label m transitions
from the state s to the state t then we simply draw one arrow from s to t
labelled a1, . . . , am rather than m arrows labelled a1 to am, respectively.

For a diagram to be the transition diagram of an automaton, two impor-
tant points need to be borne in mind, both of which are consequences of the
fact that δ: S×A→ S is a function. First, it is impossible for two arrows to
leave the same state carrying the same label. Thus a configuration such as

q?>=<89:;

p?>=<89:;
a

??�������

a
��?

??
??

??

r?>=<89:;
double-headed arrows for states that are both initial and terminal.



1.5. FINITE AUTOMATA AND THEIR LANGUAGES 19

is forbidden. This is what we mean by saying that our machines are deter-
ministic: the action of the machine is completely determined by its current
state and current input and no choice is allowed. Second, in addition to being
deterministic, there must be an arrow leaving a given state for each of the
input letters; there can be no missing arrows. For this reason we say that our
machines are complete. Incomplete automata will be defined in Section 2.2,
and non-deterministic automata, which need be neither deterministic nor
complete, will be defined in Section 3.2.

A transition table is just a way of describing the transition function δ
in tabular form and making clear in some way the initial state and the set
of terminal states. The table has rows labelled by the states and columns
labelled by the input letters. At the intersection of row s and column a we
put the element δ(s, a). The states labelling the rows are marked to indicate
the initial state and the terminal states. Here is the transition table of our
automaton in Example 1.5.1:

a b
→ s s t
← t s t

We shall designate the initial state by an inward-pointing arrow → and the
terminal states by outward-pointing arrows ←. If a state is both initial and
terminal, then the inward and outward pointing arrows will be written as a
single double-headed arrow ↔.

Notation There is a piece of notation we shall frequently use. Rather than
write δ(s, a) we shall write s · a.

When you design an automaton, it really must be an automaton. This
means that you have to check that the following two conditions hold:

• There is exactly one initial state.

• For each state s and each input letter a ∈ A, there is exactly one arrow
starting at s finishing at s · a and labelled by a.

An automaton that satisfies these two conditions — and has a finite number
of states, which is rarely an issue when designing an automaton — is said to
be well-formed.



20 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

One thing missing from our definition of a finite automaton is how to
process input strings rather than just input letters. Let A = (S,A, i, δ, T ) be
a finite automaton, let s ∈ S be an arbitrary state, and let x = a1 . . . an be
an arbitrary string. If A is in state s and the string x is processed then the
behaviour of A is completely determined: for each symbol a ∈ A and each
state s′ there is exactly one transition starting at s′ and labelled a. Thus
we pass through the states s · a1, (s · a1) · a2 and so on finishing at the state
t = (. . . ((s · a1) · a2) . . .) · am. Thus there is a unique path in A starting at s
and finishing at t and labelled by the symbols of the string a1 . . . an in turn.

We can formalise this idea by introducing a new function δ∗, called the
extended transition function. The function δ∗ is the unique function from
S × A∗ to S satisfying the following three conditions where a ∈ A, w ∈ A∗

and s ∈ S:

(ETF1) δ∗(s, ε) = s.

(ETF2) δ∗(s, a) = δ(s, a).

(ETF3) δ∗(s, aw) = δ∗(δ(s, a), w).

I have claimed that there is a unique function satisfying these three con-
ditions. This will probably seem obvious but does need proving. A proof can
be found in my book.

Notation I shall usually write s ·w instead of δ∗(s, w) to simplify notation.

Remark By induction it can be proved that

s · (xy) = (s · x) · y

for all states s and strings x and y.

It is important to take note of condition (ETF1): this says that the empty
string has no effect on states. Thus for each state s we have that s · ε = s.

We can now connect languages and finite automata together. Let

A = (S,A, i, δ, T )



1.5. FINITE AUTOMATA AND THEIR LANGUAGES 21

be a complete deterministic automaton. Define the language accepted or
recognised by A, denoted L(A), to be

L(A) = {w ∈ A∗: i · w ∈ T}.

A language is said to be recognisable if it is recognised by some finite au-
tomaton.

The language recognised by an automaton A with input alphabet A there-
fore consists of all strings in A∗ that label paths in A starting at the initial
state and concluding at a terminal state. There is only one string where we
have to think a little to decide whether it is accepted or not. This is the
empty string. Suppose first that ε ∈ L(A). If i is the initial state of A then
by definition i · ε is terminal because ε ∈ L(A), and so i is terminal. Now
suppose that the initial state i is also terminal. Because i = i · ε, it follows
from the definition that ε ∈ L(A). We see that the empty string is accepted
by an automaton if and only if the initial state is also terminal. This is a
small point but worth remembering.

Example 1.5.2 We describe the language recognised by our machine in Ex-
ample 1.5.1. We have to find all those strings in (a + b)∗ that label paths
starting at s and finishing at t. First, any string x ending in a ‘b’ will be
accepted. To see why let x = x′b where x′ ∈ A∗. If x′ leads the machine
to state s, then the b will lead the machine to state t; and if x′ leads the
machine to state t, then the b will keep it there. Second, a string x ending in
‘a’ will not be accepted. To see why let x = x′a where x′ ∈ A∗. If x′ leads the
machine to state s, then the a will keep it there; and if x′ leads the machine
to state t, then the a will send it to state s. Finally, the empty string is
not accepted by this machine because the initial state is not terminal. We
conclude that L(A) = A∗b. 2

Remark Let X be a set and S a monoid. By a right action of S on X we
mean a function X×S → X mapping (x, s) to x ·s satisfying two conditions:
first, x · 1 = x for all x ∈ X and second, x · (st) = (x · s) · t for all s, t ∈ S
and x ∈ X. Thus underlying every finite automaton is an action of a free
monoid on a finite set.



22 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

Exercises 1.5

1. For each of the following transition tables construct the corresponding
transition diagram.

(i)

a b
→ s0 s1 s0

s1 s2 s1

← s2 s0 s2

(ii)

a b
↔ s0 s1 s1

s1 s0 s2

← s2 s0 s1

(iii)

a b c
↔ s0 s1 s0 s2

s1 s0 s3 s0

← s2 s3 s2 s0

← s3 s1 s0 s1

2. Determine which of the following diagrams are finite automata and
which are not, and give reasons for your answers. The alphabet in
question is A = {a, b}.

(i)

// ?>=<89:;@AGFa ED�� b // ?>=<89:;
a

oo EDBC b@AOO
(ii)

// ?>=<89:;/.-,()*+@AGFa ED�� b // ?>=<89:;
a

oo EDBC b@AOO



1.5. FINITE AUTOMATA AND THEIR LANGUAGES 23

(iii)

// ?>=<89:;/.-,()*+@AGFa ED�� b // ?>=<89:;/.-,()*+
a

oo EDBC b@AOO
(iv)

// ?>=<89:;@AGFa ED�� a // ?>=<89:;/.-,()*+
a

oo EDBC b@AOO
(v)

// ?>=<89:;@AGFa,b ED�� ?>=<89:;/.-,()*+ EDBC a,b@AOO
(vi)

// ?>=<89:;@AGFa ED��
b // ?>=<89:;/.-,()*+ EDBC b@AOO

3. Let A = {a, b} with the order a < b. Consider the automaton below:

// 1GFED@ABCEDGFb@A
// a // 2GFED@ABC@ABC

a

EDoo
b //

3GFED@ABC a //

BC@A
b

OO
4GFED@ABC?>=<89:;GFED

a,b

BC
oo

Draw up the following table: the rows should be labelled by the states,
and the columns by all strings x in A∗ where 0 ≤ |x | ≤ 3 written in
tree order. If q is a row and x is a column then the entry in the q-th
row and x-th column should be the state q · x.

4. For each of the automata below, describe the language recognised.

(i)

// 1GFED@ABC a // 2GFED@ABC?>=<89:; a // 3GFED@ABC a // 4GFED@ABC?>=<89:; a // 5GFED@ABC a // 6GFED@ABC?>=<89:;
a

��

7GFED@ABC
a

__???????



24 CHAPTER 1. INTRODUCTION TO FINITE AUTOMATA

(ii)

// s0GFED@ABC a //

b

��

s1GFED@ABC?>=<89:; BCED a,bGF��

s2GFED@ABC a,b

??�������

(iii)

// s0GFED@ABC?>=<89:; a //

b

��

s1GFED@ABC
b

oo

a
����

��
��

�

s2GFED@ABC EDBC a,b@AOO
(iv)

// s0GFED@ABCEDGFb@A
// a // s1GFED@ABCBC@A

a

GF// b // s2GFED@ABC?>=<89:; EDBC a,b@AOO

5. This question is intended to get you thinking. Find an automaton that
represents all those strings over the alphabet {0, 1} that represents
a number in binary that is a multiple of three. The empty string
represents the number 0. The numbers 11, 011, 0011 and so on are all
to be regarded as the same; thus leading zeros are permitted.

6. (i) What is meant by a decision problem?

(ii) Explain how decision problems give rise to languages.

(iii) Under what circumstances is a decision problem (or language)
decidable?

(iv) Using the usual encoding of simple graphs, describe the language
associated with the decision problem ‘is the graph complete?’ (A
simple graph is complete if every vertex is joined to every other
vertex). Is this language decidable? Explain.

(v) Are recognisable languages decidable? Explain.



1.6. SUMMARY OF CHAPTER 1 25

1.6 Summary of Chapter 1

• Alphabets: An alphabet is any finite set. The elements of an alphabet
are called symbols or letters.

• Strings: A string is any finite sequence of symbols taken from a fixed
alphabet. The empty string is denoted ε. The set of all strings taken
from the alphabet A is A∗, and the set of all non-empty strings is A+.

• Languages: A language over an alphabet A is any subset of A∗; this
includes the two extremal subsets: the empty set ∅ and A∗ itself.

• Language operations: There are a number of important ways of combin-
ing languages L and M to form new languages. The Boolean operations
L ∩M , L + M and L′ are, respectively, intersection, union, and com-
plementation. There are two further operations L ·M and L∗, which
are, respectively, product and Kleene star. The product L ·M of two
languages, usually written just LM , consists of all strings that can be
written as a string in L followed by a string in M . The Kleene star
L∗ of a language consists of the empty string and all strings that can
factorised as products of strings in L. The set P(A∗) of all languages
over the alphabet A forms what is known as an idempotent semiring:
with respect to + the set of languages forms a commutative monoid,
with identity ∅, in which every element is idempotent, meaning that
A + A = A, and with respect to · the set of languages forms a monoid
with identity {ε}. In addition · distributes over +.

• Finite automata: These are special kinds of algorithms for deciding the
membership of languages. They consist of a finite number of states,
an input alphabet A, a distinguished initial state, a finite number of
transitions labelled by the elements of A, and a finite set of terminal
states. In addition, they are complete and deterministic. The language
recognised or accepted by an automaton consists of all strings over A
that label paths from the initial state to one of the terminal states.
Completeness and determinism imply that each input string labels a
unique path starting at the initial state.





Chapter 2

Recognisable languages

In Chapter 1, we introduced finite automata and the languages they recog-
nise. In this chapter, we look at ways of constructing certain kinds of au-
tomata. We also prove that there are languages that are not recognisable.

2.1 Designing automata

Designing an automaton A to recognise a language L is more an art than a
science. However, it is possible to lay down some guidelines. In this section,
I will describe the general points that need to be born in mind, and in
Sections 2.2 to 2.6, I will describe some specific techniques for particular
kinds of languages.

Automata can be regarded as simple programming languages, and so the
methods used to write programs can be adopted to help design automata.
Whenever you write a program to solve a problem, it is good practice to
begin by formulating the algorithm that the program should implement. By
the same token, before trying to construct an automaton to recognise a lan-
guage, you should first formulate an algorithm that accomplishes the task of
recognising the language. There is however an important constraint: your
algorithm must only involve using a fixed amount of memory. One way of
ensuring this is to imagine how you would set about recognising the strings
belonging to a language for extremely large inputs. When you have done this,
you can then implement your algorithm by means of an automaton.

Once you have a design, A, it is easy to check that it is well-formed —
this is equivalent to checking that a program is syntactically correct — but

27



28 CHAPTER 2. RECOGNISABLE LANGUAGES

the crucial point now is to verify that your automaton really recognises the
language L in question. This involves checking that two conditions hold:

(1) Each string accepted by A is in L.

(2) Each string in L is accepted by A.

I have emphasised that two conditions must hold, because it is a very common
mistake to check only (1). If both of these conditions are satisfied then you
have solved the problem. But if either one of them is violated then you have
to go back and modify your machine and try again. Unfortunately, it is easier
to show that your automaton does not work than it is to show it does. To
show that your machine is wrong it is enough to find just one string x that is
in the language L but not accepted by the machine A, or is accepted by the
machine A but is not in the language L. The difficulty is that A∗ contains
infinitely many strings and your machine has to deliver the correct response
to each of them.

The minimum you should do to show that your well-formed automaton
solves the problem is to try out some test strings on it, making sure to in-
clude both strings belonging to the language and those that do not. However
even if your automaton passes these tests with flying colours it could still be
wrong. There are two further strategies that you can use. First, if you find
you have made a mistake then try to use the nature of the mistake to help
you see how to correct the design. Second, try to be clear about the function
of each state in your machine: each state should be charged with detecting
some feature of that part of the input string that has so far been read. Some
of the ideas that go into constructing automata are illustrated by means of
examples in the following sections. At the same time I shall describe some
useful techniques for constructing automata. Although I often use alphabets
with just two letters, this is just for convenience, similar examples can be
constructed over other alphabets.



2.1. DESIGNING AUTOMATA 29

Exercises 2.1

1. Let A be the automaton:

// ?>=<89:; 1 //

0
��

?>=<89:;
0
��

BCED 1GF��

?>=<89:;BC@A
0,1

GF // ?>=<89:;/.-,()*+
0

oo EDBC 1@AOO

and let L = 1+0. Show that L ⊆ L(A), but that the reverse inclusion does
not hold. Describe L(A).

2. Let A be the automaton:

// ?>=<89:;
0
��

1

��?
??

??
??
?>=<89:;1oo
BCED 0GF��

?>=<89:;
1

//GF@A0 BCOO ?>=<89:;/.-,()*+
0

OO

1

__???????

Show that every string in L(A) has an odd number of 1’s, but that not every
string with an odd number of 1’s is accepted by A. Describe L(A).

3. Let A be the automaton:

// ?>=<89:;/.-,()*+ 1 //

0

��?
??

??
??
?>=<89:;

1
��

BCED 0GF��

?>=<89:;0,1

__???????

Let L be the language consisting of all strings over {0, 1} containing an odd
number of 1’s. Show that neither L ⊆ L(A) nor L(A) ⊆ L. Describe L(A).



30 CHAPTER 2. RECOGNISABLE LANGUAGES

2.2 Automata over one letter alphabets

In this section, we shall describe the recognisable languages over a one letter
alphabet A = {a}.

Theorem 2.2.1 If a language L ⊆ a∗ is recognisable then

L = X + Y (ap)∗,

where X and Y are finite sets and p ≥ 0.

Proof Let L be recognisable. Because the alphabet contains only one letter,
an automaton recognising L must have a particular form, which we now
describe. Let the initial state be q1. Then either q1 ·a = q1 in which case q1 is
the only state, or q1 ·a is some other state, q2 say. For each state q, either q ·a
is a previously constructed state or a new state. Since the automaton is finite
there must come a point where q ·a is a previously occurring state. It follows
that an automaton recognising L consists of a stem of s states q1, . . . , qs, and
a cycle of p states r1, . . . rp connected together as follows:

// q1?>=<89:; a // q2?>=<89:; //__ __ qs?>=<89:; a // r1?>=<89:; a // r2?>=<89:; //__ __ rp?>=<89:;EDGF a

��

The terminal states therefore form two sets: the terminal states T ′ that occur
in the stem and the terminal states T ′′ that occur in the cycle. Let X be the
set of strings recognised by the stem states: each string in X corresponds to
exactly one terminal state T ′ in the stem. Let T ′′ consist of n terminal states,
which we number 1 to n. For each terminal state i let yi be the shortest string
required to reach it from q1. Then yi(a

p)∗ is recognised by the automaton for
all 1 ≤ i ≤ n. Put Y = {yi: 1 ≤ i ≤ n}. Then the language recognised by
the automaton is X + Y (ap)∗. 2

Remark The sets X and Y satisfy some extra conditions. What are they?

Exercises 2.2

1. Describe the languages recognised by the following automata.



2.2. AUTOMATA OVER ONE LETTER ALPHABETS 31

(i)

// 1GFED@ABC a // 2GFED@ABC?>=<89:; a // 3GFED@ABC a // 4GFED@ABC?>=<89:; a // 5GFED@ABC a // 6GFED@ABC?>=<89:;
a

��

7GFED@ABC
a

__???????

(ii)

// 1GFED@ABC?>=<89:; a // 2GFED@ABC a // 3GFED@ABC a // 4GFED@ABC?>=<89:; a // 5GFED@ABC?>=<89:; a // 6GFED@ABC?>=<89:;
a

��

7GFED@ABC
a

__???????

(iii)

// 1GFED@ABC a // 2GFED@ABC a // 3GFED@ABC a // 4GFED@ABC?>=<89:; a // 5GFED@ABC a // 6GFED@ABC?>=<89:;
a

��

7GFED@ABC
a

__???????

2. Construct automata recognising the following languages.

(i) (a2 + a5) + (a2 + a3)(a4)∗.

(ii) (a2 + a4) + (a2 + a4)(a2)∗.

(iii) (a2 + a5) + (a2 + a4)(a3)∗.

3. Is the converse to Theorem 2.2.1 true? That is, if L ⊆ a∗ is such that

L = X + Y (ap)∗,

where X and Y are finite sets and p ≥ 0 is it true that L is recognisable?

4. Show that (a2 + a3)(a3)∗ + (a + a2)(a4)∗ is recognisable.

5. What is the longest string not in the language (a3 + a5)∗?

6. What is the longest string not in the language (ap + aq)∗ where p and
q are coprime (meaning that the largest integer dividing them both is
1).



32 CHAPTER 2. RECOGNISABLE LANGUAGES

7. Let {n1, n2, n3, . . .} be a set of natural numbers. We say that this subset
is 1-recognisable if the language {ani : i = 1, 2, 3, . . .} is recognisable over
the one letter alphabet A = {a}. (The meaning of the ‘1’ is ‘base 1’.)
A subset S of N is said to be ultimately periodic if there exists n ≥ 0
and a p > 0 such that for all m ≥ n we have that m ∈ S iff m + p ∈ S.
Prove that S ⊆ N is 1-recognisable iff it is ultimately periodic.

2.3 Incomplete automata

A useful design technique is illustrated by the following example.

Example 2.3.1 Construct an automaton to recognise the language L =
{abab}. We first construct a ‘spine’ as follows:

// 1GFED@ABC a // 2GFED@ABC b // 3GFED@ABC a // 4GFED@ABC b // 5GFED@ABC?>=<89:;
This diagram has a path labelled abab from the initial state to the terminal
state and so we have ensured that the string abab will be recognised. How-
ever, it fails to be an automaton because there are missing transitions. It
is tempting to put loops on the states and label the loops with the missing
symbols, but this is exactly the wrong thing to do (why?). Instead, we add a
new state, called a ‘sink state,’ to which we can harmlessly lead all unwanted
transitions. In this way, we obtain the following automaton.

// 1GFED@ABC a //

b

((PPPPPPPPPPPPPPPPP 2GFED@ABC b //

a

  A
AA

AA
AA

A
3GFED@ABC a //

b

��

4GFED@ABC b //

a

~~}}
}}

}}
}}

5GFED@ABC?>=<89:;
a,b

wwnnnnnnnnnnnnnnnnn

6?>=<89:;GF@Aa,b BCOO
2

The idea behind the above example can be generalised. The ‘spine’ we
constructed above is an example of an incomplete automaton; this is just like
an automaton except that there are missing transitions. More formally, we
define them as follows. An incomplete automaton is defined in exactly the
same way as a complete deterministic automaton except that the transition



2.3. INCOMPLETE AUTOMATA 33

function δ is replaced by a partial function. This means that δ(s, a) is not
defined for some (s, a) ∈ S ×A; in such cases, we say that the machine fails.

Let A = (S,A, i, δ, T ) be an incomplete automaton. To define the lan-
guage accepted by this machine we proceed as in the complete case, and
with a similar justification. The extended transition function δ∗ is defined
as before, except this time δ∗ is a partial function from S × A∗ to S. More
precisely, δ∗ is defined as follows. Let a ∈ A, w ∈ A∗ and s ∈ S:

(ETF1) δ∗(s, ε) = s.

(ETF2) δ∗(s, a) = δ(s, a).

(ETF3) δ∗(s, aw) =

{

δ∗(δ(s, a), w) if δ(s, a) is defined
not defined else.

We now define L(A) to consist of all those strings x ∈ A∗ such that δ∗(i, x)
is defined and is a terminal state.

In a complete automaton, there is exactly one path in the machine start-
ing at the initial state and labelled by a given string. In an incomplete
automaton, on the other hand, there is at most one path starting at the
initial state and labelled by a given string. The language recognised by an
incomplete automaton still consists of all strings over the input alphabet that
label paths beginning at the initial state and ending at a terminal state.

It is easy to convert an incomplete machine into a complete machine that
recognises the same language.

Proposition 2.3.2 For each incomplete automaton A there is a complete
automaton Ac such that L(Ac) = L(A).

Proof Let A = (S,A, i, δ, T ). Define Ac as follows. Let ∞ be any symbol
not in S. Then S ∪ {∞} will be the set of states of Ac; its initial state is
i and its set of terminal states is T . The transition function of γ of Ac is
defined as follows. For each a ∈ A and s ∈ S ∪ {∞}

γ(s, a) =







δ(s, a) if δ(s, a) is defined
∞ if s 6=∞ and δ(s, a) is not defined
∞ else.

Because the machine A is sitting inside Ac, it is immediate that L(A) ⊆
L(Ac). To prove the reverse inclusion, observe that any string that is ac-
cepted by Ac cannot pass through the state∞ at any point. Thus the string



34 CHAPTER 2. RECOGNISABLE LANGUAGES

is essentially being processed by A. 2

We say that a state s in an automaton is a sink state if s · a = s for
each a ∈ A in the input alphabet. Thus the state ∞ in our construction
above is a sink state, and the process of converting an incomplete machine
into a complete machine is called completion (by adjoining a sink state). The
automaton Ac is called the completion of A.

It is sometimes easier to design an incomplete automaton to recognise a
language and than to complete it by adjoining a sink state then to try to
design the automaton all in one go. We can apply this idea to show that
any finite language is recognisable. We illustrate this result by means of an
example.

Example 2.3.3 Consider the finite language {b, aa, ba}. The starting point
for our automaton is the part of the tree over {a, b}, which contains all strings
of length 2 and smaller:

aa ab ba bb

a

a

``BBBBBBBB
b

OO

b

a

OO

b

>>}}}}}}}}

ε
a

``@@@@@@@@ b

>>~~~~~~~~

Notice that I have used labelled arrows rather than edges. This is used to
build an incomplete automaton that recognises {b, aa, ba}: the vertices of
the tree become the states, the initial state is the vertex labelled ε, and the



2.3. INCOMPLETE AUTOMATA 35

terminal states are the vertices labelled with the strings in the language.

4GFED@ABC?>=<89:; 5GFED@ABC 6GFED@ABC?>=<89:; 7GFED@ABC

2GFED@ABC
a

__???????
b

OO

3GFED@ABC?>=<89:;
a

OO

b

??�������

1GFED@ABC
a

__??????? b

??�������

OO

This incomplete automaton is then completed by the addition of a sink state.
We thus obtain the following automaton that recognises {b, aa, ba}.

8GFED@ABCGFED
a,b

BC
oo

4GFED@ABC?>=<89:;
a,b

77ooooooooooooooooo
5GFED@ABC a,b

??�������

6GFED@ABC?>=<89:;a,b

__???????

7GFED@ABC
a,b

ggOOOOOOOOOOOOOOOOO

2GFED@ABC
a

__???????
b

OO

3GFED@ABC?>=<89:;
a

OO

b

??�������

1GFED@ABC
a

__??????? b

??�������

OO

2

Our example of an automaton that recognises the language {b, aa, ba}
raises another point. Another (incomplete) machine that recognises this



36 CHAPTER 2. RECOGNISABLE LANGUAGES

language is

// 1GFED@ABC b //

a
��?

??
??

??
2GFED@ABC?>=<89:; a // 3GFED@ABC?>=<89:;

4GFED@ABC
a

??�������

Thus by adjoining a sink state, we need only 5 states to recognise {b, aa, ba}
instead of the 8 in our example above. The question of finding the smallest
number of states to recognise a given language is one that we shall pursue in
Chapter 6.

The proof of the following is now left as an exercise.

Proposition 2.3.4 Every finite language is recognisable. 2

Exercises 2.3

1. Construct an automaton to recognise the language

L = {ε, ab, a2b2, a3b3}.

2. Write out a full proof of Proposition 2.3.4.

2.4 Automata that count

Counting is one of the simplest ways of describing languages. For example,
we might want to describe a language by restricting the lengths of the strings
that can appear, or by requiring that a particular letter or pattern appears
a certain number of times. We shall also see that there are limits to what
automata can do in the realm of counting. We begin with a simple example.

Example 2.4.1 Construct an automaton to recognise the language

L = {x ∈ (a + b)∗: |x | is even }.

The first step in constructing an automaton is to ensure that you understand
what the language is. In this case, x ∈ L precisely if |x | = 0, 2, 4, . . .. The
empty string ε is accepted since | ε | = 0, and so the initial state will also



2.4. AUTOMATA THAT COUNT 37

have to be terminal. In this case, we shall only need two states: one state
remembers that we have read an even number of symbols and another that
remembers that we have read an odd number of symbols. We therefore obtain
the following automaton.

// 0GFED@ABC?>=<89:; a,b //
1GFED@ABC

a,b
oo

If, instead, we wanted to construct an automaton that recognised the lan-
guage of strings over {a, b} of odd length, then we would simply modify the
above machine by making state 0 non-terminal and state 1 terminal. 2

To generalise the above example, I shall need some terminology. The set
of integers, that is the set of positive and negative whole numbers, is denoted
Z. The word ‘number’ will almost always mean ‘integer’ from now on. If
a, b ∈ Z we say that a divides b, or that b is divisible by a, or that b is a
multiple of a, if b = aq for some q ∈ Z; this is written mathematically as a | b.
If a, b ∈ Z and a > 0 then we can write b = aq + r where 0 ≤ r < a. The
number q is called the quotient and r is called the remainder. The quotient
and remainder are uniquely determined by a and b meaning that if b = aq′+r′

where 0 ≤ r′ < a then q = q′ and r = r′. This result is called the ‘Remainder
Theorem’ and is one of the basic properties of the integers.

Using this terminology, let us look again at odd and even numbers. If we
divide a number by 2, then there are exactly two possible remainders: 0 or 1.
A number that has no remainder when divided by 2 is just an even number
and a number that leaves the remainder 1 when divided by 2 is just an odd
number. It is an accident of history that English, and many other languages,
happen to have single words that mean ‘leaves no remainder when divided
by 2’ and ‘leaves remainder 1 when divided by 2.’

Now let us look at what happens when we divide a number by 3. This
time there are three possible cases: ‘leaves no remainder when divided by
3,’ ‘leaves remainder 1 when divided by 3,’ and ‘leaves remainder 2 when
divided by 3.’ In this case, there are no single words in English that we can
use to substitute for each of these phrases, but this does not matter.

Let n ≥ 2 be an integer, and let a and b be arbitrary integers. We say
that a is congruent to b modulo n, written as

a ≡ b (mod n),



38 CHAPTER 2. RECOGNISABLE LANGUAGES

if n | (a−b). An equivalent way of phrasing this definition is to say that a and
b have the same remainder when divided by n. Put Zn = {0, 1, . . . , n − 1},
the set of possible remainders when a number is divided by n.

Using this notation, we see that a is even precisely when a ≡ 0 (mod2) and
is odd when a ≡ 1 (mod2). If a ≡ b (mod2) then we say they have the same
parity: they are either both odd or both even. If a number a ≡ 0 (mod n)
then it is divisible by n.

Now that we have this terminology in place, we can generalise Exam-
ple 2.4.1.

Example 2.4.2 Construct an automaton recognising the language

L = {x ∈ (a + b)∗: |x| ≡ 1 (mod 4)}.

In this case, a string x is in L if its length is 1, 5, 9, 17, . . .. In other words, it
has length one more than a multiple of 4. Notice that we are not interested
in the exact length of the string. It follows that we must reject strings that
have lengths 4q, 4q + 2, or 4q + 3 for some q; we do not need to worry
about strings of length 4q + 4 because that is itself a multiple of 4. In other
words, there are only four possibilities, and these four possibilities will be
represented by four states in our machine. I will label them 0, 1, 2, and 3,
where the state r means ‘the length of the string read so far is 4q + r for
some q.’ The automaton that recognises L is therefore as follows:

// 0GFED@ABC a,b // 1GFED@ABC?>=<89:;
a,b

��

3GFED@ABC
a,b

OO

2GFED@ABC
a,b

oo

2

It should now be clear that we can easily construct automata to recognise
any language L of the form,

L = {x ∈ (a + b)∗: |x | ≡ r (mod n)},

for any n ≥ 2 and 0 ≤ r < n. We now turn to a different kind of counting.



2.4. AUTOMATA THAT COUNT 39

Example 2.4.3 Construct an automaton which recognises the language

L = {x ∈ (a + b)∗: |x| < 3}.

Here we are required to determine length up to some number; this is called
‘threshold counting.’ We have to accept the empty string, all strings of length
1, and all strings of length 2; we reject all other strings. We are therefore led
to the following automaton:

// ?>=<89:;/.-,()*+ a,b // ?>=<89:;/.-,()*+ a,b // ?>=<89:;/.-,()*+ a,b // ?>=<89:; BCED a,bGF��
2

In the above example, there is nothing sacrosanct about the number 3.
Furthermore, we can easily modify our machine to deal with similar but
different conditions on |x | such as |x | ≤ 3 or |x | = 3 or |x | ≥ 3 or where
|x | > 3.

Examples 2.4.1, 2.4.2, and 2.4.3 are typical of the way that counting is
handled by automata: we can determine length modulo a fixed number, and
we can determine length relative to some fixed number.

Our next result shows that there are limits to what we can count using
finite automata.

Proposition 2.4.4 The language

L = {anbn: n ∈ N}

is not recognisable.

Proof When we say an automaton A recognises a language L we mean that
it recognises precisely the strings in L and no others.

We shall argue by contradiction. Suppose A = (S,A, s0, δ, T ) is a finite
automaton such that L = L(A). Let

qn = s0 · an and tn = qn · bn,

where n ≥ 0. Thus qn is the name we give the state that we reach when
starting in the initial state s0 and inputting the string an; and tn is the name
we give the state that we reach when starting in qn and inputting bn. Then



40 CHAPTER 2. RECOGNISABLE LANGUAGES

s0 · (anbn) = tn and so tn is a terminal state because anbn ∈ L. We claim that
if i 6= j then qi 6= qj. Suppose to the contrary that qi = qj for some i 6= j.
Then

s0 · (aibj) = qi · bj = qj · bj = tj.

But this would imply aibj ∈ L and we know i 6= j. Since this cannot happen,
we must have i 6= j implies qi 6= qj and so A has infinitely many states. This
is a contradiction. 2

The problem with the language {anbn: n ∈ N} is that we have to compare
the number of a’s with the number of b’s and there can be an arbitrary
number of both. Notice that we can construct an automaton that recognises
a∗b∗:

// ?>=<89:;/.-,()*+ b //
EDGFa@A
// ?>=<89:;/.-,()*+ BCED bGF��

a

��?>=<89:; EDBC a,b@AOO
Thus an automaton can check that all the a’s precede all the b’s.

Exercises 2.4

1. Let A = {a, b}. Construct finite automata for the following languages.

(i) All strings x in A∗ such that |x | ≡ 0 (mod 3).

(ii) All strings x in A∗ such that |x | ≡ 1 (mod 3).

(iii) All strings x in A∗ such that |x | ≡ 2 (mod 3).

(iv) All strings x in A∗ such that |x | ≡ 1 or 2 (mod 3).

2. Construct a finite automaton to recognise the language

L = {x ∈ (a + b)∗: |x |a ≡ 1 (mod 5)}.

3. Let A = {0, 1}. Construct finite automata to recognise the following
languages.

(i) All strings x in A∗ where |x | < 4.



2.5. AUTOMATA THAT LOCATE PATTERNS 41

(ii) All strings x in A∗ where |x | ≤ 4.

(iii) All strings x in A∗ where |x | = 4.

(iv) All strings x in A∗ where |x | ≥ 4.

(v) All strings x in A∗ where |x | > 4.

(vi) All strings x in A∗ where |x | 6= 4.

(vii) All strings x in A∗ where 2 ≤ |x | ≤ 4.

4. Construct a finite automaton to recognise the language

{x ∈ (a + b)∗: |x |a ≤ 4}.

5. Show that the language {aibj: i ≡ j (mod 2)} is recognisable.

6. Let A = {a, b, c}. Construct a finite automaton recognising those
strings in A∗, where the string abc occurs an odd number of times.

2.5 Automata that locate patterns

In this section, we shall show that the languages xA∗, A∗xA∗, and A∗x are
all recognisable where A is any alphabet and x is any non-empty string. We
begin with the simplest case: we show that the languages xA∗ are recognis-
able.

Proposition 2.5.1 Let A be an alphabet and let x ∈ A+ be a string of length
n. The language xA∗ can be recognised by an automaton with n + 2 states.

Proof Because x ∈ xA∗ the string x itself must be accepted by any prospec-
tive automaton. So if x = a1 . . . an where each ai ∈ A, then we must have
the following states:

// ?>=<89:; a1 // ?>=<89:; //__ __ ?>=<89:; an // ?>=<89:;/.-,()*+
If we now put a loop on the last state labelled with the elements of A, we
shall then have an incomplete automaton recognising xA∗. It is now a sim-
ple matter to complete this automaton to obtain one recognising the same



42 CHAPTER 2. RECOGNISABLE LANGUAGES

language. 2

We now turn to the problem of showing that languages of the form A∗xA∗

are recognisable. This is not quite as straightforward and so we begin with
an example to illustrate the ideas involved.

Example 2.5.2 Construct an automaton that recognises the language L =
(a + b)∗aba(a + b)∗. In other words, all strings that contain aba as a factor.
The first point to note is that aba should itself be accepted. So we can
immediately write down the spine of the machine:

// ?>=<89:;
a

// ?>=<89:;
b

// ?>=<89:;
a

// ?>=<89:;/.-,()*+
Once we have ascertained that an input string contains the factor aba we do
not care what follows. So we can certainly write

// ?>=<89:;
a

// ?>=<89:;
b

// ?>=<89:;
a

// ?>=<89:;/.-,()*+EDGFa,b@A
//

To find out what to do next, put yourself in the position of having to detect
the string aba in a very long input string. As a finite automaton you can only
read one letter at a time, so imagine that you are constrained to view the
input string one letter at a time through a peephole. If you are reading a b,
then you are not interested, but as soon as you read an a you are: you make
a mental note ‘I have just read an a.’ If you read a b next, then you get even
more interested: you make a mental note ‘I have just read ab;’ if instead you
read an a, then you simply stay in the ‘I have just read an a’ state. The next
step is the crucial one: if you read an a, then you have located the string aba,
you do not care what letters you read next; if on the other hand you read
a b, then it takes you back to the ‘uninterested’ state. We see now that the
four states on our spine correspond to: ‘uninterested,’ ‘just read an a,’ ‘just
read ab’ and ‘success!’ The automaton we require is therefore the following
one:

// ?>=<89:;EDGFb@A
//

a
// ?>=<89:;EDGFa@A
//

b
// ?>=<89:;

a
//BC@A

b

OO
?>=<89:;/.-,()*+EDGFa,b@A
//

2



2.5. AUTOMATA THAT LOCATE PATTERNS 43

Our example above can be used to formulate a general principle for
constructing automata that recognise languages of the form A∗xA∗ where
x ∈ A+.

Proposition 2.5.3 Let A be an alphabet and x ∈ A+ a string of length n.
The language A∗xA∗ can be recognised by an automaton with n + 1 states.

Proof The first step is to construct the spine as we did in our example. If
x = a1 . . . an, then this spine will have n+1 states: the first one is initial, the
last is terminal, and the transitions are labelled in turn ai for i = 1, . . . , n;
the last state also carries a loop labelled A.

Because we read an input string from left to right, each of these n + 1
states is really storing which prefix of x we have read in the input: from the
first state representing ε to the last representing x itself. To work out where
to put the missing transitions, suppose that we are in the state corresponding
to the prefix y of x, where y = a1 . . . ai and that the next letter of the input
string we read is a. There are two cases to consider.

(Case 1): suppose that a = ai+1, that is ya is also a prefix of x. Then we
simply move to the next state to the right along the spine.

(Case 2): suppose that a 6= ai+1. It is tempting to think that we have to
go back to the initial state, but this is not necessarily so. The string ya is
not a prefix of x; however we can always find a suffix of ya that is a prefix of
x; we do not exclude the possibility that this suffix could be ε. Choose the
longest suffix z of ya that is a prefix of x. The transition we require is then

y?>=<89:; a // z?>=<89:;
More generally, for a fixed string x and arbitrary string u we denote by σx(u)
the longest suffix of u that is a prefix of x. Thus z = σx(ya).

Notice that (Case 1) is really included in the rule stated in (Case 2) be-
cause if ya is a prefix of x then σx(ya) = ya. 2

We illustrate the design technique contained in the above result by the
following example.

Example 2.5.4 Construct an automaton to recognise the language A∗ababbA∗.
We construct two tables: the transition table and an auxiliary table that will



44 CHAPTER 2. RECOGNISABLE LANGUAGES

help us to complete the transition table. We begin by entering in the tran-
sition table the transitions on the spine:

a b
ε a 1
a 2 ab

ab aba 3
aba 4 abab

abab 5 ababb
ababb ababb ababb

I have numbered the transitions we still have to find. The auxiliary table
below gives the calculations involved in finding them.

u proper suffixes of u σababb(u)
1 b ε ε
2 aa ε, a a
3 abb ε, b, bb ε
4 abaa ε, a, aa, baa a
5 ababa ε, a, ba, aba, baba aba

The first column, labelled u, is the concatenation of the prefix labelling the
state and the input letter: ε·b, a·a, ab·b, aba·a, and abab·a, respectively. The
last column, labelled σababb(u), is the ‘longest suffix of the string in the first
column, which is a prefix of ababb’; we use the middle column to determine
this string. We can now complete the transition table using the auxiliary
table:

a b
→ ε a ε

a a ab
ab aba ε

aba a abab
abab aba ababb

← ababb ababb ababb

It is now easy to draw the transition table of the required automaton. 2

Finally, we show that languages of the form A∗x are recognisable.

Proposition 2.5.5 Let A be an alphabet and x ∈ A+ a string of length n.
The language A∗x can be recognised by an automaton with n + 1 states



2.6. BOOLEAN OPERATIONS 45

Proof The construction is similar to the one contained in Proposition 2.5.3.
The first step is to construct the spine. If x = a1 . . . an, then this spine will
have n + 1 states: the first one is initial, the last is terminal, and the transi-
tions are labelled in turn ai for i = 1, . . . , n. In this case, the last state does
not carry a loop labelled A. We now carry out exactly the same procedure as
in Proposition 2.5.3, except this time we apply it also to the terminal state.2

Exercises 2.5

1. Let A = {a, b}. Construct finite automata to recognise the following
languages.

(i) All strings in A∗ that begin with ab.

(ii) All strings in A∗ that contain ab.

(iii) All strings in A∗ that end in ab.

2. Let A = {0, 1}. Construct automata to recognise the following lan-
guages.

(i) All strings that begin with 01 or 10.

(ii) All strings that start with 0 and contain exactly one 1.

(iii) All strings of length at least 2 whose final two symbols are the
same.

3. Let A = {a, b}. Construct an automaton to recognise the language

A∗aaA∗bbA∗.

4. Let A = {a, b, c}. Construct an automaton to recognise all strings that
begin or end with a double letter.

2.6 Boolean operations

In describing languages we frequently use words such as ‘and’ ‘or’ and ‘not.’
For example, we might describe a language over the alphabet {a, b, c} to
consist of all strings that satisfy the following condition: they begin with
either an a or a c and do not contain ccc as a factor. In this section, we
describe algorithms for constructing automata where the description of the
languages involves Boolean operations.



46 CHAPTER 2. RECOGNISABLE LANGUAGES

Example 2.6.1 Consider the language

L = {x ∈ (a + b)∗: |x| ≡ 1 (mod 4)},

of Example 2.4.2. We showed in Section 2.4 how to construct an automaton
A to recognise L. Consider now the language L′ = A∗ \ L. We could try to
build a machine from scratch that recognises L′ but we would much prefer
to find some way of adapting the machine A we already have to do the job.
The strings in L′ are those x ∈ (a+b)∗ such that |x| ≡ 0 or |x| ≡ 2 or |x| ≡ 3
(mod 4). It follows that the machine A′ recognising L′ is

// 0GFED@ABC?>=<89:; a,b // 1GFED@ABC
a,b

��

3GFED@ABC?>=<89:;
a,b

OO

2GFED@ABC?>=<89:;
a,b

oo

We can see that this was obtained from A by interchanging terminal and
non-terminal states. 2

The above example turns out to be typical.

Proposition 2.6.2 If L is recognised by A = (S,A, i, δ, T ) then L′ is recog-
nised by A′ = (S,A, i, δ, T ′) where T ′ = S \ T .

Proof The automaton A′ is exactly the same as the automaton A except
that the terminal states of A′ are the non-terminal states of A. We claim
that L(A′) = L′. To see this we argue as follows. By definition x ∈ L(A′)
if and only if i · x ∈ S \ T , which is equivalent to i · x /∈ T , which means
precisely that x /∈ L(A). This proves the claim. 2

Example 2.6.3 A language L ⊆ A∗ is said to be cofinite if L′ is finite.
We proved in Proposition 2.3.4 that every finite language is recognisable. It
follows by Proposition 2.6.2 that every cofinite language is recognisable. This
example is hopefully an antidote to the mistaken view that people sometimes
get when first introduced to finite automata: the languages recognised
by automata need not be finite! 2



2.6. BOOLEAN OPERATIONS 47

The following example motivates our next construction using Boolean
operations.

Example 2.6.4 Consider the language

N = {x ∈ (a + b)∗: x ∈ (a + b)∗aba(a + b)∗ and |x| ≡ 1 (mod 4)}.

If we define

L = {x ∈ (a + b)∗: |x| ≡ 1 (mod 4)} and M = (a + b)∗aba(a + b)∗,

then N = L ∩M . Automata that recognise L and M , respectively, are

// 0GFED@ABC a,b // 1GFED@ABC?>=<89:;
a,b

��

3GFED@ABC
a,b

OO

2GFED@ABC
a,b

oo

and // p?>=<89:;EDGFb@A
//

a
// q?>=<89:;EDGFa@A
//

b
// r?>=<89:;

a
//BC@A

b

OO
sGFED@ABC?>=<89:;EDGFa,b

@A
//

We would like to combine these two automata to build an automaton recog-
nising N = L∩M . To discover how to do this, we need only reflect on how we
would decide if a string x is in N : we would run it on the left-hand machine
and on the right-hand machine, and we would accept it if and only if when it
had been read, both left- and right-hand machines were in a terminal state.
To do this, we could run x first on one machine and then on the other, but
we could also run it on both machines at the same time. Thus x is input
to the left-hand machine in state 0, and a copy on the right-hand machine
in state p. The subsequent states of both machines can be recorded by an
ordered pair (l, r) where l is the current state of the left-hand machine and
r is the current state of the right-hand machine. For example, abba causes
the two machines to run through the following pairs of states:

(0, p), (1, q), (2, r), (3, p), (0, q).

The string abba is not accepted because although 0 is a terminal state in the
left-hand machine, q is not a terminal state in the right-hand machine. 2

The above example illustrates the idea behind the following result.

Proposition 2.6.5 If L and M are recognisable languages over A then so
is L ∩M .



48 CHAPTER 2. RECOGNISABLE LANGUAGES

Proof Let L = L(A) and M = L(B) where A = (S,A, s0, δ, F ) and B =
(T,A, t0, γ, G). Put

A×B = (S × T,A, (s0, t0), δ × γ, F ×G),

where
(δ × γ)((s, t), a) = (δ(s, a), γ(t, a));

we write
(δ × γ)((s, t), a) = (s, t) · a = (s · a, t · a),

as usual. It is easy to check that if x is a string, then the extended transition
function has the form

(s, t) · x = (s · x, t · x).

We claim that L(A×B) = L∩M . By definition x ∈ L(A×B) if and only if
(s0, t0) · x ∈ F ×G. But this is equivalent to s0 · x ∈ F and t0 · x ∈ G, which
says precisely that x ∈ L(A) ∩ L(B) = L ∩M , and so the claim is proved.2

We have dealt with complementation and intersection, so it is natural to
finish off with union. The idea is similar to Proposition 2.6.5.

Proposition 2.6.6 If L and M are recognisable languages over A then so
is L + M .

Proof Let L = L(A) and M = L(B), where A = (S,A, s0, δ, F ) and
B = (T,A, t0, γ, G). Put

A ⊔B = (S × T,A, (s0, t0), δ × γ, (F × T ) + (S ×G)).

We claim that L(A⊔B) = L+M . By definition x ∈ L(A⊔B) if and only if
(s0, t0)·x ∈ (F×T )+(S×G). This is equivalent to s0 ·x ∈ F or t0 ·x ∈ G, be-
cause s0 ·x ∈ S and t0 ·x ∈ T always hold. Hence x ∈ L(A)+L(B) = L+M ,
and the claim is proved. 2

There is an alternative proof of Proposition 2.6.6, which relies only on
Propositions 2.6.2 and 2.6.5 together with a little set theory. See Exer-
cises 2.6.

Observe that the only difference between automata constructed in Propo-
sition 2.6.5 and Proposition 2.6.6 lies in the definition of the terminal states:
to recognise the intersection of two languages the terminal states are those



2.6. BOOLEAN OPERATIONS 49

ordered pairs (s, t) where s and t are terminal; to recognise the union of two
languages the terminal states are those ordered pairs (s, t) where s or t is
terminal.

Example 2.6.7 Let A = {a, b}. We wish to construct an automaton to
recognise the language

L = {x ∈ A∗: |x |a is even and |x |b is odd}.

This language is the intersection of

M = {x ∈ A∗: |x |a is even} and N = {x ∈ A∗: |x |b is odd}.

It is easy to construct automata that recognise these languages separately;
the machine A below recognises M :

// s0GFED@ABC?>=<89:;EDGFb@A
//

a //
s1GFED@ABC BCED b
GF��

a
oo

and the machine B below recognises N :

// t0GFED@ABCEDGFa@A
//

b //
t1GFED@ABC?>=<89:; BCED aGF��

b
oo

To construct the machine A × B (and similar comments apply to the con-
struction of A ⊔B) we proceed as follows. The set of states of A×B is the
set S × T , where S is the set of states of A and T is the set of states of B.
In this case,

S × T = {(s0, t0), (s0, t1), (s1, t0), (s1, t1)}.
We draw and label these four states. Mark the initial state, which is (s0, t0).
Mark the set of terminal states, which in this case is just (s0, t1); it is only
at this point that the constructions of A ×B and A ⊔B differ. It remains
now to insert all the transitions. For each a ∈ A and each pair (s, t) ∈ S×T ,
calculate (s, t) · a which by definition is just (s · a, t · a). For example,

(s0, t0) · a = (s0 · a, t0 · a) = (s1, t0)



50 CHAPTER 2. RECOGNISABLE LANGUAGES

and
(s0, t0) · b = (s0 · b, t0 · b) = (s0, t1).

We therefore draw an arrow labelled a from the state labelled (s0, t0) to the
state labelled (s1, t0), and an arrow labelled b from the state labelled (s0, t0)
to the state labelled (s0, t1). Continuing in this way, the machine A × B,
that recognises the language L = M ∩N , has the following form:

// s0, t0_^]\XYZ[ a //

b

��

s1, t0_^]\XYZ[
b

��

a
oo

s0, t1_^]\XYZ[WVUTPQRS a //

b

OO

s1, t1_^]\XYZ[
a

oo

b

OO

2

Exercises 2.6

1. Construct separate automata to recognise each of the languages below:

L = {w ∈ {0, 1}∗: |w |0 ≡ 1 (mod 3)}

and
M = {w ∈ {0, 1}∗: |w |1 ≡ 2 (mod 3)}.

Use Proposition 2.6.5 to construct an automaton that recognises L∩M .

2. Let

L = {x ∈ a∗: |x| ≡ 0 (mod 3)} and M = {x ∈ a∗: |x| ≡ 0 (mod 5)}.

Construct automata that recognise L and M , respectively. Use Propo-
sition 2.6.6 to construct an automaton that recognises L + M .

3. Prove that if L and M are recognisable languages over A, then so is
L \M .



2.7. SUMMARY OF CHAPTER 2 51

4. Show how the constructions of A′ and A × B combined with one of
de Morgan’s laws enables A ⊔B to be constructed.

5. Show that if L1, . . . , Ln are each recognisable, then so too are L1+ . . .+
Ln and L1 ∩ . . . ∩ Ln.

6. Let L = {x ∈ (a + b)∗: |x|a = |x|b}. Show that L is not recognisable.

2.7 Summary of Chapter 2

• Incomplete automata: An automaton is incomplete if there are missing
transitions. An incomplete automaton A can easily be converted into
a complete automaton Ac recognising the same language by simply
adding a sink state: this is a state to which missing transitions are
connected but from which there is no escape.

• Automata over one letter alphabets: These are described by ‘saucepan
automata’.

• Automata that count: By arranging states in a circle it is possible to
count modulo n. Automata can also be constructed to count relative
to a threshold by arranging the states in a line.

• Automata that locate patterns: Automata can be explicitly constructed
to recognise the languages xA∗, A∗xA∗, and A∗x where A is any alpha-
bet and x is any non-empty string.

• Recognising Boolean combinations of languages: If L = L(A) and M =
L(B), then there are algorithms for combining A and B to recognise
L + M and L ∩M . This is also an algorithm to convert A into an
automaton recognising L′.





Chapter 3

Non-deterministic automata

In Chapter 2, we looked at various ways of constructing an automaton to
recognise a given language. However, we did not get very far. The reason
was that automata as we have defined them are quite ‘rigid’: from each state
we must have exactly one transition labelled by each element of the input
alphabet. This is a strong constraint and restricts our freedom considerably
when designing an automaton. To make progress, we need a tool that is easy
to use and can help us design automata. This is the role played by the non-
deterministic automata we introduce in this chapter. A non-deterministic
automaton is exactly like an automaton except that we allow multiple ini-
tial states and we impose no restrictions on transitions as long as they are
labelled by symbols in the input alphabet. Using such automata, it is often
easy, as we shall see, to construct a non-deterministic automaton recognising
a given language. However, this would be useless unless we had some way
of converting a non-deterministic automaton into a deterministic one recog-
nising the same language. We describe an algorithm that does exactly this.
We can therefore add non-deterministic automata to our toolbox for building
automata.

3.1 Accessible automata

There are many different automata that can be constructed to recognise a
given language. All things being equal, we would like an automaton with the
smallest number of states. In Chapter 6, we will investigate this problem in
detail. For the time being, we shall look at one technique that may make an

53



54 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

automaton smaller without changing the language it recognises, and that will
play an important role in our algorithm for converting a non-deterministic
automaton into a deterministic automaton in Section 3.2.

Let A = (S,A, i, δ, T ) be a finite automaton. We say that a state s ∈ S
is accessible if there is a string x ∈ A∗ such that i · x = s. A state that is not
accessible is said to be inaccessible. An automaton is said to be accessible
if every state is accessible. In an accessible automaton, each state can be
reached from the initial state by means of some input string. Observe that
the initial state itself is always accessible because i · ε = i. It is clear that
the inaccessible states of an automaton can play no role in accepting strings,
consequently we expect that they could be removed without the language
being changed. This turns out to be the case as we now show.

Let A = (S,A, i, δ, T ) be a finite automaton. Define a new machine,

Aa = (Sa, A, ia, δa, T a),

as follows:

• Sa is the set of accessible states in S.

• ia = i.

• T a = T ∩ Sa, the set of accessible terminal states.

• δa has domain Sa × A, codomain Sa but otherwise behaves like δ.

The way Aa is constructed from A can be put very simply: erase all in-
accessible states from A and all transitions that either start or end at an
inaccessible state.

Proposition 3.1.1 Let A = (S,A, i, δ, T ) be a finite automaton. Then Aa

is an accessible automaton and L(Aa) = L(A).

Proof It is clear that Aa is a well-defined accessible automaton. It is also
obvious that L(Aa) ⊆ L(A). To show that L(Aa) = L(A), it only remains
to prove that L(A) ⊆ L(Aa). Let x ∈ L(A). Then i · x ∈ T , and every state
in the path labelled by x from i to i · x is accessible. Thus this path also lies
in Aa. It follows that x ∈ L(Aa), as required. 2

The automaton Aa is called the accessible part of A. When the number
of states is small, it is easy to construct Aa.



3.1. ACCESSIBLE AUTOMATA 55

Example 3.1.2 Let A be the automaton below:

// p?>=<89:;GFED
aBC
oo

b

��

r?>=<89:;/.-,()*+
a

oo

b

��
q?>=<89:;/.-,()*+BC@A

b

GF //
a

OO

s?>=<89:;
b

oo

a

OO

It is clear that p and q are both accessible since p = p · ε and q = p · b, and
that neither r nor s are accessible. Thus in this case, Aa is the following:

// p?>=<89:;GFED
aBC
oo

b

��
q?>=<89:;/.-,()*+BC@A

b

GF //
a

OO

This machine is obtained by erasing the non-accessible states r and s and all
transitions to and from these two states. 2

However, when there are many states, the construction of Aa is not quite
so straightforward. The following lemma lays the foundations for an algo-
rithm for constructing Aa. It says that if a state is accessible, then it can be
reached by a string whose length is strictly less than the number of states in
the machine.

Lemma 3.1.3 Let A = (S,A, s0, δ, T ) be a finite automaton with set of
states S. If s is an accessible state, then there exists a string x ∈ A∗ such
that |x | < |S | and s0 · x = s.

Proof Let s ∈ S be an accessible state. By definition there exists x ∈ A∗

such that s0 · x = s. Let x ∈ A∗ be a string of smallest possible length such
that s0 · x = s. We would like to show that |x | < |S |, so for the sake of
argument, assume instead that |x | ≥ |S |. Let x = x1 . . . xn where xi ∈ A
and n = |x | ≥ |S |. Consider the sequence of states,

s0, s1 = s0 · x1, s2 = s0 · (x1x2), . . . , sn = s0 · (x1 . . . xn).



56 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

Since n ≥ |S | it follows that n + 1 > |S |. But s0, s1, . . . , sn is a list of
states of length n + 1 so there must be some repetition of states in this list.
Let i 6= j be subscripts such that si = sj. We have the following schematic
diagram of the path in A labelled by the string x:

// s0?>=<89:; x1...xi // si
?>=<89:;BC@A

xi+1...xj

GF // xj+1...xn // sn
GFED@ABC?>=<89:;

Put x′ = x1 . . . xixj+1 . . . xn; in other words, cut out the factor of x which
labels the loop. Then |x′ | < |x | and s0 ·x′ = s, which contradicts our choice
of x. Consequently, we must have |x | < |S |. 2

The above result implies that we can find Sa in the following way. Let
n = |S | and denote the initial state by s0. If X ⊆ S and L ⊆ A∗ then define

X · L = {x · a: x ∈ X and a ∈ L}.

The set of strings over A of length at most n− 1 is just

n−1
∑

i=0

Ai = A0 + . . . + An−1.

Thus Lemma 3.1.3 can be expressed in the following way:

Sa = s0 ·
(

n−1
∑

i=0

Ai

)

=
n−1
∑

i=0

s0 · Ai.

To calculate the terms in this union, we need only calculate in turn the sets,

S0 = {s0}, S1 = S0 · A, S2 = S1 · A, . . . , Sn−1 = Sn−2 · A,

because Sj = s0 · Aj.
These calculations can be very easily put into the form of a sequence of

rooted trees. By the ‘distance’ between two vertices in a tree we mean the
length of the shortest path joining the two vertices. The ‘height’ of the tree
is the length of the longest path from root to leaf with no repeated vertices.
The root of the tree is labelled s0. For each a ∈ A construct an arrow from
s0 to s0 · a. In general, if s is the label of a vertex, then draw arrows from



3.1. ACCESSIBLE AUTOMATA 57

s to s · a for each a ∈ A. The vertices at the distance j from the root are
precisely the elements of s0 · Aj. Thus the process will terminate when the
tree has height n − 1. The vertices of this tree are precisely the accessible
states of the automaton. The automaton Aa can now be constructed from A
by erasing all non-accessible vertices and the transitions that go to or from
them.

The drawback of this algorithm is that if the automaton has n states, then
all of the tree to height n− 1 has to be drawn. However such a tree contains
repeated information: a state can appear more than once and, where it is
repeated, no new information will be constructed from it.

The following construction omits the calculation of s · A whenever s is a
repeat, which means that the whole tree is not constructed; in addition, it
also enables us to detect when all accessible states have been found without
having to count.

Algorithm 3.1.4 (Transition tree of an automaton) Let A be an auto-
maton. The transition tree of A is constructed inductively in the following
way. We assume that a linear ordering of A is specified at the outset so we
can refer meaningfully to ‘the elements of A in turn’:

(1) The root of the tree is s0 and we put T0 = {s0}.

(2) Assume that Ti has been constructed; vertices in Ti will have been la-
belled either ‘closed’ or ‘non-closed.’ The meaning of these two terms
will be made clear below. We now show how to construct Ti+1.

(3) For each non-closed leaf s in Ti and for each a ∈ A in turn construct an
arrow from s to s · a labelled by a; if, in addition, s · a is a repeat of
any state that has already been constructed, then we say it is closed
and mark it with a ×.

(4) The algorithm terminates when all leaves are closed.

2

We have to prove that the algorithm above is what we want.

Proposition 3.1.5 Let |S | = n. Then there exists an m ≤ n such that
every leaf in Tm is closed, and Sa is just the set of vertices in Tm.



58 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

Proof Let s ∈ Sa and let x ∈ A∗ be the smallest string in the tree order
such that s0 · x = s. Then s first appears as a vertex in the tree T|x|. By
Lemma 3.1.3, the latest an accessible state can appear for the first time is in
Tn−1. Thus at worst all states in Tn are closed. 2

The transition tree not only tells us the accessible states of A but can also
be used to construct Aa as follows: erase the ×’s and glue leaves to interior
vertices with the same label. The diagram that results is the transition
diagram of Aa. All of this is best illustrated by means of an example.

Example 3.1.6 Consider the automaton A pictured below:

// s0ONMLHIJK@AGFa ED��
b //

s1ONMLHIJK?>=<89:; BCED b
GF��

a
oo

s2ONMLHIJK?>=<89:;
a

OO

BC@A
b

GF //

We shall step through the algorithm for constructing the transition tree of
A and so construct Aa. Of course, it is easy to construct Aa directly in this
case, but it is the algorithm we wish to illustrate.

The tree T0 is just
s0

The tree T1 is
s0,× s1

s0

a

bbEEEEEEEE b

>>}}}}}}}}

The tree T2 is

s0,× s1,×

s0,× s1

a

bbEEEEEEEE b

<<yyyyyyyy

s0

a

ddIIIIIIIII b

<<yyyyyyyyy



3.1. ACCESSIBLE AUTOMATA 59

T2 is the transition tree because every leaf is closed. This tree can be trans-
formed into an automaton as follows. Erase all ×’s, and mark initial and
terminal states. This gives us the following:

s0ONMLHIJK s1ONMLHIJK?>=<89:;

s0ONMLHIJK s1ONMLHIJK?>=<89:;
a

__??????? b

??�������

s0ONMLHIJK
a

__??????? b

??�������

OO

Now glue the leaves to the interior vertices labelling the same state. We
obtain the following automaton:

s1ONMLHIJK?>=<89:;GF ED
bBC
oo

a
����

��
��

�

s0ONMLHIJKEDGFa@A
//

b
??�������

OO

This is the automaton Aa. 2

Exercises 3.1

1. Construct transition trees for the automata below.

(i)

// pGFED@ABC 0,1 //
qGFED@ABC?>=<89:;

0
oo

BCED 1GF��

rGFED@ABC
0,1

OO



60 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

(ii)

// pGFED@ABC?>=<89:; a //

b

��

qGFED@ABC
a

oo

b

��

rGFED@ABC
b

OO

a //
sGFED@ABC

b

OO

a
oo

(iii)

qGFED@ABC b //

a

��

rGFED@ABC
a

��

b

��?
??

??
??

// pGFED@ABC a //

b ��?
??

??
??

sGFED@ABC a //

b

��

tGFED@ABC?>=<89:; EDBC a,b@AOO
uGFED@ABC EDBC a,b@AOO

3.2 Non-deterministic automata

Deterministic automata are intended to be models of real machines. The
non-deterministic automata we introduce in this section should be regarded
as tools helpful in designing deterministic automata rather than as models of
real-life machines. To motivate the definition of non-deterministic automata,
we shall consider a simple problem.

Let A be an alphabet. If x = a1 . . . an where ai ∈ A, then the reverse
of x, denoted rev(x), is the string an . . . a1. We define rev(ε) = ε. Clearly,
rev(rev(x)) = x, and rev(xy) = rev(y)rev(x). If L is a language then the
reverse of L, denoted by rev(L), is the language

rev(L) = {rev(x): x ∈ L}.

Consider now the following question: if L is recognisable, then is rev(L)
recognisable? To see what might be involved in answering this problem, we
consider an example.

Example 3.2.1 Let L = (aa + bb)(a + b)∗, the language of all strings of a’s
and b’s that begin with a double letter. This language is recognised by the



3.2. NON-DETERMINISTIC AUTOMATA 61

following automaton:

2GFED@ABC a //

b ��?
??

??
??

4GFED@ABC?>=<89:; EDBC a,b@AOO
// 1GFED@ABC

a
??�������

b ��?
??

??
??

5GFED@ABC EDBC a,b@AOO
3GFED@ABC

b
//

a
??�������

6GFED@ABC?>=<89:; EDBC a,b@AOO
In this case, rev(L) is the language of all strings of a’s and b’s that end with a
double letter. In order to construct an automaton to recognise this language,
it is tempting to modify the above automaton in the following way: reverse
all the transitions, and interchange initial and terminal states, like this:

2GFED@ABC
a

����
��

��
�

4GFED@ABC
a

oo
BCED a,bGF��
oo

1GFED@ABC?>=<89:; 5GFED@ABCb

__???????

a

����
��

��
�

BCED a,bGF��

3GFED@ABC
b

__???????

6GFED@ABCboo
BCED a,bGF��
oo

This diagram violates the rules for the transition diagram of a complete,
deterministic finite-state automaton in two fundamental ways: there is more
than one initial state, and there are forbidden configurations. However, if
we put to one side these fatal problems, we do notice an interesting property
of this diagram: the strings that label paths in the diagram, which begin at
one of the initial states and conclude at the terminal state, form precisely
the language rev(L): those strings that end in a double letter. 2

This diagram is in fact an example of a non-deterministic automaton.
After giving the formal definition below, we shall prove that every non-
deterministic automaton can be converted into a deterministic automaton
recognising the same language. An immediate application of this result can



62 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

be obtained by generalising the example above; we will therefore be able to
prove that the reverse of a recognisable language is also recognisable.

Recall that if X is a set, then P(X) is the power set of X, the set of
all subsets of X. The set P(X) contains both ∅ and X as elements. A
non-deterministic automaton A is determined by five pieces of information:

A = (S,A, I, δ, T ),

where S is a finite set of states, A is the input alphabet, I is a set of initial
states, δ: S×A→ P(S) is the transition function, and T is a set of terminal
states.

In addition to allowing any number of initial states, the key feature of this
definition is that δ(s, a) is now a subset of S (possibly empty!). We can draw
transition diagrams and transition tables just as we did for deterministic ma-
chines. The transition table of the machine we constructed in Example 3.2.1
is as follows:

a b
← 1 ∅ ∅

2 {1} ∅
3 ∅ {1}

→ 4 {2, 4} {4}
5 {3, 5} {2, 5}

→ 6 {6} {3, 6}

It now remains to define the analogue of the ‘extended transition func-
tion.’ For each string x ∈ A and state s ∈ S we want to know the set of
all possible states that can be reached by paths starting at s and labelled by
x. The formal definition is as follows and, as in the deterministic case, the
function being defined exists and is unique. The function δ∗ is the unique
function from S×A∗ to P(S) satisfying the following three conditions where
a ∈ A, w ∈ A∗ and s ∈ S:

(ETF1) δ∗(s, ε) = {s}.

(ETF2) δ∗(s, a) = δ(s, a).

(ETF3) δ∗(s, aw) =
∑

q∈δ(s,a) δ∗(q, w).



3.2. NON-DETERMINISTIC AUTOMATA 63

Condition (ETF3) needs a little explaining. Suppose that δ(s, a) = {q1, . . . , qn}.
Then condition (ETF3) means

δ∗(q1, w) + . . . + δ∗(qn, w).

Notation We shall usually write s·x rather than δ∗(s, x), but it is important
to remember that s · x is a set in this case.

Let us check that this definition captures what we intended.

Lemma 3.2.2 Let x = a1 . . . an ∈ A∗. Then t ∈ s·x if and only if there exist
states q1, . . . , qn = t such that q1 ∈ s · a1, and qi ∈ qi−1 · ai for i = 2, . . . , n.

Proof The condition simply says that t ∈ s · x if and only if the string x la-
bels some path in A starting at s and ending at t. Observe that t ∈ δ∗(s, ax)
if and only if t ∈ δ∗(q, x) for some state q ∈ δ(s, a). By applying this obser-
vation repeatedly, starting with ax = a1 . . . an, we obtain the desired result.2

The language L(A) is defined to be

L(A) = {w ∈ A∗:

(

∑

q∈I

q · w
)

∩ T 6= ∅}.

That is, the language recognised by a non-deterministic automaton consists
of all strings that label paths starting at one of the initial states and ending
at one of the terminal states.

It might be thought that because there is a degree of choice available,
non-deterministic automata might be more powerful than deterministic au-
tomata, meaning that non-deterministic automata might be able to recog-
nise languages that deterministic automata could not. In fact, this is not
so. To prove this, we shall make use of the following construction. Let
A = (S,A, I, δ, T ) be a non-deterministic automaton. We construct a deter-
ministic automaton Ad = (Sd, A, id, ∆, T d) as follows:

• Sd = P(S); the set of states is labelled by the subsets of S.

• id = I; the initial state is labelled by the subset consisting of all the
initial states.



64 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

• T d = {Q ∈ P(S): Q ∩ T 6= ∅}; the terminal states are labelled by the
subsets that contain at least one terminal state.

• For a ∈ A and Q ∈ P(S) define

∆(Q, a) =
∑

q∈Q

q · a;

this means that the subset ∆(Q, a) consists of all states in S that can
be reached from states in Q by following a transition labelled by a.

It is clear that Ad is a complete, deterministic, finite automaton.

Theorem 3.2.3 (Subset construction) Let A be a non-deterministic au-
tomaton. Then Ad is a deterministic automaton such that L(Ad) = L(A).

Proof The main plank of the proof will be to relate the extended transi-
tion function ∆∗ in the deterministic machine Ad to the extended transition
function δ∗ in the non-deterministic machine A. We shall prove that for any
Q ⊆ S and x ∈ A∗ we have that

∆∗(Q, x) =
∑

q∈Q

δ∗(q, x). (3.1)

This is most naturally proved by induction on the length of the string x.
For the base step, we prove the theorem holds when x = ε. By the

definition of ∆, we have that ∆∗(Q, ε) = Q, whereas by the definition of δ∗

we have that
∑

q∈Q δ∗(q, ε) =
∑

q∈Q{q} = Q.
For the induction hypothesis, assume that (3.1) holds for all strings x ∈

A∗ satisfying |x | = n. Consider now the string y where | y | = n+1. We can
write y = ax where a ∈ A and x ∈ A∗ and |x | = n. From the definition of
∆∗ we have

∆∗(Q, y) = ∆∗(Q, ax) = ∆∗(∆(Q, a), x).

Put Q′ = ∆(Q, a). Then

∆∗(Q, y) = ∆∗(Q′, x) =
∑

q′∈Q′

δ∗(q′, x)

by the induction hypothesis. From the definitions of Q′ and ∆ we have that

∑

q′∈Q′

δ∗(q′, x) =
∑

q∈Q





∑

q′∈δ(q,a)

δ∗(q′, x)



 .



3.2. NON-DETERMINISTIC AUTOMATA 65

By the definition of δ∗ we have that

∑

q∈Q





∑

q′∈δ(q,a)

δ∗(q′, x)



 =
∑

q∈Q

δ∗(q, ax) =
∑

q∈Q

δ∗(q, y).

This proves the claim.
We can now easily prove that L(A) = L(Ad). By definition,

x ∈ L(A)⇔
(

∑

q∈I

δ∗(q, x)

)

∩ T 6= ∅.

From the definition of the terminal states in Ad this is equivalent to

∑

q∈I

δ∗(q, x) ∈ T d.

We now use equation (3.1) to obtain

∆∗(I, x) ∈ T d.

This is of course equivalent to x ∈ L(Ad). 2

The automaton Ad is called the determinised version of A.

Notation Let A be a non-deterministic automaton with input alphabet A.
Let Q be a set of states and a ∈ A. We denote by Q·a the set of all states that
can be reached by starting in Q and following transitions labelled only by a.
In other words, ∆(Q, a) in the above theorem. We define Q ·A =

∑

a∈A Q ·a.

Example 3.2.4 Consider the following non-deterministic automaton A:

// pGFED@ABCEDGFa@A
//

a,b //
qGFED@ABC?>=<89:;

a
oo oo

The corresponding deterministic automaton constructed according to the
subset construction has 4 states labelled ∅, {p}, {q}, and {p, q}; the initial
state is the state labelled {p, q} because this is the set of initial states of
A; the terminal states are {q} and {p, q} because these are the only subsets



66 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

of {p, q} that contain terminal states of A; the transitions are calculated
according to the definition of ∆. Thus Ad is the automaton:

// p, qGFED@ABC?>=<89:;EDGFa@A
// b // qGFED@ABC?>=<89:;

b

��a
����

��
��

�

pGFED@ABC
a

OO
b

??�������

∅GFED@ABC EDBC a,b@AOO
Observe that the state labelled by the empty set is a sink state, as it always
must be. 2

The obvious drawback of the subset construction is the huge increase in
the number of states in passing from A to Ad. Indeed, if A has n states, then
Ad will have 2n states. This is sometimes unavoidable as we ask you to show
in Exercises 3.2, but often the machine Ad will contain many inaccessible
states. There is an easy way of avoiding this: construct the transition tree of
Ad directly from A and so construct (Ad)a = Ada. This is done as follows.

Algorithm 3.2.5 (Accessible subset construction) The input to this al-
gorithm is a non-deterministic automaton A = (S,A, I, δ, T ) and the output
is Ada, an accessible deterministic automaton recognising L(A). The proce-
dure is to construct the transition tree of Ad directly from A. The root of the
tree is the set I. Apply the algorithm for the transition tree by constructing
as vertices Q · a for each non-closed vertex Q and input letter a. 2

We show how this algorithm works by applying it to the non-deterministic
automaton constructed in Example 3.2.1.

Example 3.2.6 The root of the tree is labelled {4, 6}, the set of initial states
of the non-deterministic automaton. The next step in the algorithm yields
the tree:

{2, 4, 6} {3, 4, 6}

{4, 6}
a

eeJJJJJJJJJ b

99ttttttttt

OO



3.2. NON-DETERMINISTIC AUTOMATA 67

Continuing with the algorithm, we obtain the transition tree of (Ad)a = Ada:

{1,2,4,6},× {3,4,6},× {2,4,6},× {1,3,4,6},×

{1,2,4,6}
a

ddIIIII
b

;;xxxx
{3,4,6},× {2,4,6},× {1,3,4,6}

a

ccFFFF
b

::uuuuu

{2,4,6}
a

ccFFFF
b

;;wwwww
{3,4,6}

a

ccGGGGG
b

;;xxxx

{4,6}
a

hhRRRRRRRR b

66llllllll

OO

Finally, we obtain the automaton Ada pictured below:

1, 2, 4, 6�~}|xyz{wvutpqrs
b

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

EDGF a

@A
// 1, 3, 4, 6�~}|xyz{wvutpqrs

a

uullllllllllllllllllllllllllllll

GF EDb

BC
oo

2, 4, 6_^]\XYZ[
a

__???????
b //

3, 4, 6_^]\XYZ[
b

??�������

a
oo

4, 6WVUTPQRS
a

__??????? b

??�������

OO

2

Exercises 3.2

1. Apply the accessible subset construction to the non-deterministic au-
tomata below. Hence find deterministic automata which recognise the same
language in each case.

(i)

// q?>=<89:; a // r?>=<89:; a // s?>=<89:; b // t?>=<89:;/.-,()*+ BCED a,bGF��



68 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

(ii)

// q?>=<89:; a //
EDGFa,b@A
// r?>=<89:; a // s?>=<89:; b // t?>=<89:;/.-,()*+ BCED a,bGF��

(iii)

// q?>=<89:; a //
EDGFa,b@A
// r?>=<89:; a // s?>=<89:; b // t?>=<89:;/.-,()*+

(iv)

// s?>=<89:; a //EDGFa@A
// t?>=<89:;/.-,()*+

a,b
oo oo

2. Find a non-deterministic automaton with 4 states that recognises the lan-
guage (0 + 1)∗1(0 + 1)2. Use the accessible subset construction to find a
deterministic automaton that recognises the same language.

3. Let n ≥ 1. Show that the language (0+1)∗1(0+1)n−1 can be recognised by
a non-deterministic automaton with n+1 states. Show that any deterministic
automaton that recognises this language must have at least 2n states.

This example shows that an exponential increase in the number of states
in passing from a non-deterministic automaton to a corresponding determin-
istic automaton is sometimes unavoidable.

3.3 Applications

Non-deterministic automata make designing certain kinds of automata easy:
we may often simply write down a non-deterministic automaton and then ap-
ply the accessible subset construction. It is however worth pointing out that
the automata obtained by applying the accessible subset construction will
often have some rather obvious redundancies and can be simplified further.
The general procedure for doing this will be described in Chapter 6.

In this section, we look at some applications of non-deterministic au-
tomata. Our first result generalises Example 3.2.1.

Proposition 3.3.1 Let L be recognisable. Then rev(L), the reverse of L, is
recognisable.



3.3. APPLICATIONS 69

Proof Let L = L(A), where A = (S,A, I, δ, T ) is a non-deterministic au-
tomaton. Define another non-deterministic automaton Arev as follows:

Arev = (S,A, T, γ, I),

where γ is defined by s ∈ γ(t, a) if and only if t ∈ δ(s, a); in other words,
we reverse the arrows of A and relabel the initial states as terminal and vice
versa. It is now straightforward to check that x ∈ L(Arev) if and only if
rev(x) ∈ L(A). Thus L(Arev) = rev(L). 2

The automaton Arev is called the reverse of A.
Non-deterministic automata provide a simple alternative proof to Propo-

sition 2.4.6.

Proposition 3.3.2 Let L and M be recognisable. Then L + M is recognis-
able.

Proof Let A and B be non-deterministic automata, recognising L and M ,
respectively. Lay them side by side; the result is a non-deterministic automa-
ton recognising L + M . 2

Languages defined in terms of the presence of patterns of various kinds
can easily be proved to be recognisable using non-deterministic automata.

Proposition 3.3.3 Let A be an alphabet and let w = a1 . . . an be a non-
empty string over A. Each of the languages wA∗, A∗wA∗ and A∗w is recog-
nisable.

Proof Each language can be recognised by the respective non-deterministic
automaton below, which I have drawn schematically:

// ?>=<89:; a1 // ?>=<89:; //__ __ ?>=<89:; an // ?>=<89:;/.-,()*+GFED
ABC
oo

and

// ?>=<89:; a1 //
EDGFA@A
// ?>=<89:; //__ __ ?>=<89:; an // ?>=<89:;/.-,()*+GFED

ABC
oo



70 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

and

// ?>=<89:; a1 //
EDGFA@A
// ?>=<89:; //__ __ ?>=<89:; an // ?>=<89:;/.-,()*+

Each of these can be converted into an equivalent deterministic automa-
ton using the accessible subset construction. 2

For our final application, we can prove that certain Kleene stars are recog-
nisable.

Proposition 3.3.4 Let X be a finite set of strings none of which is empty.
Then X∗ is recognisable.

Proof We construct a non-deterministic automaton that recognises X∗.
Draw a single initial state which is also terminal. Call this the base. For
each string x ∈ X we construct a ‘petal’ attached to the base — the result-
ing automaton is called a ‘petal automaton’. If x = a1 . . . ar where r ≥ 1,
add states s1, . . . , sr−1 where a1 labels the transition from the base to s1, a2

labels the transition from s1 to s2, a3 labels the transition from s2 to s3, and
so on with ar labelling the transition from sr−1 back to the base. It is easy
to see that the petal automaton recognises X∗. 2

Finally, it is easy to construct non-deterministic automata that recognise
all strings that contain a specific string as a substring. How this is done we
leave to the reader.

Exercises 3.3

1. Construct non-deterministic automata recognising the following languages
over the alphabet A = {a, b}.

(i) (a2 + ab + b2)(a + b)∗.

(ii) (a + b)∗(a2 + ab + b2).

(iii) (a + b)∗(aaa + bbb)(a + b)∗.

(iv) (a2 + ba + b2 + ba2 + b2a)∗.



3.4. SUMMARY OF CHAPTER 3 71

(v) (a + b)∗a(a + b)∗a(a + b)∗b(a + b)∗.

2. Construct an incomplete automaton A = (S,A, i, δ, T ) such that the au-
tomaton B = (S,A, i, δ, S \ T ) does not recognise L(A)′, the complement of
L(A).

It is only possible to prove that the complement of a recognisable language
is recognisable using complete deterministic automata.

3.4 Summary of Chapter 3

• Accessible automata: A state s is accessible if there is an input string
that labels a path starting at the initial state and ending at the state
s. An automaton is accessible if every state is accessible. If A is an
automaton, then the accessible part of A, denoted by Aa, is obtained
by removing all inaccessible states and transitions to and from them.
The language remains unaltered. There is an efficient algorithm for
constructing Aa using the transition tree of A.

• Non-deterministic automata: These are automata where the restric-
tions of completeness and determinism are renounced and where we
are allowed to have a set of initial states. A string is accepted by such
a machine if it labels at least one path from an initial state to a ter-
minal state. If A is a non-deterministic automaton, then there is an
algorithm, called the subset construction, which constructs a determin-
istic automaton, denoted Ad, recognising the same language as A. The
disadvantage of this construction is that the states of Ad are labelled
by the subsets of the set of states of A. The accessible subset construc-
tion constructs the automaton (Ad)a = Ada directly from A using the
transition tree and often leads to a much smaller automaton.

• Applications of non-deterministic automata: Let A be a non-deterministic
automaton. Then Arev, the reverse of A, is obtained by reversing all
the transitions in A and interchanging initial and terminal states. The
language recognised by Arev is the reverse of the language recognised
by A. If L and M are recognisable, then we can prove that L + M
is recognisable using non-deterministic automata. If A is an alphabet
and w a non-empty string over A then the following languages are all
recognisable: wA∗, A∗wA∗, and A∗w. If X is a finite set of non-empty



72 CHAPTER 3. NON-DETERMINISTIC AUTOMATA

strings then the petal automaton of X recognises X∗. Finally the set
of all strings containing a given string as a substring is recognisable.



Chapter 4

ε-automata

Non-deterministic and deterministic automata have something in common:
both types of machines can only change state in response to reading an input
symbol. In the case of non-deterministic automata, a state and an input
symbol lead to a set of possible states. The class of ε-automata, introduced
in this chapter, can change state spontaneously without any input symbol
being read. Although this sounds like a powerful feature, we shall show that
every non-deterministic automaton with ε-transitions can be converted into a
non-deterministic automaton without ε-transitions that recognises the same
language. Armed with ε-automata, we can construct automata to recognise
all kinds of languages with great ease.

4.1 Automata with ε-transitions

In both deterministic and non-deterministic automata, transitions may only
be labelled with elements of the input alphabet. No edge may be labelled with
the empty string ε. We shall now waive this restriction. A non-deterministic
automaton with ε-transitions or, more simply, an ε-automaton, is a 5-tuple,

A = (S,A, I, δε, T ),

where all the symbols have the same meanings as in the non-deterministic
case except that

δε: S × (A ∪ {ε})→ P(S).

73



74 CHAPTER 4. ε-AUTOMATA

As before, we shall write δε(s, a) = s · a. The only difference between such
automata and non-deterministic automata is that we allow transitions:

s?>=<89:; ε // t?>=<89:;
Such transitions are called ε-transitions.

In order to define what we mean by the language accepted by such a
machine, we have to define an appropriate ‘extended transition function.’
This is slightly more involved than before, so I shall begin with an informal
description. A path in an ε-automaton is a sequence of states each labelled
by an element of the set A∪{ε}. The string corresponding to this path is the
concatenation of these labels in order. We say that a string x is accepted by
an ε-automaton if there is a path from an initial state to a terminal state the
concatenation of whose labels is x. I now have to put this idea on a sound
footing.

Let A be an alphabet. If a ∈ A, then for all m,n ∈ N we have that
a = εmaεn. However, εmaεn is also a string consisting of m ε’s followed by
one a followed by a further n ε’s. We call this string an ε-extension of the
symbol a. The value of the ε-extension εmaεn is a. More generally, we can
define an ε-extension of a string x ∈ A∗ to be the product of ε-extensions of
each symbol in x. The value of any such ε-extension is just x. For example,
the string aba has ε-extensions of the form εmaεnbεpaεq, where m,n, p, q ∈ N.
Let A be a non-deterministic automaton with ε-transitions. We say that x
is accepted by A if some ε-extension of x labels a path in A starting at some
initial state and ending at some terminal state. As usual we write L(A) to
mean the set of all strings accepted by A. It is now time for a concrete
example.

Example 4.1.1 Consider the diagram below:

// p?>=<89:; ε //

b

��

q?>=<89:; a //

b
oo r?>=<89:;/.-,()*+

a
����

��
��

�

s?>=<89:;
ε

// t?>=<89:;
b

//

ε
??�������

u?>=<89:;
ε

OO

This is clearly a non-deterministic automaton with ε-transitions. We find
some examples of strings accepted by this machine. First of all, the letter a
is accepted. At first sight, this looks wrong, because there are no transitions



4.1. AUTOMATA WITH ε-TRANSITIONS 75

from p to r labelled by a. However, this is not our definition of how a string
is accepted. We have to check all possible ε-extensions of a. In this case,
we immediately see that εa labels a path from p to r, and so a is accepted.
Notice, by the way, that it is the value of the ε -extension that is accepted;
so, if you said εa was accepted, I would have to say that you were wrong.
The letter b is accepted, because bεε labels a path from p to r. The string bb
is accepted, because bεbε labels a path from p to r. 2

Now that we understand how ε-automata are supposed to behave, we can
formally define the extended transition function δ∗ε . To do this, we shall use
the following definition. Let A be a non-deterministic automaton with ε-
transitions, and let s be an arbitrary state of A. The ε-closure of s, denoted
by E(s), consists of s itself together with all states in A, which can be reached
by following paths labelled only by ε’s. If Q is a set of states, then we define
the ε-closure of Q by

E(Q) =
∑

q∈Q

E(q),

the union of the ε-closures of each of the states in Q. Observe that E(∅) = ∅.
Referring to Example 4.1.1, the reader should check that E(p) = {p, q},
E(q) = {q}, E(r) = {r}, E(s) = {s, t, r}, E(t) = {t, r}, and E(u) = {u, r}.
The only point that needs to be emphasised is that the ε-closure of a state
must contain that state, and so it can never be empty.

We are almost ready to define the extended transition function. We need
one piece of notation.

Notation If Q is a set of states in an ε-automaton and a ∈ A then we write
Q · a to mean

∑

q∈Q q · a; that is, a state s belongs to the set Q · a precisely
when there is a state q ∈ Q and a transition in A from q to s labelled by a.

The extended transition function of an ε-automaton δ∗ε is the unique func-
tion from S × A∗ to P(S) satisfying the following three conditions where
a ∈ A, x ∈ A∗ and s ∈ S:

(ETF1) δ∗ε(s, ε) = E(s).

(ETF2) δ∗ε(s, a) = E(E(s) · a).

(ETF3) δ∗ε(s, ax) =
∑

q∈E(E(s)·a) δ∗ε(q, x).



76 CHAPTER 4. ε-AUTOMATA

Once again, it can be shown that this defines a unique function. This defini-
tion agrees perfectly with our definition of the ε-extension of a string. To see
why, observe that if a ∈ A, then E(E(s) · a) is the set of states that can be
reached starting at s and following all paths labelled εmaεn. More generally,
δ∗ε(s, x), where x ∈ A∗, consists of all states that can be reached starting at
s and following all paths labelled by ε-extensions of x. We conclude that the
appropriate definition of the language accepted by an ε-automaton is

L(A) = {x ∈ A∗: δ∗ε(s, x) ∩ T 6= ∅ for some s ∈ I}.

Our goal now is to show that a language recognised by an ε-automaton
can be recognised by an ordinary non-deterministic automaton. To do this,
we shall use the following construction. Let A = (S,A, I, δε, T ) be a non-
deterministic automaton with ε-transitions. Define a non-deterministic au-
tomaton,

As = (S ∪ {♦}, A, I ∪ {♦}, ∆, T s),

as follows:

• ♦ is a new state.

•
T s =

{

T ∪ {♦} if ε ∈ L(A)
T otherwise.

• The function,
∆: (S ∪ {♦})× A→ P(S ∪ {♦}),

is defined as follows: ∆(♦, a) = ∅ for all a ∈ A, and ∆(s, a) = E(E(s) ·
a) for all s ∈ S and a ∈ A.

It is clear that As is a well-defined, non-deterministic automaton. Observe
that the role of the state ♦ is solely to accept ε if ε ∈ L(A). If ε /∈ L(A),
then you can omit ♦ from the construction of As.

Theorem 4.1.2 Let A = (S,A, I, δε, T ) be a non-deterministic automaton
with ε-transitions. Then L(As) = L(A).

Proof The main plank of the proof is the following equation, which we shall
prove below: for all s ∈ S and x ∈ A+ we have that

∆∗(s, x) = δ∗ε(s, x). (4.1)



4.1. AUTOMATA WITH ε-TRANSITIONS 77

Observe that this equation holds for non-empty strings. We prove (4.1) by
induction on the length of x.

For the base step, let a ∈ A. Then

∆∗(s, a) = ∆(s, a) = δ∗ε(s, a),

simply following the definitions.
For the induction step, assume that the equality holds for all x ∈ A+

where |x | = n. Let y = ax where a ∈ A and |x | = n. Then

∆∗(s, y) = ∆∗(s, ax) =
∑

q∈∆(s,a)

∆∗(q, x),

by the definition of ∆∗. By the base step and the induction step,

∑

q∈∆(s,a)

∆∗(q, x) =
∑

q∈δ∗ε (s,a)

δ∗ε(q, x),

but by definition,

∑

q∈δ∗ε (s,a)

δ∗ε(q, x) = δ∗ε(s, ax) = δ∗ε(s, y),

and we have proved the equality.
Now we can prove that L(As) = L(A). Observe first that

ε ∈ L(A)⇔ ♦ ∈ T s ⇔ ε ∈ L(As).

With this case out of the way, let x ∈ A+. Then by definition x ∈ L(As)
means that there is some s ∈ I ∪{♦} such that ∆∗(s, x)∩T s 6= ∅. But since
x is not empty, the state ♦ can play no role and so we can write that for
some s ∈ I, we have ∆∗(s, x)∩T 6= ∅. By equation (4.1), ∆∗(s, x) = δ∗ε(s, x).
Thus x ∈ L(As) if and only if δ∗ε(s, x)∩T 6= ∅ for some s ∈ I. This of course
says precisely that x ∈ L(A) as required. 2

Remark The meaning of the ‘s’ in As is that of ‘sans’ since As is ‘sans
epsilons.’

The construction of the machine As is quite involved. It is best to set
out the calculations in tabular form as suggested by the following example.



78 CHAPTER 4. ε-AUTOMATA

Example 4.1.3 We calculate A for the ε-automaton of Example 4.1.1.

state ⋆ E(⋆) E(⋆) · a E(⋆) · b E(E(⋆) · a) E(E(⋆) · b)
p {p, q} {r} {s, p} {r} {s, t, r, p, q}
q {q} {r} {p} {r} {p, q}
r {r} {t} ∅ {t, r} ∅
s {s, t, r} {t} {u} {t, r} {u, r}
t {t, r} {t} {u} {t, r} {u, r}
u {u, r} {t} ∅ {t, r} ∅

The last two columns give us the information required to construct As below:

// p?>=<89:;EDGFb@A
// oo b //
GF EDa,b

��

b

��?
??

??
??

??
??

??
??

?

b

��

q?>=<89:; a //EDBC b@AOO r?>=<89:;/.-,()*+ BCED aGF��

a

����
��

��
��

��
��

��
��

s?>=<89:; a //@A BC
b

OO

a,b

oo

t?>=<89:; b //GF@Aa BCOO

a,b

??����������������

u?>=<89:;
a

oo

a

OO

In this case, the state labelled 3 is omitted because the original automaton
does not accept the empty string. 2



4.2. APPLICATIONS OF ε-AUTOMATA 79

Exercises 4.1

1. For each of the ε-automata A below construct As and Asda = ((As)d)a.
In each case, describe L(A).

(i)

// pGFED@ABC ε //

ε

��

qGFED@ABC a // rGFED@ABC a // sGFED@ABC?>=<89:; BCED a,bGF��

tGFED@ABC
b

// uGFED@ABC
b

// vGFED@ABC
ε

??�������

(ii)

// pGFED@ABCGF@A0 BCOO ε // qGFED@ABCGF@A1 BCOO ε // rGFED@ABC?>=<89:;GF@A2 BCOO
(iii)

// 1GFED@ABC b //

a

��

ε

��?
??

??
??

2GFED@ABC
ε

��

3GFED@ABC
a

��?
??

??
??

5GFED@ABC?>=<89:;ε

__???????

4GFED@ABC
ε

OO

4.2 Applications of ε-automata

If L and M are both recognisable, then ε-automata provide a simple way of
proving that L + M , LM and L∗ are all recognisable.

Theorem 4.2.1 Let A be an alphabet and L and M be languages over A.

(i) If L and M are recognisable then L + M is recognisable.

(ii) If L and M are recognisable then LM is recognisable.

(iii) If L is recognisable then L∗ is recognisable.



80 CHAPTER 4. ε-AUTOMATA

Proof (i) By assumption, we are given two automata A and B such that
L(A) = L and L(B) = M . Construct the following ε-automaton: intro-
duce a new state, which we label ♥, to be the new initial state and draw
ε-transitions to the initial state of A and the initial state of B; the initial
states of A and B are now converted into ordinary states. Call the result-
ing ε-automaton C. It is clear that this machine recognises the language
L+M . We now apply Theorem 4.1.2 to obtain a non-deterministic automa-
ton recognising L + M . Thus L + M is recognisable. If we picture A and B
schematically as follows:

?>=<89:;/.-,()*+

// ?>=<89:; A

?>=<89:;/.-,()*+
and

?>=<89:;/.-,()*+

// ?>=<89:; B

?>=<89:;/.-,()*+
Then the machine C has the following form:

?>=<89:;/.-,()*+

?>=<89:; A

?>=<89:;/.-,()*+

// ♥?>=<89:;

ε

HH����������������

ε

��,
,,

,,
,,

,,
,,

,,
,,

,

?>=<89:;/.-,()*+

?>=<89:; B

?>=<89:;/.-,()*+



4.2. APPLICATIONS OF ε-AUTOMATA 81

(ii) By assumption, we are given two automata A and B such that L(A) =
L and L(B) = M . Construct the following ε-automaton: from each terminal
state of A draw an ε-transition to the initial state of B. Make each of
the terminal states of A ordinary states and make the initial state of B
an ordinary state. Call the resulting automaton C. It is easy to see that
this ε-automaton recognises LM . We now apply Theorem 4.1.2 to obtain
a non-deterministic automaton recognising LM . Thus LM is recognisable.
If we picture A and B schematically as above then the machine C has the
following form: ?>=<89:;

ε

��:
::

::
::

::
?>=<89:;/.-,()*+

// ?>=<89:; A ?>=<89:; B

?>=<89:; ε

BB��������� ?>=<89:;/.-,()*+
(iii) Let A be a deterministic automaton such that L(A) = L. Construct

an ε-automaton D as follows. It has two more states than A, which we shall
label ♥ and ♠: the former will be initial and the latter terminal. Connect the
state ♥ by an ε-transition to the initial state of A and then make the initial
state of A an ordinary state. Connect all terminal states of A to the state
labelled ♠ and then make all terminal states of A ordinary states. Connect
the state ♥ by an ε-transition to the state ♠ and vice versa. If we picture A
schematically as above, then D can be pictured schematically as follows:

?>=<89:;
ε

��?
??

??
??

// ♥?>=<89:; ε //

GF EDε

��?>=<89:; A ♠?>=<89:;/.-,()*+

BC@A
ε

OO

?>=<89:; ε

??�������



82 CHAPTER 4. ε-AUTOMATA

It is easy to check that L(B) = L∗: first, by construction, ε is recognised.
Second, the bottom ε-transition enables us to re-enter the machine A em-
bedded in the diagram. The result now follows by Theorem 4.1.2 again. 2

Exercises 4.2

1. Construct ε-automata to recognise each of the following languages.

(i) (a2)∗(b3)∗.

(ii) (a(ab)∗b)∗.

(iii) (a2b∗ + b2a∗)(ab + ba).

4.3 Summary of Chapter 4

• ε-automata: These are defined just as non-deterministic automata ex-
cept that we also allow transitions to be labelled by ε. A string x over
the input alphabet is accepted by such a machine A if there is at least
one path in A starting at an initial state and finishing at a terminal
state such that when the labels on this path are concatenated the string
x is obtained.

• As: There is an algorithm that converts an ε-automaton A into a non-
deterministic automaton As recognising the same language. The ‘s’
stands for ‘sans’ meaning ‘without (epsilons).’

• Applications: Using ε-automata, simple proofs can be given of the
recognisability of LM from the recognisability of L and M , and the
recognisability of L∗ from the recognisability of L.



Chapter 5

Kleene’s Theorem

Chapters 2 to 4 have presented us with an array of languages that we can
show to be recognisable. At the same time, we have seen that there are lan-
guages that are not recognisable. It is clearly time to find a characterisation
of recognisable languages. This is exactly what Kleene’s theorem does. The
characterisation is in terms of regular expressions. Such expressions form a
notation for describing languages in terms of finite languages, union, product,
and Kleene star; it was informally introduced in Section 1.3. Kleene’s theo-
rem states that a language is recognisable precisely when it can be described
by a regular expression.

5.1 Regular languages

This is now a good opportunity to reflect on which languages we can now
prove are recognisable. I want to pick out four main results:

• Finite languages are recognisable; this was proved in Proposition 2.3.4.

• The union of two recognisable languages is recognisable; this was proved
in Proposition 2.6.6.

• The product of two recognisable languages is recognisable; this was
proved in Proposition 4.2.1(ii).

• The Kleene star of a recognisable language is recognisable; this was
proved in Proposition 4.2.1(iii).

83



84 CHAPTER 5. KLEENE’S THEOREM

We now analyse these results a little more deeply. A finite language that
is neither empty nor consists of just the empty string is a finite union of
strings, and each language consisting of a finite string is a finite product of
languages each of which consist of a single letter. Call a language over an
alphabet basic if it is either empty, consists of the empty string alone, or
consists of a single symbol from the alphabet. Then what we have proved is
the following: a language that can be constructed from the basic languages
by using only the operations +, · and ∗ a finite number of times must be
recognisable. The following two definitions give a precise way of describing
such languages.

Let A = {a1, . . . , an} be an alphabet. A regular expression over A (the
term rational expression is also used) is a sequence of symbols formed by
repeated application of the following rules:

(R1) ∅ is a regular expression.

(R2) ε is a regular expression.

(R3) a1, . . . , an are each regular expressions.

(R4) If s and t are regular expressions then so is (s + t).

(R5) If s and t are regular expressions then so is (s · t).

(R6) If s is a regular expression then so is (s∗).

(R7) Every regular expression arises by a finite number of applications of
the rules (R1) to (R6).

We call +, ·, and ∗ the regular operators. As usual, we will generally write
st rather than s · t. It is easy to determine whether an expression is regular
or not.

Example 5.1.1 We claim that ((0 · (1∗)) + 0) is a regular expression over
the alphabet {0, 1}. To prove that it is, we simply have to show that it can
be constructed according to the rules above:

(1) 1 is regular by (R3).

(2) (1∗) is regular by (R6).

(3) 0 is regular by (R3).



5.1. REGULAR LANGUAGES 85

(4) (0 · (1∗)) is regular by (R5) applied to (2) and (3) above.

(5) ((0 · (1∗)) + 0) is regular by (R4) applied to (4) and (3) above.

2

Each regular expression s describes a language, denoted by L(s). This
language is calculated by means of the following rules, which agree with the
conventions we introduced in Section 1.3. Simply put, they tell us how to
‘insert the curly brackets.’

(D1) L(∅) = ∅.

(D2) L(ε) = {ε}.

(D3) L(ai) = {ai}.

(D4) L(s + t) = L(s) + L(t).

(D5) L(s · t) = L(s) · L(t).

(D6) L(s∗) = L(s)∗.

Now that we know how regular expressions are to be interpreted, we
can introduce some conventions that will enable us to remove many of the
brackets, thus making regular expressions much easier to read and interpret.
The way we do this takes its cue from ordinary algebra. For example, consider
the algebraic expression a+bc−1. This can only mean a+(b(c−1)), but a+bc−1

is much easier to understand than a + (b(c−1)). If we say that ∗, ·, and +
behave, respectively, like −1, ×, and + in ordinary algebra, then we can,
just as in ordinary algebra, dispense with many of the brackets that the
definition of a regular expression would otherwise require us to use. Using
this convention, the regular expression ((0·(1∗))+0) would usually be written
as 01∗ + 0. Our convention tells us that 01∗ means 0(1∗) rather than (01)∗,
and that 01∗ + 0 means (01∗) + 0 rather than 0(1∗ + 0).

Example 5.1.2 We calculate L(01∗ + 0).

(1) L(01∗ + 0) = L(01∗) + L(0) by (D4).

(2) L(01∗) + L(0) = L(01∗) + {0} by (D3).



86 CHAPTER 5. KLEENE’S THEOREM

(3) L(01∗) + {0} = L(0) · L(1∗) + {0} by (D5).

(4) L(0) · L(1∗) + {0} = {0} · L(1∗) + {0} by (D3).

(5) {0} · L(1∗) + {0} = {0} · L(1)∗ + {0} by (D6).

(6) {0} · L(1)∗ + {0} = {0} · {1}∗ + {0} by (D3).

2

Two regular expressions s and t are equal, written s = t, if and only if
L(s) = L(t). Two regular expressions can look quite different yet describe
the same language and so be equal.

Example 5.1.3 Let s = (0 + 1)∗ and t = (1 + 00∗1)∗0∗. We shall show that
these two regular expressions describe the same language. Consequently,

(0 + 1)∗ = (1 + 00∗1)∗0∗.

We now prove this assertion. Because (0 + 1)∗ describes the language of all
possible strings of 0’s and 1’s it is clear that L(t) ⊆ L(s). We need to prove
the reverse inclusion. Let x ∈ (0 + 1)∗, and let u be the longest prefix of x
belonging to 1∗. Put x = ux′. Either x′ ∈ 0∗, in which case x ∈ L(t), or x′

contains at least one 1. In the latter case, x′ begins with a 0 and contains
at least one 1. Let v be the longest prefix of x′ from 0+1. We can therefore
write x = uvx′′ where u ∈ 1∗, v ∈ 0+1 and |x′′ | < |x |. We now replace x by
x′′ and repeat the above process. It is now clear that x ∈ L(t). 2

A language L is said to be regular (the term rational is also used) if there
is a regular expression s such that L = L(s).

Examples 5.1.4 Here are a few examples of regular expressions and the
languages they describe over the alphabet A = {a, b}.
(1) Let L = {x ∈ (a + b)∗: |x | is even}. A string of even length is either

just ε on its own or can be written as the concatenation of strings each
of length 2. Thus this language is described by the regular expresssion
((a + b)2)∗.

(2) Let L = {x ∈ (a + b)∗: |x | ≡ 1 (mod 4)}. A string belongs to this
language if its length is one more than a multiple of 4. A string of length
a multiple of 4 can be described by the regular expression ((a + b)4)∗.
Thus a regular expression for L is ((a + b)4)∗(a + b).



5.1. REGULAR LANGUAGES 87

(3) Let L = {x ∈ (a + b)∗: |x | < 3}. A string belongs to this language
if its length is 0, 1, or 2. A suitable regular expression is therefore
ε + (a + b) + (a + b)2. The language L′, the complement of L, consists
of all strings whose length is at least 3. This language is described by
the regular expression (a + b)3(a + b)∗.

2

We have seen that two regular expressions s and t may look different but
describe the same language L(s) = L(t) and so be equal as regular expres-
sions. The collection of all languages P(A∗) has a number of properties that
are useful in showing that two regular expressions are equal. The simplest
ones are described in the proposition below. The proofs are left as exercises.

Proposition 5.1.5 Let A be an alphabet, and let L,M,N ∈ P(A∗). Then
the following properties hold:

(i) L + (M + N) = (L + M) + N .

(ii) ∅+ L = L = L + ∅.

(iii) L + L = L.

(iv) L · (M ·N) = (L ·M) ·N .

(v) ε · L = L = L · ε.

(vi) ∅ · L = ∅ = L · ∅.

(vii) L · (M + N) = L ·M + L ·N , and (M + N) · L = M · L + N · L. 2

Result (i) above is called the associativity law for unions of languages,
whereas result (iv) is the associativity law for products of languages. Result
(vii) contains the two distributity laws (left and right respectively) for product
over union.

Because equality of regular expressions s = t is defined in terms of the
equality of the corresponding languages L(s) = L(t) it follows that the seven
properties above also hold for regular expressions. A few examples are given
below.



88 CHAPTER 5. KLEENE’S THEOREM

Examples 5.1.6 Let r, s and t be regular expressions. Then

(1) r + (s + t) = (r + s) + t.

(2) (rs)t = r(st).

(3) r(s + t) = rs + rt.

2

The relationship between the Kleene star and the other two regular op-
erators is much more complex. Here are two examples.

Examples 5.1.7 Let A = {a, b}.
(1) (ab)∗ = ε + a(ba)∗b. The left-hand side is

ε + (ab) + (ab)2 + (ab)3 + . . . .

However, for n ≥ 1, the string (ab)n is equal to a(ba)n−1b. Thus the
left-hand side is equal to the right-hand side.

(2) (a+b)∗ = (a∗b)∗a∗. To prove this we apply the usual method for showing
that two sets X and Y are equal: we show that X ⊆ Y and Y ⊆ X. It
is clear that the language on the right is a subset of the language on the
left. We therefore need only explicitly prove that the language on the
left is a subset of the language on the right. A typical term of (a + b)∗

consists of a finite product of a’s and b’s. Either this product consists
entirely of a’s, in which case it is clearly a subset of the right-hand side,
or it also contains at least one b: in which case, we can split the product
into sequences of a’s followed by a b, and possibly a sequence of a’s at
the end. This is also a subset of the right-hand side. For example,

aaabbabaaabaaa

can be written as
(aaab)(a0b)(ab)(aaab)aaa,

which is clearly a subset of (a∗b)∗a∗.

2



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 89

Exercises 5.1

1. Find regular expressions for each of the languages over A = {a, b}.

(i) All strings in which a always appears in multiples of 3.

(ii) All strings that contain exactly 3 a’s.

(iii) All strings that contain exactly 2 a’s or exactly 3 a’s.

(iv) All strings that do not contain aaa.

(v) All strings in which the total number of a’s is divisible by 3.

(vi) All strings that end in a double letter.

(vii) All strings that have exactly one double letter.

2. Let r and s be regular expressions. Prove that each of the following
equalities holds between the given pair of regular expressions.

(i) r∗ = (rr)∗ + r(rr)∗.

(ii) (r + s)∗ = (r∗s∗)∗.

(iii) (rs)∗r = r(sr)∗.

3. Prove Proposition 5.1.5.

5.2 An algorithmic proof of Kleene’s theorem

In this section, we shall describe two algorithms that together provide an
algorithmic proof of Kleene’s theorem: our first algorithm will show explicitly
how to construct an ε-automaton from a regular expression, and our second
will show explicitly how to construct a regular expression from an automaton.

In the proof below we shall use a class of ε-automata. A normalised ε-
automaton is just an ε-automaton having exactly one initial state and one
terminal state, and the property that there are no transitions into the initial
state or out of the terminal state.

Theorem 5.2.1 (Regular expression to ε-automaton) Let r be a regu-
lar expression over the alphabet A. Let m be the sum of the following two
numbers: the number of symbols from A occurring in r, counting repeats, and
the number of regular operators occurring in r, counting repeats. Then there
is an ε-automaton A having at most 2m states such that L(A) = L.



90 CHAPTER 5. KLEENE’S THEOREM

Proof We shall prove that each regular language is recognised by some nor-
malised ε-automaton satisfying the conditions of the theorem. Base step:
prove that if L = L(r) where r is a regular expression without regular oper-
ators, then L can be recognised by a normalised ε-automaton with at most
2 states. However, in this case L is either {a} where a ∈ A, ∅, or {ε}. The
normalised ε-automata, which recognise each of these languages, are

// ?>=<89:; a // ?>=<89:;/.-,()*+ and // ?>=<89:; ε // ?>=<89:;/.-,()*+ and // ?>=<89:; ?>=<89:;/.-,()*+
Induction hypothesis: assume that if r is a regular expression, using at

most n − 1 regular operators and containing p occurrences of letters from
the underlying alphabet, then L(r) can be recognised by a normalised ε-
automaton using at most 2(n−1)+2p states. Now let r be a regular expres-
sion having n regular operators and q occurrences of letters from the under-
lying alphabet. We shall prove that L(r) can be recognised by a normalised
ε-automaton containing at most 2n+2q states. From the definition of a reg-
ular expression, r must have one of the following three forms: (1) r = s + t,
(2) r = s · t or (3) r = s∗. Clearly, s and t each use at most n − 1 regular
operators; let ns and nt be the number of regular operators occurring in s and
t, respectively, and let qs and qt be the number of occurrences of letters from
the underlying alphabet in s and t, respectively. Then ns + nt = n − 1 and
qs + qt = q. So by the induction hypothesis L(s) and L(t) are recognised by
normalised ε-automata A and B, respectively, which have at most 2(ns + qs)
and 2(nt + qt) states apiece. We can picture these as follows:

// ?>=<89:; A ?>=<89:;/.-,()*+ and // ?>=<89:; B ?>=<89:;/.-,()*+
We now show how A and B can be used to construct ε-automata to recognise
each of the languages described by the regular expressions (1), (2), and (3),
respectively; our constructions are just mild modifications of the ones used
in Theorem 4.2.1.

(1) A normalised ε-automaton recognising L(s + r) is

?>=<89:; A ?>=<89:;
ε

��?
??

??
??

// ?>=<89:;
ε

??�������

ε
��?

??
??

??
?>=<89:;/.-,()*+

?>=<89:; B ?>=<89:; ε

??�������



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 91

(2) A normalised ε-automaton recognising L(s · t) is

// ?>=<89:; A ⋆ ?>=<89:;/.-,()*+B

This automaton is obtained by merging the terminal state of A with the
initial state of B and making the resulting state, marked with a ⋆, an ordinary
state.

(3) A normalised ε-automaton recognising L(s∗) is

// ?>=<89:; ε //

GF EDε

��?>=<89:; A ?>=<89:; ε //

BC@A
ε

OO
?>=<89:;/.-,()*+

In all three cases, the number of states in the resulting machine is at most

2(ns + qs) + 2(nt + qt) + 2 = 2(n + q),

which is the answer required. 2

Example 5.2.2 Here is an example of Theorem 5.2.1 in action. Consider
the regular expression 01∗ + 0. To construct an ε-automaton recognising
the language described by this regular expression, we begin with the two
automata

// ?>=<89:; 0 // ?>=<89:;/.-,()*+ and // ?>=<89:; 1 // ?>=<89:;/.-,()*+
We convert the second machine into one recognising 1∗:

// ?>=<89:; ε //

ε

��

?>=<89:;/.-,()*+

?>=<89:; 1 // ?>=<89:;
ε

oo

ε

OO



92 CHAPTER 5. KLEENE’S THEOREM

We then combine this machine with our first to obtain a machine recognising
01∗:

// ?>=<89:;
0
��?>=<89:; ε //

ε

��

?>=<89:;/.-,()*+

?>=<89:; 1 // ?>=<89:;
ε

oo

ε

OO

We now combine this machine with the one for 0 to obtain the following
machine respresenting 01∗ + 0:

?>=<89:; 0 // ?>=<89:;
ε

��
// ?>=<89:;
ε

OO

ε

��

?>=<89:;/.-,()*+

?>=<89:;
0
��?>=<89:;

ε

��

ε // ?>=<89:;
ε

OO

?>=<89:; 1 // ?>=<89:;
ε

oo

ε

OO

2

Remark Using the algorithm of Theorem 5.2.1 will lead to large machines
for even quite small regular expressions. A better option is not to break up
the regular expression into its component letters but instead into regular ex-
pressions which can easily be converted into automata. For example, suppose
we want to construct an ε-machine recognising a∗(ba∗)∗. We can think of this
as the product of a∗ and (ba∗)∗. The latter is the Kleene star of ba∗. It is
easy to construct machines recognising a∗ and ba∗ respectively. The machine
for ba∗ can easily be converted into one recognising (ba∗)∗, and this latter
machine can be combined with the one for a∗ to yield a machine recognising



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 93

our original regular expression. The decomposition of the regular expression
we used can be regarded as a tree:

a∗(ba∗)∗

wwwwwwwww

JJJJJJJJJ

a∗ (ba∗)∗

ba∗

and this tree can be used as a guide in contructing the associated automaton.
We shall now show how to construct a regular expression from an au-

tomaton. To do so, it is convenient to introduce a yet more general class of
automata than even the ε-automata.

A generalised automaton over the input alphabet A is the same as an
ε-automaton except that we allow the transitions to be labelled by arbitrary
regular expressions over A. The language L(A) recognised by a generalised
automaton A is defined as follows. Let x ∈ A∗. Then x ∈ L(A) if there
is a path in A, which begins at one of the initial states, ends at one of
the terminal states, and whose labels are, in order, the regular expressions
r1, . . . , rn, such that x can be factorised x = x1 . . . xn in such a way that each
xi ∈ L(ri). The definition of L(A) generalises the definition of the language
recognised by an ε-automaton. To use generalised automata to find the regu-
lar expression describing the language recognised by an automaton, we shall
need the following. A normalised (generalised) automaton is a generalised
automaton with exactly one initial state, which I shall always label α, and
exactly one terminal state, which I shall always label ω; in addition, there
are no transitions into α nor any transitions out of ω. A normalised gen-
eralised automaton is therefore a substantial generalisation of a normalised
ε-automaton used in the proof of Theorem 5.2.1. Every generalised automa-
ton can easily be normalised in such a way that the language is not changed:
adjoin a new initial state with transitions labelled ε pointing at the old initial
states, and adjoin a new terminal state with transitions from each of the old
terminal states labelled ε pointing at the new terminal state.

Terminology For the remainder of this section, ‘normalised automaton’ will
always mean a ‘normalised generalised automaton’.



94 CHAPTER 5. KLEENE’S THEOREM

The simplest kinds of normalised automata are those with exactly one
initial state, one terminal state, and at most one transition:

// α?>=<89:; r // ω?>=<89:;/.-,()*+
We call such a normalised automaton trivial. If a trivial automaton has
a transition, then the label of that transition will be a regular expression,
and this regular expression obviously describes the language accepted by the
automaton; if there is no transition then the language is ∅.

We shall describe an algorithm that converts a normalised automaton
into a trivial normalised automaton recognising the same language. The
algorithm depends on three operations, which may be carried out on a nor-
malised automaton that we now describe.

(T) transition elimination Given any two states p and q, where p = q is
not excluded, all the transitions from p to q can be replaced by a single
transition by applying the following rule:

p?>=<89:; r //

s
// q?>=<89:; ⇒ p?>=<89:; r+s // q?>=<89:;

In the case where p = q, this rule takes the following form:

p?>=<89:;BC@A
r

GF //
GFEDsBC
oo ⇒ p?>=<89:; BCED r+sGF��

(L) loop elimination Let q be a state that is neither α nor ω, and suppose
this state has a single loop labelled r. If there are no transitions entering
this state or no transitions leaving this state, then q can be erased
together with any transitions from it or any transitions to it. We may
therefore restrict our attention to the case where q has at least one
transition entering it and at least one transition leaving it. In this
case, the loop at q can be erased, and for each transition leaving q
labelled by s we change the label to r∗s. This operation is summarised
in the diagram below:



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 95

q1GFED@ABC

qGFED@ABCGF@Ar BCOO
s1

??�������

sn ��?
??

??
??

qnGFED@ABC

⇒

q1GFED@ABC

qGFED@ABC
r∗s1

??�������

r∗sn ��?
??

??
??

qnGFED@ABC
(S) state elimination Let q be a state that is neither α nor ω and that has

no loop. If there are no transitions entering this state or no transitions
leaving this state, then q can be erased together with any transitions
from it or any transitions to it. We may therefore restrict our attention
to the case where q has at least one transition entering it and at least
one transition leaving it. In this case, we do the following: for each
transition p′

r−→ q and for each transition q
s−→ p′′, both of which I

shall call ‘old,’ we construct a ‘new’ transition p′
rs−→ p′′. At the end

of this process the state q and all the old transitions are erased. This
operation is summarised in the diagram below:

p′1
GFED@ABC

r1

��?
??

??
??

p′′1
GFED@ABC

qGFED@ABC
s1

??�������

sn ��?
??

??
??

p′m
GFED@ABC

rm

??�������

p′′n
GFED@ABC

⇒

p′1
GFED@ABC r1s1 //

r1sn

��?
??

??
??

??
??

??
??

?
p′′1
GFED@ABC

p′m
GFED@ABC

rmsn

//
rms1

??����������������

p′′n
GFED@ABC

Lemma 5.2.3 Let A be a normalised automaton, and let B be the nor-
malised automaton that results when one of the rules (T), (L) or (S) is ap-
plied. Then L(B) = L(A).

Proof We simply check each case in turn. This is left as an exercise. 2

These operations are the basis of the following algorithm.



96 CHAPTER 5. KLEENE’S THEOREM

Algorithm 5.2.4 (Automaton to regular expression) The input to this
algorithm is a normalised automaton A. The output is a regular expression
r such that L(r) = L(A).

Repeat the following procedure until there are only two states and at
most one transition between them, at which point the algorithm terminates.

Procedure: repeatedly apply rule (T) if necessary until the resulting au-
tomaton has the property that between each pair of states there is at most
one transition; now repeatedly apply rule (L) if necessary to eliminate all
loops; finally, apply rule (S) to eliminate a state.

When the algorithm has terminated, a regular expression describing the
language recognised by the original machine is given by the label of the unique
transition, if there is a transition, otherwise the language is the empty set.
2

Example 5.2.5 Consider the automaton:

// αGFED@ABC ε // oGFED@ABC b //

a

��

pGFED@ABC

qGFED@ABC
a

??�������

b

��

rGFED@ABC
b

OO

ε // ω?>=<89:;/.-,()*+
The rules (T) and (L) are superfluous here, so we shall go straight to rule
(S) applied to the state q. The pattern of incoming and outgoing transitions
for this state is

oGFED@ABC
a

��?
??

??
??

pGFED@ABC

qGFED@ABC
a

??�������

b ��?
??

??
??

rGFED@ABC b

??�������

rGFED@ABC
If we now apply rule (S), we obtain the following pattern of transitions:



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 97

oGFED@ABC a2
//

ab

��?
??

??
??

??
??

??
??

?
pGFED@ABC

rGFED@ABC
b2

//

ba

??����������������

rGFED@ABC
The resulting generalised automaton is therefore

// αGFED@ABC ε // oGFED@ABC a2
//

b
//

ab

��

pGFED@ABC

rGFED@ABCGF@Ab2 BC OO

ba

??����������������
ε // ωGFED@ABC?>=<89:;

If we apply the rules (T) and (L) to this generalised automaton we get

// αGFED@ABC ε // oGFED@ABC a2+b //

ab

��

pGFED@ABC

rGFED@ABC

(b2)∗ba

??����������������

(b2)∗
// ωGFED@ABC?>=<89:;

We can now eliminate the vertices p, r and o in turn. As a result, we end up
with the following trivial generalised automaton:

// αGFED@ABC ab(b2)∗ // ωGFED@ABC?>=<89:;
Thus the language recognised by our original machine is ab(b2)∗. 2

We now prove that Algorithm 5.2.4 is correct.



98 CHAPTER 5. KLEENE’S THEOREM

Theorem 5.2.6 Algorithm 5.2.4 computes a regular expression for the lan-
guage recognised by a normalised automaton.

Proof Lemma 5.2.3 tells us that the three operations we apply do not change
the language, so we need only prove that the algorithm will always lead to
a trivial normalised automaton. Each application of the procedure reduces
the number of states by one. In addition, none of the three rules can ever
lead to a loop appearing on α or ω. The result is now clear. 2

Combining Theorems 5.2.1 and 5.2.6, we have proved the following result.

Theorem 5.2.7 (Kleene) A language is recognisable iff it is regular. 2

Exercises 5.2

1. For each of the regular expressions below, construct an ε-automaton
recognising the corresponding language. The alphabet in question is
A = {a, b}.

(i) a∗(ba∗)∗.

(ii) (a∗b + b+a)∗.

(iii) (a2 + b)∗(a + b2)∗.

2. Convert each of the following automata A into a normalised automa-
ton and then use Algorithm 5.2.4 to find a regular expression describing
L(A).

(i)

// s0GFED@ABCEDGFb@A
// a // s1GFED@ABCBC@A

a

GF// b // s2GFED@ABC?>=<89:; EDBC a,b@AOO

(ii)

// sGFED@ABC@AGFa ED�� b //
tGFED@ABC?>=<89:; BCED b
GF��

a
oo



5.2. AN ALGORITHMIC PROOF OF KLEENE’S THEOREM 99

(iii)

// s0GFED@ABC a //

b

��

s1GFED@ABC?>=<89:; BCED a,bGF��

s2GFED@ABC a,b

??�������

(iv)

// s0GFED@ABC?>=<89:; a //

b

��

s1GFED@ABC
b

oo

a
����

��
��

�

s2GFED@ABC EDBC a,b@AOO
(v)

// 1GFED@ABC a // 2GFED@ABC?>=<89:; a // 3GFED@ABC a // 4GFED@ABC?>=<89:; a // 5GFED@ABC a // 6GFED@ABC?>=<89:;
a

��

7GFED@ABC
a

__???????

3. Prove Lemma 5.2.3.

4. There is an alternative way of proving that the language recognised
by an automaton is regular. The questions below give the essential
ingredients. First a definition. Let C and R be languages over an
alphabet A. A language equation is an equation of the form X =
CX + R. Our goal is to find all solutions to this equation.

(i) Prove that C∗R is a solution.

(ii) Prove that if Y is any solution then C∗R ⊆ Y .

(iii) Prove that if ε /∈ C then C∗R is the unique solution. [Hint: let W
be any solution and suppose that W \C∗R is not empty. Let z be
a string of smallest length in this set. Show that this set contains
a still smaller string yielding a contradiction].



100 CHAPTER 5. KLEENE’S THEOREM

5.3 Summary of Chapter 5

• Regular expressions: Let A be an alphabet. A regular expression is
constructed from the symbols ε, ∅ and a, where a ∈ A, together with
the symbols +, ·, and ∗ and left and right brackets according to the
following rules: ε, ∅, and a are regular expressions, and if s and t are
regular expressions so are (s + t), (s · t) and (s∗).

• Regular languages: Every regular expression r describes a language
L(r). A language is regular if it can be described by a regular expres-
sion.

• Kleene’s theorem: A language is recognisable if and only if it is regular.



Chapter 6

Minimal automata

We have so far only been concerned with the question of whether or not a
language can be recognised by a finite automaton. If it can be, then we have
not been interested in how efficiently the job can be done. In this chapter, we
shall show that for each recognisable language there is a smallest complete
deterministic automaton that recognises it. By ‘smallest’ we simply mean
one having the smallest number of states. As we shall prove later in this
section, two deterministic automata that recognise the same language each
having the smallest possible number of states must be essentially the same;
in mathematical terms, they are isomorphic. This means that with each
recognisable language we can associate an automaton that is unique up to
isomorphism: this is known as the minimal automaton of the language.

6.1 Partitions and equivalence relations

A collection of individuals can be divided into disjoint groups in many dif-
ferent ways. This simple idea is the main mathematical tool needed in this
chapter and forms one of the most important ideas in algebra.

Let X be a set. A partition of X is a set P of subsets of X satisfying the
following three conditions:

(P1) Each element of P is a non-empty subset of X.

(P2) Distinct elements of P are disjoint.

(P3) Every element X belongs to at least one (and therefore by (P2) exactly
one) element of P .

101



102 CHAPTER 6. MINIMAL AUTOMATA

The elements of P are called the blocks of the partition.

Examples 6.1.1 Some examples of partitions.

(1) Let

X = {0, 1, . . . , 9}
and

P = {{0, 1, 2}, {3, 4}, {5, 6, 7, 8}, {9}}.
Then P is a partition of X containing four blocks.

(2) The set N of natural numbers can be partitioned into two blocks: the set
of even numbers, and the set of odd numbers.

(3) The set N can be partitioned into three blocks: those numbers divisible
by 3, those numbers that leave remainder 1 when divided by 3, and
those numbers that leave remainder 2 when divided by 3.

(4) The set R
2 can be partitioned into infinitely many blocks: consider the

set of all lines la of the form y = x + a where a is any real number.
Each point of R

2 lies on exactly one line of the form la.

2

A partition is defined in terms of the set X and the set of blocks P .
However, there is an alternative way of presenting this information that is
often useful. With each partition P on a set X, we can define a binary
relation ∼P on X as follows:

x ∼P y ⇔ x and y belong to the same block of P .

The proof of the following is left as an exercise.

Lemma 6.1.2 The relation ∼P is reflexive, symmetric, and transitive. 2

Any relation on a set that is reflexive, symmetric, and transitive is called
an equivalence relation. Thus from each partition we can construct an equiv-
alence relation. In fact, the converse is also true.



6.1. PARTITIONS AND EQUIVALENCE RELATIONS 103

Lemma 6.1.3 Let ∼ be an equivalence relation on the set X. For each
x ∈ X put

[x] = {y ∈ X: x ∼ y}
and

X/∼= {[x]: x ∈ X}.
Then X/∼ is a partition of X.

Proof For each x ∈ X, we have that x ∼ x, because ∼ is reflexive. Thus
(P1) and (P3) hold. Suppose that [x]∩ [y] 6= ∅. Let z ∈ [x]∩ [y]. Then x ∼ z
and y ∼ z. By symmetry z ∼ y, and so by transitivity x ∼ y. It follows that
[x] = [y]. Hence (P2) holds. 2

The set
[x] = {y ∈ X: x ∼ y}

is called the ∼-equivalence class containing x.
Lemma 6.1.2 tells us how to construct equivalence relations from parti-

tions, and Lemma 6.1.3 tells us how to construct partitions from equivalence
relations. The following theorem tells us what happens when we perform
these two constructions one after the other.

Theorem 6.1.4 Let X be a non-empty set.

(i) Let P be a partition on X. Then the partition associated with the equiv-
alence relation ∼P is P .

(ii) Let ∼ be an equivalence relation on X. Then the equivalence relation
associated with the partition X/∼ is ∼.

Proof (i) Let P be a partition on X. By Lemma 6.1.2, we can define the
equivalence relation ∼P . Let [x] be a ∼P -equivalence class. Then y ∈ [x] iff
x ∼P y iff x and y are in the same block of P . Thus each ∼P -equivalence
class is a block of P . Now let B ∈ P be a block of P and let u ∈ B. Then
v ∈ B iff u ∼P v iff v ∈ [u]. Thus B = [u]. It follows that each block of P
is a ∼P -equivalence class and vice versa. We have shown that P and X/∼P

are the same.
(ii) Let ∼ be an equivalence relation on X. By Lemma 6.1.3, we can

define a partition X/∼ on X. Let ≡ be the equivalence relation defined on
X by the partition X/∼ according to Lemma 6.1.2. We have that x ≡ y iff



104 CHAPTER 6. MINIMAL AUTOMATA

y ∈ [x] iff x ∼ y. Thus ∼ and ≡ are the same relation. 2

Notation Let ρ be an equivalence relation on a set X. Then the ρ-equivalence
class containing x is often denoted ρ(x).

Theorem 6.1.4 tells us that partitions on X and equivalence relations
on X are two ways of looking at the same thing. In applications, it is the
partition itself that is interesting, but checking that we have a partition is
usually done indirectly by checking that a relation is an equivalence relation.

The following example introduces some notation that we shall use through-
out this chapter.

Example 6.1.5 Let X = {1, 2, 3, 4} and let P = {{2}, {1, 3}, {4}}. Then
P is a partition on X. The equivalence relation ∼ associated with P can be
described by a set of ordered pairs, and these can be conveniently described
by a table. The table has rows and columns labelled by the elements of X.
Thus each square can be located by means of its co-ordinates: (a, b) means
the square in row a and column b. The square (a, b) is marked with

√
if

a ∼ b and marked with × otherwise. Strictly speaking we need only mark
the squares corresponding to pairs which are ∼-related, but I shall use both
symbols.

1 2 3 4
1
√ × √ ×

2 × √ × ×
3
√ × √ ×

4 × × × √

In fact, this table contains redundant information because if a ∼ b then
b ∼ a. It follows that the squares beneath the leading diagonal need not be
marked. Thus we obtain

1 2 3 4
1
√ × √ ×

2 ∗ √ × ×
3 ∗ ∗ √ ×
4 ∗ ∗ ∗ √

We call this the table form of the equivalence relation. 2



6.2. THE INDISTINGUISHABILITY RELATION 105

Exercises 6.1

1. List all equivalence relations on the set X = {1, 2, 3, 4} in:

(i) Partition form.

(ii) As sets of ordered pairs.

(iii) In table form.

2. Prove Lemma 6.1.2.

6.2 The indistinguishability relation

In Section 3.1, we described one way of removing unnecessary states from an
automaton: the construction of the accessible part of A, denoted Aa, from
A. In this section, we shall describe a different way of reducing the number
of states in an automaton without changing the language it recognises. On a
point of notation: if T is the set of terminal states of a finite automaton, then
T ′ is the set of non-terminal states. Let A = (S,A, s0, δ, T ) be an automaton.
Two states s, t ∈ S are said to be distinguishable if there exists x ∈ A∗ such
that

(s · x, t · x) ∈ (T × T ′) ∪ (T ′ × T ).

In other words, for some string x, the states s·x and t·x are not both terminal
or both non-terminal. The states s and t are said to be indistinguishable if
they are not distinguishable. This means that for each x ∈ A∗ we have that

s · x ∈ T ⇔ t · x ∈ T.

Define the relation ≃A on the set of states S by

s ≃A t⇔ s and t are indistinguishable.

We call ≃A the indistinguishability relation. We shall often write ≃ rather
than ≃A when the machine A is clear. The relation ≃ will be our main
tool in constructing the minimal automaton of a recognisable language. The
following result is left as an exercise.

Lemma 6.2.1 Let A be an automaton. Then the relation ≃A is an equiva-
lence relation on the set of states of A. 2



106 CHAPTER 6. MINIMAL AUTOMATA

The next lemma will be useful in the proof of Theorem 6.2.3.

Lemma 6.2.2 In an automaton A with set of terminal states T the following
hold with respect to the indistinguishability relation ≃.

(i) If s ≃ t, then s is terminal if and only if t is terminal.

(ii) If s ≃ t, then s · a ≃ t · a for each letter a.

Proof (i) Suppose that s is terminal and s ≃ t. Then s terminal means
that s · ε ∈ T . But then t · ε ∈ T , and so t ∈ T . The converse is proved
similarly.

(ii) Let x ∈ A∗. Then (s · a) · x ∈ T precisely when s · (ax) ∈ T . But
s ≃ s′ and so

s · (ax) ∈ T ⇔ s′ · (ax) ∈ T.

Hence (s·a)·x ∈ T precisely when (s′ ·a)·x ∈ T . It follows that s·a ≃ s′ ·a.2

Let s ∈ S be a state in an automaton A. Then the ≃-equivalence class
containing s will be denoted by [s] or sometimes by [s]A. The set of ≃-
equivalence classes will be denoted by S/≃.

It can happen, of course, that each pair of states in an automaton is
distinguishable. This is an important case that we single out for a definition.
An automaton A is said to be reduced if the relation ≃A is equality.

Theorem 6.2.3 (Reduction of an automaton) Let A = (S,A, s0, δ, T )
be a finite automaton. Then there is an automaton A/≃, which is reduced
and recognises L(A). In addition, if A is accessible then A/≃ is accessible.

Proof Define the machine A/≃ as follows:

• The set of states is S/≃.

• The input alphabet is A.

• The initial state is [s0].

• The set of terminal states is {[s]: s ∈ T}.

• The transition function is defined by [s] · a = [s · a] for each a ∈ A.



6.2. THE INDISTINGUISHABILITY RELATION 107

The transition function is well-defined by Lemma 6.2.2(ii). We have there-
fore proved that A/≃ is a well-defined automaton. A simple induction ar-
gument shows that [s] · x = [s · x] for each x ∈ A∗.

We can now prove that A/ ≃ is reduced. Let [s] and [t] be a pair of
indistinguishable states in A/≃. By definition, [s] · x is terminal if and only
if [t] · x is terminal for each x ∈ A∗. Thus [s · x] is terminal if and only if
[t ·x] is terminal. However, by Lemma 6.2.2, [q] is terminal in A/≃ precisely
when q is terminal in A. It follows that

s · x ∈ T ⇔ t · x ∈ T.

But this simply means that s and t are indistinguishable in A. Hence [s] = [t],
and so A/≃ is reduced.

Next we prove that L(A/ ≃) = L(A). By definition, x ∈ L(A/ ≃)
precisely when [s0] · x is terminal. This means that [s0 · x] is terminal and so
s0 · x ∈ T by Lemma 6.2.2. Thus

x ∈ L(A/≃)⇔ x ∈ L(A).

Hence L(A/≃) = L(A).
Finally, we prove that if A is accessible then A/≃ is accessible. Let [s]

be a state in A/≃. Because A is accessible there exists x ∈ A∗ such that
s0 · x = s. Thus [s] = [s0 · x] = [s0] · x. It follows that A/≃ is accessible. 2

We denote the automaton A/≃ by Ar and call it A-reduced. For each
automaton A, the machine Aar = (Aa)r is both accessible and reduced.

Before we describe an algorithm for constructing Ar, we give an example.

Example 6.2.4 Consider the automaton A below:

// s0GFED@ABC 1 //

0
��

s1GFED@ABC?>=<89:;
0,1

��
s3GFED@ABC?>=<89:; 0,1 //

s2GFED@ABC?>=<89:;
1

OO

0
oo

We shall calculate ≃ first, and then A/≃ using Theorem 6.2.3. To compute
≃ we shall need to locate the elements of

{s0, s1, s2, s3} × {s0, s1, s2, s3},



108 CHAPTER 6. MINIMAL AUTOMATA

which belong to ≃. To do this, we shall use the table we described in Exam-
ple 6.1.5:

s0 s1 s2 s3

s0

√

s1 ∗
√

s2 ∗ ∗ √

s3 ∗ ∗ ∗ √

Because each pair of states in (T ×T ′)∪ (T ′×T ) is distinguishable we mark
the squares (s0, s1), (s0, s2) and (s0, s3) with a ×:

s0 s1 s2 s3

s0

√ × × ×
s1 ∗

√

s2 ∗ ∗ √

s3 ∗ ∗ ∗ √

To fill in the remaining squares, observe that in this case once the machine
reaches the set of terminal states it never leaves it. Thus we obtain the
following:

s0 s1 s2 s3

s0

√ × × ×
s1 ∗

√ √ √

s2 ∗ ∗ √ √

s3 ∗ ∗ ∗ √

From the table we see that the ≃-equivalence classes are {s0} and {s1, s2, s3}.
We now use the construction described in the proof of Theorem 6.2.3 to
construct A/≃. This is just

// [s0]WVUTPQRS 0,1 // [s1]WVUTPQRSONMLHIJK BCED 0,1
GF��

2

We shall now describe an algorithm for constructing Ar.

Remark Before launching into the details of Algorithm 6.2.5 it may be help-
ful to give a bird’s eye view of it. The algorithm in fact determines which



6.2. THE INDISTINGUISHABILITY RELATION 109

pairs are distinguishable by marking them with a cross. When the algorithm
terminates all the uncrossed pairs are precisely the indistinguishable pairs of
states which are then marked with ticks. The reason the algorithm works
in this way is that it is easier to decide when a pair of states is distinguish-
able than showing when a pair of states is indistinguishable. The algorithm
begins by first crossing the ‘obvious’ distinguishable pairs of states: namely,
those where one state is non-terminal and the other terminal. What makes
the body of the algorithm work is the observation that if (s · a, t · a) is dis-
tinguishable for some letter a then so too is (s, t).

Algorithm 6.2.5 (Reduction of an automaton) Let A be an automa-
ton with set of states S = {s1, . . . , sn}, initial state s1, terminal states T ,
and input alphabet A. The algorithm calculates the equivalence relation ≃.
To do so we shall use two tables: table 1 will display the indistinguishabil-
ity relation at the end of the algorithm, and table 2 will be used for side
calculations.

(1) Initialisation: draw up a table (table 1) with rows and columns labelled
by the elements of S. Mark main diagonal squares with

√
, and squares

below the main diagonal with ∗. Mark with × all squares above the
main diagonal in (T×T ′)∪(T ′×T ). Squares above the diagonal, which
contain neither × nor

√
, are said to be ‘empty.’

(2) Main procedure: construct an auxiliary table (table 2) as follows: work-
ing from left to right and top to bottom of table 1, label each row of
table 2 with the pair (s, t) whenever the (s, t)-entry in table 1 is empty;
the columns are labelled by the elements of A.

Now work from top to bottom of table 2: for each pair (s, t) labelling
a row calculate the states (s · a, t · a) for each a ∈ A and enter them in
table 2:

• If any of these pairs of states or (t · a, s · a) labels a square marked
with a × in table 1 then mark (s, t) with a × in table 1.

• If all the pairs (s · a, t · a) are diagonal, mark (s, t) with a
√

in
table 1.

• Otherwise do not mark (s, t) and move to the next row.



110 CHAPTER 6. MINIMAL AUTOMATA

(3) Finishing off: work from left to right and top to bottom of table 1. For
each empty square (s, t) use table 2 to find all the squares (s · a, t · a):

• If any of these squares in table 1 contains ×, then mark (s, t) with
a × in table 1 and move to the next empty square.

• If all of these squares in table 1 contain
√

, then mark (s, t) with√
in table 1 and move to the next empty square.

• In all other cases move to the next empty square.

When an iteration of this procedure is completed we say that a ‘pass’
of table 1 has been completed. This procedure is repeated until a pass
occurs in which no new squares are marked with ×, or until there are
no empty squares. At this point, all empty squares are marked with

√
and the algorithm terminates.

2

Before we prove that the algorithm works, we give an example.

Example 6.2.6 Consider the automaton A below:

// 1?>=<89:; a //

b

��

2?>=<89:; b //

a

��

3?>=<89:;/.-,()*+ a //

b

��

4?>=<89:;/.-,()*+GFED
a,bBC
oo

5?>=<89:;
a

??�������

@ABC
b

EDoo 6?>=<89:;
b

??�������

@ABC
a

EDoo 7?>=<89:;/.-,()*+
a,b

??�������

We shall use the algorithm to compute ≃. The first step is to draw up the
initialised table 1:

1 2 3 4 5 6 7
1
√ × × ×

2 ∗ √ × × ×
3 ∗ ∗ √ × ×
4 ∗ ∗ ∗ √ × ×
5 ∗ ∗ ∗ ∗ √ ×
6 ∗ ∗ ∗ ∗ ∗ √ ×
7 ∗ ∗ ∗ ∗ ∗ ∗ √



6.2. THE INDISTINGUISHABILITY RELATION 111

We now construct table 2 and at the same time modify table 1:

a b
(1, 2) (2, 6) (5, 3)
(1, 5) (2, 2) (5, 5)
(1, 6) (2, 6) (5, 3)
(2, 5) (6, 2) (3, 5)
(2, 6) (6, 6) (3, 3)
(3, 4) (4, 4) (7, 4)
(3, 7) (4, 4) (7, 4)
(4, 7) (4, 4) (4, 4)
(5, 6) (2, 6) (5, 3)

As a result the squares,

(1, 2), (1, 6), (2, 5), (5, 6),

are all marked with × in table 1, whereas the squares,

(1, 5), (2, 6), (4, 7),

are marked with
√

. The squares,

(3, 4), (3, 7),

are left unchanged. Table 1 now has the following form:

1 2 3 4 5 6 7
1
√ × × × √ × ×

2 ∗ √ × × × √ ×
3 ∗ ∗ √ × ×
4 ∗ ∗ ∗ √ × × √

5 ∗ ∗ ∗ ∗ √ × ×
6 ∗ ∗ ∗ ∗ ∗ √ ×
7 ∗ ∗ ∗ ∗ ∗ ∗ √

To finish off, we check each empty square (s, t) in table 1 in turn to see if
the corresponding entries in table 2 should cause us to mark this square.
When we do this we find that no squares are changed. Thus the algorithm



112 CHAPTER 6. MINIMAL AUTOMATA

terminates. We now place
√

’s in all blank squares. We arrive at the following
table:

1 2 3 4 5 6 7
1
√ × × × √ × ×

2 ∗ √ × × × √ ×
3 ∗ ∗ √ √ × × √

4 ∗ ∗ ∗ √ × × √

5 ∗ ∗ ∗ ∗ √ × ×
6 ∗ ∗ ∗ ∗ ∗ √ ×
7 ∗ ∗ ∗ ∗ ∗ ∗ √

We can read off the ≃-equivalence classes from this table. They are {1, 5},
{2, 6} and {3, 4, 7}. The automaton A/≃ is therefore

// [1]WVUTPQRS a //EDBC b@AOO [2]WVUTPQRS b //EDBC a@AOO [3]WVUTPQRSONMLHIJK EDBC a,b@AOO
2

We now justify that this algorithm works.

Theorem 6.2.7 Algorithm 6.2.5 is correct

Proof Let A = (S,A, s0, δ, T ) be an automaton. By definition, the pair of
states (s, t) is distinguishable if and only if there is a string x ∈ A∗ such that

(s · x, t · x) ∈ (T × T ′) ∪ (T ′ × T );

I shall say that x distinguishes s and t. Those states distinguished by the
empty string are precisely the elements of

(T × T ′) ∪ (T ′ × T ).

Suppose that (s, t) is distinguished by a string y of length n > 0. Put y = ax
where a ∈ A and x ∈ A∗. Then (s · a, t · a) is distinguished by the string x
of length n− 1. It follows that the pair (s, t) is distinguishable if and only if
there is a sequence of pairs of states,

(s0, t0), (s1, t1), . . . , (sn, tn),



6.2. THE INDISTINGUISHABILITY RELATION 113

such that (s, t) = (s0, t0), and (sn, tn) ∈ (T × T ′) ∪ (T ′ × T ) and

(si, ti) = (si−1 · ai, ti−1 · ai)

for 1 ≤ i ≤ n for some ai ∈ A. The algorithm marks the pairs of states in
(T × T ′) ∪ (T ′ × T ) with a cross, and marks (s, t) with a cross whenever the
square (s · a, t · a) (or the square (t · a, s · a)) is marked with a cross for some
a ∈ A. It is now clear that if the algorithm marks a square (s, t) with a cross,
then s and t are distinguishable.

It therefore remains to prove that if a pair of states is distinguishable,
then the corresponding square (or the appropriate one above the diagonal)
is marked with a cross by the algorithm. We shall prove this by induction on
the length of the strings that distinguish the pair. If the pair can be distin-
guished by the empty string then the corresponding square will be marked
with a cross during initialisation. Suppose now that the square correspond-
ing to any pair of states that can be distinguished by a string of length n is
marked with a cross by the algorithm. Let (s, t) be a pair of states that can
be distinguished by a string y of length n+1. Let y = ax where a ∈ A and x
has length n. Then the pair (s · a, t · a) can be distinguished by the string x,
which has length n. By the induction hypothesis, the square (s · a, t · a) will
be marked with a cross by the algorithm. But then the square (s, t) will be
marked with a cross either during the main procedure or whilst finishing off.2

Exercises 6.2

1. Let A be a finite automaton. Prove Lemma 6.2.1 that ≃A is an equiv-
alence relation on the set of states of A.

2. Complete the proof of Theorem 6.2.3, by showing that [s] · x = [s · x]
for each x ∈ A∗.

3. For each of the automata A below find Ar. In each case, we present
the automaton by means of its transition table turned on its side. This
helps in the calculations.

(i)
1 2 3 4 5 6 7
2 2 5 6 5 6 5 a
4 3 3 4 7 7 7 b

The initial state is 1 and the terminal states are 3, 5, 6, 7.



114 CHAPTER 6. MINIMAL AUTOMATA

(ii)
0 1 2 3 4 5
1 3 4 5 5 2 a
2 4 3 0 0 2 b

The initial state is 0 and the terminal states are 0 and 5.

(iii)
1 2 3 4 5 6 7 8
2 7 1 3 8 3 7 7 a
6 3 3 7 6 7 5 3 b

The initial state is 1 and the terminal state is 3.

4. Let A = (S,A, i, δ, {t}) be an automaton with exactly one terminal
state, and the property that for each s ∈ S there is a string x ∈ A∗

such that s ·x = t. Suppose that for each a ∈ A the function τa, defined
by τa maps s to s · a for each s ∈ S, is a bijection. Prove that A is
reduced.

6.3 Isomorphisms of automata

We begin with an example. Consider the following two automata, which we
denote by A and B, respectively:

// s0GFED@ABCEDGFa@A
//

b //
s1GFED@ABC?>=<89:;

a
oo EDBC a@AOO

and

// q0GFED@ABCEDGFa@A
//

b //
q1GFED@ABC?>=<89:;

a
oo EDBC a@AOO

These automata are different because the labels on the states are different.
But in every other respect, A and B are ‘essentially the same.’ In this
case, it was easy to see that the two automata were essentially the same,
but if they each had more states then it would have been much harder. In
order to realise the main goal of this chapter, we need to have a precise
mathematical definition of when two automata are essentially the same, one



6.3. ISOMORPHISMS OF AUTOMATA 115

that we can check in a systematic way however large the automata involved.
The definition below provides the answer to this question.

Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ, G) be two automata with
the same input alphabet A. An isomorphism θ from A to B, denoted by
θ: A→ B, is a function θ: S → Q satisfying the following four conditions:

(IM1) The function θ is bijective.

(IM2) θ(s0) = q0.

(IM3) s ∈ F ⇔ θ(s) ∈ G.

(IM4) θ(δ(s, a)) = γ(θ(s), a) for each s ∈ S and a ∈ A.

If we use our usual notation for the transition function in an automaton,
then (IM4) would be written as

θ(s · a) = θ(s) · a.

If there is an isomorphism from A to B we say that A is isomorphic
to B, denoted by A ≡ B. Isomorphic automata may differ in their state
labelling and may look different when drawn as directed graphs, but by
suitable relabelling, and by moving states and bending transitions, they can
be made to look identical.

Lemma 6.3.1 Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ, G) be automata,
and let θ: A→ B be an isomorphism. Then

θ(δ∗(s, x)) = γ∗(θ(s), x)

for each s ∈ S and x ∈ A∗. In particular, L(A) = L(B).

Proof Using our usual notation for the extended state transition function,
the lemma states that

θ(s · x) = θ(s) · x.

We prove the first assertion by induction on the length of x. Base step: we
check the result holds when x = ε:

θ(s · ε) = θ(s) whereas θ(s) · ε = θ(s),



116 CHAPTER 6. MINIMAL AUTOMATA

as required. Induction hypothesis: assume the result holds for all strings of
length at most n. Let u be a string of length n + 1. Then u = ax where
a ∈ A and x has length n. Now

θ(s · u) = θ(s · (ax)) = θ((s · a) · x).

Put s′ = s · a. Then

θ((s · a) · x) = θ(s′ · x) = θ(s′) · x

by the induction hypothesis. However,

θ(s′) = θ(s · a) = θ(s) · a

by (IM4). Hence

θ(s · u) = (θ(s) · a) · x = θ(s) · (ax) = θ(s) · u,

as required.
We now prove that L(A) = L(B). By definition

x ∈ L(A)⇔ s0 · x ∈ F.

By (IM3),
s0 · x ∈ F ⇔ θ(s0 · x) ∈ G.

By our result above,
θ(s0 · x) = θ(s0) · x.

By (IM2), we have that θ(s0) = q0, and so

s0 · x ∈ F ⇔ q0 · x ∈ G.

Hence x ∈ L(A) if and only if x ∈ L(B) and so L(A) = L(B) as required.2

Exercises 6.3

1. Let A, B and C be automata. Prove the following:

(i) A ≡ A; each automaton is isomorphic to itself.

(ii) If A ≡ B then B ≡ A; if A is isomorphic to B then B is isomorphic
to A.



6.4. THE MINIMAL AUTOMATON 117

(iii) If A ≡ B and B ≡ C then A ≡ C; if A is isomorphic to B, and
B is isomorphic to C then A is isomorphic to C.

2. Let θ: A → B be an isomorphism from A = (S,A, s0, δ, F ) to B =
(Q,A, q0, γ, G). Prove that:

(i) The number of states of A is the same as the number of states of
B.

(ii) The number of terminal states of A is the same as the number of
terminal states of B.

(iii) A is accessible if and only if B is accessible.

(iv) A is reduced if and only if B is reduced.

3. Let A be an accessible automaton. Show that if θ, φ: A→ B are both
isomorphisms then θ = φ.

6.4 The minimal automaton

We now come to a fundamental definition. Let L be a recognisable lan-
guage. A complete deterministic automaton A is said to be minimal (for
L) if L(A) = L and if B is any complete deterministic automaton such that
L(B) = L, then the number of states of A is less than or equal to the num-
ber of states of B. Minimal automata for a language L certainly exist. The
problem is to find a way of constructing them. Our first result narrows down
the search.

Lemma 6.4.1 Let L be a recognisable language. If A is minimal for L, then
A is both accessible and reduced.

Proof If A is not accessible, then Aa has fewer states than A and L(Aa) = L.
But this contradicts the definition of A. It follows that A is accessible. A
similar argument shows that A is reduced. 2

If A is minimal for L, then A must be both reduced and accessible. The
next result tells us that any reduced accessible automaton recognising L is
in fact minimal.

Theorem 6.4.2 Let L be a recognisable language.



118 CHAPTER 6. MINIMAL AUTOMATA

(i) Any two reduced accessible automata recognising L are isomorphic.

(ii) Any reduced accessible automaton recognising L is a minimal automaton
for L.

(iii) Any two minimal automata for L are isomorphic.

Proof (i) Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ, G) be two reduced
accessible automata such that L(A) = L(B). We prove that A is isomorphic
to B. To do this, we have to conjure up an isomorphism from A to B. To
keep the notation simple, we shall use the ‘dot’ notation for both δ∗ and γ∗.
We shall use the following observation:

s0 · x ∈ F ⇔ q0 · x ∈ G, (6.1)

which follows from the fact that L(A) = L(B).
Let s ∈ S. Because A is accessible there exists x ∈ A∗ such that s = s0 ·x.

Define
θ(s) = q0 · x.

To show that θ is a well-defined injective function we have to prove that

s0 · x = s0 · y ⇔ q0 · x = q0 · y.

Now B is reduced, so it will be enough to prove that

s0 · x ≃A s0 · y ⇔ q0 · x ≃B q0 · y.

Now s0 · x ≃A s0 · y iff for all w ∈ A∗:

(s0 · x) · w ∈ F ⇔ (s0 · y) · w ∈ F.

This is equivalent to

s0 · (xw) ∈ F ⇔ s0 · (yw) ∈ F.

By (6.1) above this is equivalent to

q0 · (xw) ∈ G⇔ q0 · (yw) ∈ G.

Finally, we deduce that q0 · x ≃B q0 · y. We have therefore proved that θ is
well-defined injective function.



6.4. THE MINIMAL AUTOMATON 119

To show that θ is surjective, let q be an arbitrary state in B. By as-
sumption, B is accessible and so there exists x ∈ A∗ such that q = q0 · x.
Put s = s0 · x in A. Then by definition θ(s) = q, and so θ is surjective as
required. We have therefore proved that (IM1) holds.

That (IM2) holds is immediate because s0 = s0 ·ε. Thus θ(s0) = q0 ·ε = q0

as required.
(IM3) holds by accessibility and (6.1).
(IM4) holds: for each s ∈ S and a ∈ A we have to prove that θ(s · a) =

θ(s) · a. Let s = s0 · x for some x ∈ A∗. Then θ(s) = q0 · x. Thus

θ(s) · a = (q0 · x) · a = q0 · (xa).

On the other hand,

s · a = (s0 · x) · a = s0 · (xa).

Hence by definition,

θ(s · a) = q0 · (xa) = θ(s) · a

and the result follows.
(ii) Let A be a reduced and accessible automaton recognising L. We

prove that A is minimal for L. Let B be any automaton recognising L.
Then L = L(Bar) and the number of states in Bar is less than or equal to
the number of states in B. But by (i), A and Bar are isomorphic and so,
in particular, have the same number of states. It follows that the number of
states in A is less than or equal to the number of states in B. Thus A is a
minimal automaton for L.

(iii) By Lemma 6.4.1, a minimal automaton for L is accessible and re-
duced. By (i), any two accessible and reduced automata recognising L are
isomorphic. Thus any two minimal automata for a language are isomorphic.2

We can paraphrase the above theorem in the following way: the minimal
automaton for a recognisable language is unique up to isomorphism. Be-
cause of this we shall often refer to the minimal automaton of a recognisable
language. The number of states in a minimal automaton for a recognisable
language L is called the rank of the language L. This can be regarded as a
measure of the complexity of L.

Observe that if A is an automaton, then Aar and Ara are both reduced
and accessible and recognise L(A). So in principle, we could calculate either



120 CHAPTER 6. MINIMAL AUTOMATA

of these two automata to find the mimimal automaton. However, it makes
sense to compute Aar = (Aa)r rather than Ara. This is because calculating
the reduction of an automaton is more labour intensive than calculating the
accessible part. By calculating Aa first, we will in general reduce the num-
ber of states and so decrease the amount of work needed in the subsequent
reduction.

Algorithm 6.4.3 (Minimal automaton) This algorithm computes the min-
imal automaton for a recognisable language L from any complete determinis-
tic automaton A recognising L. Calculate Aa, the accessible part of A, using
Algorithm 3.1.4. Next calculate the reduction of Aa, using Algorithm 6.2.5.
The automaton Aar that results is the minimal automaton for L. 2

Exercises 6.4
1. Find the rank of each subset of (0 + 1)2. You should first list all the

subsets; construct deterministic automata that recognise each subset;
and finally, convert your automata to minimal automata.

2. Let n ≥ 2. Define

Ln = {x ∈ (a + b)∗: |x | ≡ 0 (mod n)}.
Prove that the rank of Ln is n.

3. Determine the rank of (0 + 1)∗1(0 + 1)n−1 for n ≥ 1. This question
refers back to Exercises 3.2, Question 3.

4. Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ, G) be complete determin-
istic automata. A homomorphism θ from A to B is a function θ: S → Q
such that θ(s0) = q0, θ(s · a) = θ(s) · a, where a is an input letter, and
if s ∈ F then θ(s) ∈ G.

(i) Prove by induction that θ(s · x) = θ(s) · x for all strings x.

(ii) Prove that if there is a homomorphism from A to B then L(A) ⊆
L(B).

(iii) Prove that if A is accessible then there is at most one homomor-
phism from A to B.

(iv) Prove that a bijective homomorphism is an isomorphism.

(v) Prove that if A is accessible, B is reduced and L(A) = L(B) then
there is a homomorphism from A to B.



6.5. THE METHOD OF QUOTIENTS 121

6.5 The method of quotients

In Section 6.4, we showed that if L = L(A) then the minimal automaton
for L is Aar. In this section, we shall construct the minimal automaton of
L directly from a regular expression for L. Our method is based on a new
language operation.

Let L be a language over the alphabet A and let u ∈ A∗. Define the left
quotient of L by u to be

u−1L = {v ∈ A∗: uv ∈ L}.

The notation is intended to help you remember the meaning:

v ∈ u−1L⇔ uv ∈ uu−1L⇔ uv ∈ L,

because we think of u as being cancelled by u−1.

Terminology In this section, I shall deal only with left quotients, so when
I write ‘quotient,’ I shall always mean ‘left quotient.’

Examples 6.5.1 Let A be an alphabet, a ∈ A and L a language over A.

(1) a−1a = ε. Remember that a−1a means a−1{a}. By definition u ∈ a−1{a}
iff au ∈ {a}. Thus au = a and so u = ε. It follows that a−1a = ε.

(2) a−1ε = ∅. Let u ∈ a−1{ε}. Then au ∈ {ε} and so au = ε. However there
is no string u which satisfies this condition. Consequently a−1ε = ∅.

(3) a−1∅ = ∅. This is proved by a similar argument to that in (2) above.

(4) a−1b = ∅ if b ∈ A and b 6= a. Let u ∈ a−1{b}. Then au = b. There are
no solutions to this equation and so a−1b = ∅.

(5) ε−1L = L. By definition u ∈ ε−1L iff εu ∈ L. This just means that
u ∈ L. Hence ε−1L = L.

2



122 CHAPTER 6. MINIMAL AUTOMATA

The quotients of a regular language, as we shall show, can be used to
construct the minimal automaton of the language. So we shall need to de-
velop ways of computing quotients efficiently. To do this, the following simple
definition will be invaluable. Let L be any language. Define

δ(L) =

{

∅ if ε /∈ L
{ε} if ε ∈ L.

Thus δ(L) simply records the absence or presence of ε in the language. The
following lemma provides the tools necessary for computing δ for any lan-
guage given by means of a regular expression. The proofs are straightforward
and left as exercises.

Lemma 6.5.2 Let A be an alphabet and L,M ⊆ A∗.

(i) δ(a) = ∅ for each a ∈ A.

(ii) δ(∅) = ∅.

(iii) δ(ε) = ε.

(iv) δ(LM) = δ(L) ∩ δ(M).

(v) δ(L + M) = δ(L) + δ(M).

(vi) δ(L∗) = ε.

2

We now show how to compute quotients.

Proposition 6.5.3 Let u, v ∈ A∗ and a ∈ A.

(i) If L = ∅ or ε then u−1(LM) = L(u−1M).

(ii) If {Li: i ∈ I} is any family of languages then u−1(
∑

i∈I Li) =
∑

i∈I u−1Li.

(iii) a−1(LM) = (a−1L)M + δ(L)(a−1M).

(iv) a−1L∗ = (a−1L)L∗.

(v) (uv)−1L = v−1(u−1L).



6.5. THE METHOD OF QUOTIENTS 123

Proof (i) Straightforward.
(ii) By definition v ∈ u−1(

∑

i∈I Li) iff uv ∈ ∑i∈I Li. But uv ∈ ∑i∈I Li

implies uv ∈ Li for some i ∈ I. Thus v ∈ u−1Li for some i ∈ I. It follows
that v ∈∑i∈I u−1Li. The converse is proved similarly.

(iii) Write L = δ(L) + L0 where L0 = L \ ε. Then

a−1(LM) = a−1(δ(L)M + L0M) = δ(L)(a−1M) + a−1(L0M),

using (i) and (ii). It is therefore enough to prove the result for the case where
L does not contain ε. We have to prove that

a−1(LM) = (a−1L)M

if ε /∈ L. Let x ∈ a−1(LM). Then ax = lm where l ∈ L and m ∈ M and
l 6= ε, by assumption. Thus l = al′ for some l′. It follows that x = l′m. Also
l = al′ ∈ L iff l′ ∈ a−1L. Thus x ∈ (a−1L)M . Conversely, if x ∈ (a−1L)M ,
then x = l′m for some l′ ∈ a−1L and m ∈ M . But then al′ ∈ L and so
ax = (al′)m ∈ LM .

(iv) By definition x ∈ a−1L∗ iff ax ∈ L∗. Thus ax = u1 . . . un for some
non-empty ui ∈ L. Now u1 = au for some u. Hence x = u(u2 . . . un),
where u ∈ a−1L. Thus x ∈ (a−1L)L∗. Conversely, if x ∈ (a−1L)L∗ then
x = u(u2 . . . un) for some u ∈ a−1L. It follows that au ∈ L and so ax ∈ L∗.
Hence x ∈ a−1L∗.

(v) By definition x ∈ (uv)−1L iff (uv)x ∈ L iff u(vx) ∈ L iff vx ∈ u−1L
iff x ∈ v−1(u−1L). Hence (uv)−1L = v−1(u−1L). 2

It is important to note that in parts (iii) and (iv) above we have derived
expressions for quotients by means of a single letter only.

Examples 6.5.4 In the examples below, A = {a, b}.

(1) a−1A = {ε}. We can write A = a + b. Thus

a−1A = a−1(a + b) = a−1a + a−1b = ε + ∅ = ε.

(2) a−1A∗ = A∗ = b−1A∗. This is straightforward.

(3) Let x be a non-empty string that does not begin with a. Then a−1(xA∗) =
∅. This is because y ∈ a−1(xA∗) iff ay ∈ xA∗. But x does not begin
with a. So there is no solution for y.



124 CHAPTER 6. MINIMAL AUTOMATA

(4) a−1(axA∗) = xA∗. This is because y ∈ a−1(axA∗) iff ay ∈ axA∗. This
can only be true if y ∈ xA∗.

(5) Calculate a−1(A∗abaA∗). We can regard A∗abaA∗ as a product of two lan-
guages in a number or ways, any one of which can be chosen. We choose
to regard it as A∗ followed by abaA∗. Thus by Proposition 6.5.3(iii),
we have that

a−1(A∗abaA∗) = (a−1A∗)(abaA∗) + δ(A∗)a−1(abaA∗).

We have already shown that a−1A∗ = A∗ and that a−1(abaA∗) = baA∗.
Thus

a−1(A∗abaA∗) = A∗abaA∗ + baA∗.

2

We now prove two important results.

Proposition 6.5.5

(i) The left quotient of a recognisable language is recognisable.

(ii) A recognisable language has only a finite number of distinct left quotients.

Proof (i) Let L be a recognisable language. Then L = L(A) where A =
(S,A, i, δ, T ) is an automaton. We prove first that every left quotient of L
is recognisable. Let u ∈ A∗ and put i′ = i · u. Put Au = (S,A, i′, δ, T ). We
claim that L(Au) = u−1L. Let x ∈ u−1L. Then ux ∈ L. Thus i · (ux) ∈ T
and so (i · u) · x ∈ T . Hence i′ · x ∈ T giving x ∈ Au. We have therefore
proved that u−1L ⊆ L(Au). To prove the reverse inclusion let x ∈ L(Au).
Then i′ · x ∈ T and so (i · u) · x ∈ T . This means that i · (ux) ∈ T and so
ux ∈ L(A) = L. Hence x ∈ u−1L, as required.

(ii) To finish off, we have to prove that there are only finitely many left
quotients. The set of left quotients of L is just the set of languages L(As),
where As = (S,A, s, δ, T ) and s ∈ S, and there are clearly only a finite num-
ber of these. 2

We can also prove the converse of the above result.

Proposition 6.5.6 Let L be a language with only a finite number of distinct
left quotients. Then L is recognisable.



6.5. THE METHOD OF QUOTIENTS 125

Proof We shall construct a finite automaton AL = (S,A, i, δ, T ) such that
L(A) = L. Define

• S = {u−1L: u ∈ A∗}, which is finite by assumption.

• i = L = ε−1L.

• T = {u−1L: ε ∈ u−1L}; those quotients of L which contain ε.

• δ(u−1L, a) = a−1(u−1L) = (ua)−1L, using Proposition 6.5.3(v).

By construction, AL is a complete deterministic automaton. To calculate
L(AL) we need to determine δ∗. We claim that

δ∗(u−1L, x) = (ux)−1L

for each x ∈ A∗. We leave the proof of this as an exercise.
By definition, w ∈ L(AL) iff δ∗(i, w) ∈ T iff δ∗(L,w) ∈ T . From the form

of δ∗ and the definition of T this is equivalent to ε ∈ w−1L, which means
precisely that w ∈ L. Hence L(AL) = L. 2

Combining Propositions 6.5.5 and 6.5.6, we now have the following new
characterisation of recognisable languages.

Theorem 6.5.7 A language is recognisable if and only if it has a finite num-
ber of distinct left quotients. 2

The automaton AL constructed from a recognisable language L in Propo-
sition 6.5.6 is the best we can hope for.

Theorem 6.5.8 Let L be a recognisable language. Then AL is the minimal
automaton of L.

Proof By Theorem 6.4.2, it is enough to show that AL is reduced and
accessible. The proof that AL is accessible is almost immediate: let u−1L
be an arbitrary state in AL. Then δ∗(L, u) = u−1L and L is the initial
state and so AL is accessible. To prove that AL is reduced, suppose that
u−1L ≃ v−1L. Then by definition, for each x ∈ A∗ we have that

δ∗(u−1L, x) ∈ T ⇔ δ∗(v−1L, x) ∈ T.



126 CHAPTER 6. MINIMAL AUTOMATA

This is equivalent to saying that for each x ∈ A∗, we have that

ε ∈ (ux)−1L⇔ ε ∈ (vx)−1L.

In other words, x ∈ u−1L⇔ x ∈ v−1L. Hence u−1L = v−1L. 2

We now describe an algorithm that takes as input a regular expression
for a language L and produces as output the minimal automaton AL. This
algorithm has one drawback, which we explain at the end of this section.

Algorithm 6.5.9 (Method of Quotients) Given a regular expression for
the recognisable language L, this algorithm constructs the minimal automa-
ton for L. We denote the regular expression describing L also by L. We
shall construct the transition tree of AL, the automaton defined in Proposi-
tion 6.5.6, directly from L. It is then an easy matter to construct AL which
is the minimal automaton by Theorem 6.5.8.

(1) The root of the tree is L. For each a ∈ A calculate a−1L using Propo-
sition 6.5.3. Join L to a−1L by an arrow labelled a. Any repetitions
should be closed with a ×.

(2) Subsequently, for each non-closed vertex M calculate a−1M for each
a ∈ A using Proposition 6.5.3. Close repetitions using ×.

(3) The algorithm terminates when all leaves are closed. Mark with double
circles all labels containing ε. The tree is now the transition tree of
AL, and so AL can be constructed in the usual way.

2

Example 6.5.10 Let A = {a, b} and L = (a + b)∗aba(a + b)∗. We find AL

using the algorithm above.

(1) ε−1L = L = L0. By Examples 6.5.1(5).

(2) a−1L0 = L + baA∗ = L1. By Examples 6.5.4(5).

(3) b−1L0 = L = L0, closed. By Proposition 6.5.3(iii) and Examples 6.5.4(3),
and Examples 6.5.4(2).

(4) a−1L1 = L1, closed. By Proposition 6.5.3(ii) and Examples 6.5.4(3).



6.5. THE METHOD OF QUOTIENTS 127

(5) b−1L1 = L + aA∗ = L2. By Proposition 6.5.3(ii) and Examples 6.5.4(3)
(adapted).

(6) a−1L2 = a−1L + A∗ = A∗ = L3. By Proposition 6.5.3 and Exam-
ples 6.5.4(4).

(7) b−1L2 = L = L0, closed. By Proposition 6.5.4 and Examples 6.5.4(3).

(8) a−1L3 = A∗ = L3, closed. By Examples 6.5.4(2).

(9) b−1L3 = A∗ = L3, closed. By Examples 6.5.4(2).

The states of AL are therefore

{L0, L1, L2, L3},
with L0 as the initial state. The only quotient of L that contains ε is L3 and
so this is the terminal state. The minimal automaton for L is therefore as
follows:

// L0
?>=<89:;EDGFb@A
// a // L1

?>=<89:;@ABC
a
EDoo

b //
L2
?>=<89:; a //

BC@A
b

OO
L3
GFED@ABC?>=<89:;GFED

a,b

BC
oo

2

We conclude this section by discussing the one drawback of the Method of
Quotients. For the Method of Quotients to work, we have to recognise when
two quotients are equal as in step (5) in Example 6.5.10 above. However, we
saw in Section 5.1 that checking whether two regular expressions are equal
is not always easy. If we do not recognise that two quotients are equal, then
the machine we obtain will no longer be minimal. Here is another example.

Example 6.5.11 Consider the regular expression,

r = a∗(aa)∗.

We calculate a−1r = a∗(aa)∗ + a(aa)∗. This looks different from r. However,

a∗(aa)∗ = (ε + a + a2 + . . .)(aa)∗,

and so a(aa)∗ ⊆ a∗(aa)∗. It follows that a−1r = r. 2



128 CHAPTER 6. MINIMAL AUTOMATA

Two questions are raised by this problem:

Question 1 Could Algorithm 6.5.9 fail to terminate?

Question 2 If it does terminate, what can we say about the automaton
described by the transition tree?

The answer to Question 1 is ‘yes’ but, as long as we do even a small
amount of checking, we can guarantee that the algorithm will always ter-
minate. The answer to Question 2 is that if we fail to recognise when two
quotients are the same, then we shall obtain an accessible deterministic au-
tomaton but not necessarily one that is reduced. It follows that once we have
applied the Method of Quotients we should calculate the indistinguishability
relation of the resulting automaton as a check.

Exercises 6.5

1. Prove Lemma 6.5.2.

2. Complete the proof of Proposition 6.5.6.

3. Let A = {a, b}. For each of the languages below find the minimal
automaton using the Method of Quotients.

(i) ab.

(ii) (a + b)∗a.

(iii) (ab)∗.

(iv) (ab + ba)∗.

(v) (a + b)∗a2(a + b)∗.

(vi) aa∗bb∗.

(vii) a(b2 + ab)∗b∗.

(viii) (a + b)∗aab(a + b)∗.

4. Calculate the quotients of {anbn: n ≥ 0}.



6.6. SUMMARY OF CHAPTER 6 129

6.6 Summary of Chapter 6

• Reduction of an automaton: From each deterministic automaton A we
can construct an automaton Ar with the property that each pair of
states in A is distinguishable and L(Ar) = L(A). The automata Ara

and Aar are isomorphic and both are reduced and accessible.

• Minimal automaton: Each recognisable language L is recognised by
an automaton that has the smallest number of states amongst all the
automata recognising L: this is the minimal automaton for L. Such
an automaton must be reduced and accessible, and any reduced and
accessible automaton must be minimal for the language it recognises.
Any two minimal automata for a language are isomorphic.

• Method of Quotients: The minimal automaton corresponding to the
language described by a regular expression r can be constructed directly
from r by calculating the quotients of r.





Solutions to exercises

S.1 Introduction to finite automata

S.1.1 Alphabets and strings

1. The set of prefixes is

ε, a, aa, aar, aard, aardv, aardva, aardvar, aardvark

The set of suffixes is

ε, k, rk, ark, vark, dvark, rdvark, ardvark, aardvark

The set of factors is as follows:

length 0

ε

length 1

a, r, d, v, k

length 2

aa, ar, rd, dv, va, rk

length 3

aar, ard, rdv, dva, var, ark

131



132 SOLUTIONS TO EXERCISES

length 4

aard, ardv, rdva, dvar, vark

length 5

aardv, ardva, rdvar, dvark

length 6

aardva, ardvar, rdvark

length 7

aardvar, ardvark

lenth 8

aardvark

Three substrings that are not factors

adk, rv, aardark

2. The tree is

aaa aab aba abb baa bab bba bbb

aa

HHHHHH

ab

GGGGG

ba

wwwww
bb

xxxxx

a

SSSSSSSSSSSS
b

kkkkkkkkkkkk

ε

DDDDD
zzzzz

The strings of length at most three arranged according to the tree order
are

ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb



S.1. INTRODUCTION TO FINITE AUTOMATA 133

3. This simply follows from the definition of the equality of two strings:
if x = y then the first letter in x is the same as the first letter in y,
the second letter in x is the same as the second letter in y, and so on.
Similarly, the last letter in x is equal to the last letter in y, the second
from last letter in x is equal to the second from last letter in y, and
so on. More formally, from xz = yz we get |x| + |z| = |y| + |z| and
so |x| = |y|. If |x| = 0 then x = y = ε. Otherwise |x| = n > 0. By
assumption (xz)i = (yz)i for all i and so in particular for those i such
that 1 ≤ i ≤ n. It follows that x = y, as required.

4. I shall prove (i) since the proof of (iii) is similar, and the proof of (ii)
is immediate. We are given that xy = uv and |x| > |u|. It follows that
u is a prefix of x. Thus there is a string w such that x = uw. We may
therefore write xy = (uw)y and so uwy = uv. We cancel the u on both
sides on the left to get wy = v. Hence x = uw and v = wy.

5. We have to prove that (i)⇒(ii) and (ii)⇒(i). The proof of the second
implication is easy, so I shall prove the first. We are given that uv = vu
and we have to prove that u and v are positive powers of one and the
same string. Before giving the formal proof, let me explain how it was
found; we take our cue from Question 4. Observe that if |u| = |v| then
u = v and the result is immediate. Suppose that |u| < |v|. Then there
is a string w such that v = uw and v = wu. It follows that uw = wu
where |u| + |w| < |u| + |v|. Suppose that u = zp and w = zq for some
string z and positive integers p and q. Then u = zp and v = zp+q.
This suggests that we should try to prove the result by induction on
n = |u| + |v|. When n = 2 then the result is immediate since ab = ba
implies that a = b. This is our base case. Assume that for all n such
that 2 ≤ n ≤ k we have that uv = vu, where k = |u| + |v|, implies
that u and v are positive powers of one and the same string. This is
our induction hypothesis. Let n = k + 1 and let uv = vu be such that
k + 1 = |u|+ |v|. We have to prove that u and v are powers of one and
the same string. We use Question 4 and the induction hypothesis. If
|u| = |v| then the result is immediate. If |u| < |v| then our argument
above can now be applied. The case |v| < |u| follows from the above
case since uv = vu implies that vu = uv.

6. Let S be a semigroup with identities e and f . Then ef = f since e is
an identity but also ef = e since f is an indenity. It follows that e = f ,



134 SOLUTIONS TO EXERCISES

as claimed.

7. (i) This is a semigroup because composition of functions is associative.
(Can you prove this?)

(ii) This is a semigroup because multiplication of matrices is associa-
tive. (Can you prove this?)

(iii) This is not a semigroup: for example, (i× i)× j 6= i× (i× j).

S.1.2 Languages

I’ve not set any specific questions on this section, but I may set some in the
homeworks.

S.1.3 Language operations

1. (i) LM = {ab, ba}{aa, ab} = {abaa, abab, baaa, baab}.
(ii) LN = {ab, ba}{a, b} = {aba, abb, baa, bab}.
(iii) LM + LN = {abaa, abab, baaa, baab, aba, abb, baa, bab}.
(iv) M + N = {aa, ab}+ {a, b} = {aa, ab, a, b}.
(v) L(M + N) = {ab, ba}{aa, ab, a, b} which is equal to

{abaa, abab, aba, abb, baaa, baab, baa, bab}.

(vi) (LM)N = {abaa, abab, baaa, baab}{a, b} which is equal to

{abaaa, abaab, ababa, ababb, baaaa, baaab, baaba, baabb}.

(vii) MN = {aa, ab}{a, b} = {aaa, aab, aba, abb}.
(viii) L(MN) = {ab, ba}{aaa, aab, aba, abb} which is equal to

{abaaa, abaab, ababa, ababb, baaaa, baaab, baaba, baabb}.

2. We have that
a + b∗ ⊆ a∗ + b∗ ⊆ (a∗ + b∗)∗.

The language a + b∗ consists of the letter a or arbitrary strings of b’s.
The language a∗ + b∗ consists of arbitrary strings of a’s or arbitrary



S.1. INTRODUCTION TO FINITE AUTOMATA 135

strings of b’s. The language (a∗ + b∗)∗ consists of those strings that
can be factorised into products of strings each of which is an arbitrary
sequence of a’s or an arbitrary sequence of b’s. It follows that (a∗ +
b∗)∗ = (a + b)∗.

3. All strings are over the alphabet {a, b}.

(i) An arbitrary number of a’s followed by an arbitrary number of b’s.

(ii) The empty string or strings that begin with a, end with b, and
where a’s and b’s alternate.

(iii) Strings of odd length.

(iv) Strings that begin with a double letter.

(v) Strings that contain at least one double letter as a factor.

(vi) Strings that end with a double letter.

(vii) Strings that contain as factors both aa and bb and where there is
an occurrence of aa before an occurrence of bb.

4. If either x or y is the empty string then clearly xy ∈ L∗. We may there-
fore suppose that neither x nor y is the empty string. By definition,
x = x1 . . . xm for some xi ∈ L and y = y1 . . . yn for some yj ∈ L. It
follows that xy can be written as a product of elements of L. Thus
xy ∈ L∗, as required.

5. (i) We have to show that (L∗)∗ = L∗. Clearly L∗ ⊆ (L∗)∗. To prove
the reverse inclusion, observe that an element of (L∗)∗ can be fac-
torised as a product of elements of L∗. But a product of elements
of L∗ is again in L∗.

(ii) We have to show that L∗L∗ = L∗. The product of two elements in
L∗ is again in L∗ so that L∗L∗ ⊆ L∗. On the other hand, because
ε ∈ L∗ we have that L∗ = L∗ε ⊆ L∗L∗.

(iii) We have to show that L∗L + ε = L∗ = LL∗ + ε. I shall prove
that L∗L + ε = L∗, since the other case is similar. It is clear
that L∗L + ε ⊆ L∗. To prove the reverse inclusion, observe that a
non-empty element x of L∗ can be written x = uv where u ∈ L∗

and u ∈ L.



136 SOLUTIONS TO EXERCISES

We are finally asked to determine if it is true that LL∗ = L∗. By (iii)
above, we have that L∗ = LL∗ + ε. Thus LL∗ = L∗ iff LL∗ = LL∗ + ε
iff ε ∈ LL∗. But ε ∈ L∗ always, and so LL∗ = L∗ iff ε ∈ L.

6. For (i) and (ii), use the general method of showing that two sets X and
Y are equal: show that X ⊆ Y and Y ⊆ X.

(i) Let x ∈ L(MN). Then x = uv where u ∈ L and v ∈ MN . But
v ∈ MN implies that v = wz where w ∈ M and z ∈ N . Thus
x = uv = u(wz) = (uw)z by associativity of concatenation. But
uw ∈ LM and so x ∈ (LM)N . It follows that we have proved
that L(MN) ⊆ (LM)N . The reverse inclusion is proved similarly.

(ii) I shall prove that L(M + N) = LM + LN , the proof of the other
case is similar. Let x ∈ L(M + N). Then x = uv where u ∈ L
and v ∈ M + N . It follows that either v ∈ M or v ∈ N . Thus
uv ∈ LM or uv ∈ LN . Hence uv ∈ LM + LN . We have proved
that L(M + N) ⊆ LM + LN . The reverse inclusion is proved
similarly.

(iii) I shall prove that NL ⊆ NM , the proof of the other case is similar.
Let x ∈ NL. Then x = uv where u ∈ N and v ∈ L. But L ⊆ M ,
and so v ∈M . Hence uv ∈ NM and so x ∈ NM , as required.

(iv) I shall prove that L
∑∞

i=1 Mi =
∑∞

i=1 LMi. Let x ∈ L
∑∞

i=1 Mi.
Then x = lm where l ∈ L and m ∈ Mi for some i. It follows im-
mediately that x ∈∑∞

i=1 LMi. Suppose now that x ∈∑∞
i=1 LMi.

Then x = lm where l ∈ L and m ∈ Mi for some i. Clearly
m ∈∑∞

i=1 Mi and so x ∈ L
∑∞

i=1 Mi.

7. It is easy to check that L(M∩N) ⊆ LM∩LN . To show that the reverse
inclusion does not hold, let L = {ε, a}, M = {a, b}, and N = {aa, bb}.
Then L(M ∩N) = ∅, whereas LM ∩ LN = {aa}.

8. Prove first that the left-hand side is contained in the right-hand side.
A string in (ab)+ clearly begins with a and ends with b. In addition, it
is clear that neither aa nor bb can occur as a factor. Thus the left-hand
side is contained in the right-hand side. Now consider a string in the
right-hand side. It must begin with an a and end with a b and neither
aa nor bb can be a factor. The result is now clear.



S.1. INTRODUCTION TO FINITE AUTOMATA 137

9. The intersection uA∗ ∩ vA∗ is non-empty iff ux = vy for some x, y ∈
A∗. Now ux = vy implies that either u is a prefix of v or vice versa.
Conversely, suppose that one of u and v is a prefix of the other. Without
loss of generality, we suppose that u is a prefix of v. Then v = uw for
some string w. It follows that ux = vy for some x, y ∈ A∗ iff u is a
prefix of v or vice versa. Hence uA∗ ∩ vA∗ is non-empty iff u is a prefix
of v or vice versa.

Suppose that u is a prefix of v. Then v = uw for some w. Thus
vA∗ = uwA∗ ⊆ uA∗. Hence uA∗ ∩ vA∗ = vA∗ if u is a prefix of v.

10. We have to determine when L+ = L∗. Suppose ε ∈ L. Then

L+ = L + L2 + . . . = ε + L + L2 + . . . = L∗.

Conversely, if L+ = L∗ then ε ∈ L+ and so ε ∈ L. Hence L+ = L∗ iff
ε ∈ L.

11. In Question 4 above we proved that L∗ is a submonoid containing L.
Let T be any submonoid of A∗ containing L. It is a submonoid so by
assumption ε ∈ T . Since L ⊆ T and T is closed under concatenation
we must have that L2 ⊆ T . But L,L2 ⊆ T implies that L3 = LL2 ⊆ T .
In general, Ln ⊆ T . We have show that {ε}, L, L2, L3, . . . ⊆ T . Thus
the union of these languages is a subset of T . But this union is just L∗,
and we have proved our claim.

12. P(A∗) is a monoid with respect to both + and ·.
If z and z′ are both zeros then zz′ = z′ and zz′ = z and so z = z′, as
claimed.

With respect to concatenation of languages P(A∗) is a monoid with
zero where the zero is the empty set.

S.1.4 Finite automata: motivation

1. It is convenient to describe the automaton by means of a table: the
left-hand column lists all the states; if we look at the row labelled by
the state q then the entry in row q and column 0 tells us the next state,
when the machine is in state q and 0 is input, likewise the entry in row
q and column 1 tells us the next state, when the machine is in state q



138 SOLUTIONS TO EXERCISES

and 1 is input. The state indicated by the arrow → is the initial state,
and the state indicated by the arrow ← is the terminal state.

0 1
000 000 001

← 001 010 011
→ 010 100 101

100 000 001
011 110 111
101 010 011
110 100 101
111 110 111

The corresponding diagram is therefore as follows:

// ?>=<89:; 1 //
EDGF0@A
// ?>=<89:; 1 //

0
��

?>=<89:; 1 //

0

��?
??

??
??

?>=<89:; BCED 1GF��
0
��?>=<89:;

0

OO
1

??������� ?>=<89:;
0

oo
1 // ?>=<89:;
0

oo

1

OO

?>=<89:;/.-,()*+
1

oo

BC@A
0

OO

S.1.5 Finite automata and their languages

1. (i)

// s0GFED@ABC a //
EDGFb@A
// s1GFED@ABC

a
����

��
��

�

BCED b
GF��

s2GFED@ABC?>=<89:;
a

OO

GF@Ab BCOO
(ii)

// s0GFED@ABC?>=<89:; a,b //
s1?>=<89:;

a
oo

b

��
s2?>=<89:;/.-,()*+

a

__???????
b

OO



S.1. INTRODUCTION TO FINITE AUTOMATA 139

(iii)

s2?>=<89:;/.-,()*+ a //
EDGFb@A
//

__

c
��?

??
??

??
s3?>=<89:;/.-,()*+ a,c //

b

��

s1?>=<89:;boo

a,c
����

��
��

�

// s0?>=<89:;/.-,()*+
a

??�������

EDBC b@AOO
2. (i) This is ok — the set of terminal states can be empty.

(ii) This is ok — the initial state can be terminal.

(iii) This is ok — all states can be terminal.

(iv) Not ok — two arrows emerge from the left-hand state with the
same label a.

(v) This is ok — an automaton does not have to be in one piece.

(vi) Not ok — there is no transition emerging from the right-hand state
labelled a.

3. This is the required table

ε a b a2 ab ba b2 a3 a2b aba ab2 ba2 bab b2a b3

1 1 2 1 2 3 2 1 2 3 4 1 2 3 2 1
2 2 2 3 2 3 4 1 2 3 4 1 4 4 2 1
3 3 4 1 4 4 2 1 4 4 4 4 2 3 2 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4. (i) a + a3 + a5(a3)∗.

(ii) a(a + b)∗ + b(a + b)(a + b)∗.

(iii) (ab)∗.

(iv) b∗aa∗b(a + b)∗.

5. If x is a binary string then #(x) is the (decimal) value of x. Observe
that

#(x0) = 2#(x), and #(x1) = 2#(x) + 1.

The idea is that the automaton we construct will have states 0, 1, 2
which tells us whether the value of the string we have read so far is



140 SOLUTIONS TO EXERCISES

either divisible by 3 or leaves remainder 1 or 2. Thus for each possibility
#(x) = 3n, 3n + 1, 3n + 2 we calculate #(x0) and #(x1) as multiples
of 3 plus a remainder.

6. (i) This is a problem in which the answer is either a ‘yes’ or a ‘no’.

(ii) The inputs are encoded over some finite alphabet. The encoded
inputs that yield ‘yes’ form the language.

(iii) A decision problem is decidable if there is an algorithm for deciding
membership or not of the associated language.

(iv) We encode simple graphs in the usual way. The binary strings
encoding the problem are binary strings of length n2 which consist
entirely of 1’s except in positions 1, n + 1, 2n + 2, . . . , (n − 1)n +
(n− 1). The membership of this language is clearly decidable.

(v) Yes. The automaton recognising the language is itself an algo-
rithm deciding membership.

S.2 Recognisable languages

S.2.1 Designing automata

1. It is easy to check that 1+0 is accepted by A. To show that not every
string accepted by A is of this form, consider the string 101. It is
clearly accepted by A but is not in 1+0. The language accepted by
A is 1+01∗. To see why, observe that the bottom left-hand state once
entered can never be escaped.

2. We have to show that every string in L(A) has an odd number of
1’s. There are two ‘outward paths’ that start at the initial state and
finish at the terminal state: one starts at the initial state and uses the
bottom left-hand state, and the other is a direct transition; in both
cases, the symbol 1 occurs once. There are two ‘return paths’ that
start at the terminal state and end at the initial state: one starts at the
terminal state and uses the top right-hand state and the other is a direct
transition; in both cases, the symbol 1 occurs once. Any path from the
initial state to the terminal state must involve a path that is composed
of a number of outward paths and one less the number of return paths.
It follows that any successful path must contain an odd number of 1’s.



S.2. RECOGNISABLE LANGUAGES 141

However, the string 10 has an odd number of 1’s but is not accepted.
The language recognised by A is (1 + 0+1)((1 + 0+1)(1 + 0+1))∗. To
see why, observe that 1 + 0+1 labels outward paths and return paths.

3. Let L be the language consisting of an odd number of 1’s. The string
1 ∈ L but 1 /∈ L(A). The string 110 ∈ L(A) but 110 /∈ L. The
language recognised by A is ((0 + 10∗1)(0 + 1))∗. To see why, think
about paths from the initial state to the bottom right-hand state, and
paths from that state back to the initial state.

S.2.2 Automata over one letter alphabets

1. (i) a + a3 + a5(a3)∗.

(ii) ε + a3 + a4 + a5(a3)∗.

(iii) a3 + a5(a3)∗.

2. In each case, you have to ‘normalise’ the description of the language
before you can construct an automaton.

(i) a2 +a5 +(a2 +a3)(a4)∗ = a2 +a5 +a2(a4)∗ +a3(a4)∗. Now a2(a4)∗ =
a2 +a6 +a10 +a14 + . . . and a3(a4)∗ = a3 +a7 +a11 + . . .. If we add
all terms together we get a2 + a3 + a5 + (a6 + a6(a4) + . . .) + (a7 +
a7(a4)+. . .) which is equal to a2+a3+a5+(a6+a7)(a4)∗. It is now
easy to draw a fryingpan automaton recognising this language.

(ii) The language is equal to (a2 + a4)(a2)∗.

(iii) The language is equal to a2 + a4 + a5 + (a7 + a8)(a3)∗.

3. Let L = X + Y (ap)∗. We shall prove that L is recognisable by con-
structing an automaton to accept L. This can be done easily if two
conditions are met: first, if the length of the longest string in X is
strictly less than the length of the shortest string in Y , and, second,
if the length of the longest string in Y is strictly less than p plus the
length of the shortest string in Y . If this is the case then the handle
has length the shortest string in Y and the pan, of length p is attached
to the last state in the handle. The terminal states in the handle are
marked using the strings in X and the states in the pan marked using
the strings in Y .



142 SOLUTIONS TO EXERCISES

Consider, now, the case where these two conditions don’t hold. For
each string y ∈ Y all the strings in y(ap)∗ = y + y(ap) + y(ap)2 + . . .
belong to the language. Choose an r so that all the strings in Y (ap)r

have length strictly greater than the length of the longest string in X.
We have that

X + Y (ap)∗ = X + Y [(ε + ap + . . . + (ap)r−1) + (ap)r(ap)∗]

which is equal to

X + Y (ε + ap + . . . + (ap)r−1) + Y (ap)r(ap)∗.

Put

X ′ = X + Y (ε + ap + . . . + (ap)r−1)

and

Y ′ = Y (ap)r.

Then

L = X ′ + Y ′(ap)∗

and every string in X ′ has length strictly less than every string in Y ′.
Next suppose that the length between the shortest string in Y ′ and the
longest string in Y ′ is greater than p. Let y ∈ Y ′ be the shortest string
in Y ′. All the strings y(ap)∗ are in the language. Choose s such that
y(ap)s has length within p of the length of the longest string in Y ′. Put
the strings y, y(ap), . . . , y(ap)r−1 in the handle and replace y in Y ′ by
y(ap)s. This process can be continued so that in the end the difference
in length between the longest string in Y ′ and the shortest string in Y ′

is strictly less than p. We are then back to the case considered in the
first paragraph and so the proof is complete.

4. Observe that (a3)∗ + (a4)∗ = (ε + a3 + a4 + a6 + a8 + a9)(a12)∗. Thus
a2((a3)∗+(a4)∗) = (a2+a5+a8+a9+a19+a11)(a12)∗. We can incorporate
the language a3(a3)∗ by adding in a3, a6, a9, a12. To incorporate a(a4)∗

we add in a, a5. Thus the language is

(a + a2 + a3 + a5 + a6 + a8 + a9 + a10 + a11 + a12)(a12)∗.

5. The longest string not in the language is a7.



S.2. RECOGNISABLE LANGUAGES 143

6. The length of the longest string not in the language is pq − (p + q).

7. A language is 1-recognisable iff it is of the form X + Y (ap)∗ where
X and Y are finite sets and we can assume that the length of the
shortest string in Y is longer than the length of the longest string in
X. Let n be the length of the shortest string in Y . Then for all m ≥ n
we have that am is in the language iff am+p is in the language, and
so the corresponding subset of N is ultimately periodic. Conversely,
suppose we have a set of numbers that is ultimately periodic. Then
we can build a fryingpan automaton whose pan has size p and whose
handle has length n. Mark as terminal states on the handle those states
corresponding to the numbers strictly less than n in the subset. Mark
as terminal states on the pan those numbers between (and including) n
and strictly less than n + p those numbers in the subset. The language
recognised by this automaton corresponds to the set of numbers.

S.2.3 Incomplete automata

1. It is convenient to write down an incomplete automaton that does the
job.

// ?>=<89:;/.-,()*+ a // ?>=<89:; a //

b

��

?>=<89:; a //

b

��

?>=<89:;
b

��?>=<89:;/.-,()*+ ?>=<89:;
b

oo ?>=<89:;
b

oo

2. Let L = {x1, . . . , xn} be a finite language over the alphabet A. If
L = ∅ then it is easy to construct an automaton recognising L, so we
can assume that L is non-empty. Let m be the length of the longest
string in L. Construct the tree for A∗, with labelled edges as in Exam-
ple 2.3.3, up to and including those strings of length m. This tree can
be converted into an incomplete automaton: mark ε as the initial state,
and mark those vertices that belong to L as terminal. This incomplete
automaton recognises L.



144 SOLUTIONS TO EXERCISES

S.2.4 Automata that count

1. (i)

// ?>=<89:;/.-,()*+ a,b // ?>=<89:;
a,b

��?>=<89:;a,b

__???????

(ii)

// ?>=<89:; a,b // ?>=<89:;/.-,()*+
a,b

��?>=<89:;a,b

__???????

(iii)

// ?>=<89:; a,b // ?>=<89:;
a,b

��?>=<89:;/.-,()*+a,b

__???????

(iv)

// ?>=<89:; a,b // ?>=<89:;/.-,()*+
a,b

��?>=<89:;/.-,()*+a,b

__???????

2.

// ?>=<89:; a //
EDGFb@A
// ?>=<89:;/.-,()*+ a //EDBC b@AOO ?>=<89:;

a

��

GFEDbBC
oo

?>=<89:;a

__???????

BC@A
b

GF // ?>=<89:;
a

oo EDBC b@AOO

3. (i)

// ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:; BCED 0,1GF��



S.2. RECOGNISABLE LANGUAGES 145

(ii)

// ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:; BCED 0,1GF��

(iii)

// ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:; BCED 0,1GF��

(iv)

// ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+ BCED 0,1GF��

(v)

// ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+ BCED 0,1GF��

(vi)

// ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+ BCED 0,1GF��

(vii)

// ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:;/.-,()*+ 0,1 // ?>=<89:; BCED 0,1GF��

4.

// ?>=<89:;/.-,()*+ a //BC@A
b

GF // ?>=<89:;/.-,()*+ a //BC@A
b

GF // ?>=<89:;/.-,()*+ a //BC@A
b

GF // ?>=<89:;/.-,()*+ a //BC@A
b

GF // ?>=<89:;/.-,()*+ a //BC@A
b

GF // ?>=<89:; BCED a,bGF��

5.

// ?>=<89:;/.-,()*+ b //
OO

a

��

?>=<89:;
OO

b

��

a

��?
??

??
??

?>=<89:;
b

// ?>=<89:;/.-,()*+
a

// ?>=<89:; EDBC a,b@AOO



146 SOLUTIONS TO EXERCISES

6.
a b c

→ 1 2 1 1
2 2 3 1
3 2 1 4

← 4 5 4 4
← 5 5 6 4
← 6 5 4 1

2?>=<89:;
c

����
��

��
� b

��?
??

??
??

EDGFa@A
//

// 1?>=<89:;
a

??�������EDGFb,c@A
// 3?>=<89:;

b
oo

a

__???????

c

��
6?>=<89:;/.-,()*+

c

OO

b //

a

��?
??

??
?? 4?>=<89:;/.-,()*+

a
����

��
��

�

BCED b,cGF��

5?>=<89:;/.-,()*+b

__???????

c
??�������

GF@Aa BC OO

S.2.5 Automata that locate patterns

1. (i)

// ?>=<89:; a //

b

��

?>=<89:; b //

a
����

��
��

�

?>=<89:;/.-,()*+ BCED a,bGF��

?>=<89:;@ABC
a,b

EDoo

(ii)

// ?>=<89:; a //
EDGFb@A
// ?>=<89:; b //BC@A

a

GF // ?>=<89:;/.-,()*+ EDBC a,b@AOO



S.2. RECOGNISABLE LANGUAGES 147

(iii)

// ?>=<89:; a //
EDGFb@A
// ?>=<89:; b //BC@A

a

GF // ?>=<89:;/.-,()*+
a

oo

EDGF b

��

2. (i)

?>=<89:; 1 //

0

��?
??

??
??

?>=<89:;/.-,()*+ BCED 0,1GF��

// ?>=<89:;
0

??�������

1 ��?
??

??
??

?>=<89:; EDBC 0,1@AOO
?>=<89:; 1

??�������

0
// ?>=<89:;/.-,()*+ EDBC 0,1@AOO

(ii) An incomplete machine that does the job is

// ?>=<89:; 0 // ?>=<89:; 1 //BC@A
0

GF // ?>=<89:;/.-,()*+ BCED 0GF��

(iii)

��
1?>=<89:;

1

����
��

��
�

0

��?
??

??
??

4?>=<89:;
1

����
��

��
�

0

$$J
JJJJJJJJJJJJJJJJJJJJJJJJJ 2?>=<89:;
0

��?
??

??
??

1

zztttttttttttttttttttttttttt

7?>=<89:;/.-,()*+EDGF1@A
// 0

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 3?>=<89:;/.-,()*+ BCED 0GF��
1

ssggggggggggggggggggggggggggggggg

8?>=<89:;
1

OO

0 // 6?>=<89:;
0

OO

BC@A
1

OO



148 SOLUTIONS TO EXERCISES

3.

// ?>=<89:; a //EDGFb@A
// ?>=<89:; a //

b
oo ?>=<89:; b //BC@A

a

GF // ?>=<89:; b //
a

oo ?>=<89:;/.-,()*+ EDBC a,b@AOO

4. The transition table of the machine is

a b c
→ 1 2 3 4

2 5 7 6
3 8 5 6
4 8 7 5

← 5 5 5 5
6 8 7 9
7 8 10 6
8 11 7 6

← 9 8 7 9
← 10 8 10 6
← 11 11 7 6

The diagram below shows the transitions labelled by a only, for the
sake of clarity.

2?>=<89:;
��=

==
==

==
=

6?>=<89:;GF

@A
//

9GFED@ABC?>=<89:;

����
��
��
��
��
��
��
��
�

// 1?>=<89:;
AA��������
3?>=<89:;

&&NNNNNNNNNNNNNNNNN 5GFED@ABC?>=<89:;EDGF@A
// 7?>=<89:;

��

10GFED@ABC?>=<89:;
����

��
��

��

4?>=<89:; // 8?>=<89:; // 11GFED@ABC?>=<89:; EDBC@AOO



S.2. RECOGNISABLE LANGUAGES 149

S.2.6 Boolean operations

1. An automaton A that recognises L is

// s1?>=<89:; 0 //
EDGF1@A
// s2?>=<89:;/.-,()*+

0����
��

��
�

BCED 1GF��

s3?>=<89:;
0

OO

BC@A
1

GF //

An automaton B that recognises M is

// q1?>=<89:; 1 //
EDGF0@A
// q2?>=<89:;

1����
��

��
�

BCED 0GF��

q3?>=<89:;/.-,()*+
1

OO

BC@A
0

GF //

The transition table of the automaton A×B is therefore

0 1
→ (s1, q1) (s2, q1) (s1, q2)

(s2, q1) (s3, q1) (s2, q2)
(s3, q1) (s1, q1) (s3, q2)
(s1, q2) (s2, q2) (s1, q3)
(s2, q2) (s3, q2) (s2, q3)
(s3, q2) (s1, q2) (s3, q3)
(s1, q3) (s2, q3) (s1, q1)

← (s2, q3) (s3, q3) (s2, q1)
(s3, q3) (s1, q3) (s3, q1)

2. An automaton A that recognises L is

// p?>=<89:;/.-,()*+ a // q?>=<89:;
a

����
��

��
�

r?>=<89:;
a

OO



150 SOLUTIONS TO EXERCISES

An automaton B that recognises M is

// s?>=<89:;/.-,()*+ a // t?>=<89:; a // u?>=<89:;
a

��
w?>=<89:;

a

__???????

v?>=<89:;
a

oo

The transition table of the automaton A ⊔B is

a
↔ (p, s) (q, t)

(q, t) (r, u)
(r, u) (p, v)

← (p, v) (q, w)
(q, w) (r, s)
← (r, s) (p, t)
← (p, t) (q, u)

(q, u) (r, v)
(r, v) (p, w)

← (p, w) (q, s)
← (q, s) (r, t)

(r, t) (p, u)
← (p, u) (q, v)

(q, v) (r, w)
(r, w) (p, s)

3. Observe that L \ M = L ∩ M ′. We are given that L and M are
recognisable. Thus M ′ is recognisable by Proposition 2.6.2, and so
L ∩M ′ is recognisable by Proposition 2.6.5. Hence the result.

4. Let L = L(A) and M = L(B). Then L + M = (L′ ∩M ′)′ by one of
de Morgan’s laws. Let A have set of states S and terminal states F ,
and let B have set of states T and terminal states G. Then (A′ ×B′)′

has set of terminal states (S × T ) \ ((S \ F ) × (T \ G)). But this
set of terminal states is just (F × T ) + (S × G). It is now clear that
A ⊔B = (A′ ×B′)′.

5. Both results are proved by induction. I shall sketch out the proof for
the case involving union. The case where n = 2 is the case proved by



S.3. NON-DETERMINISTIC AUTOMATA 151

Proposition 2.6.6. Suppose the result is true when n = k, we prove
that the result is true when n = k + 1. Observe that we can write

L1 + . . . + Lk+1 = (L1 + . . . + Lk) + Lk+1.

By the induction hypothesis, the language within the brackets, L say,
is recognisable, and L+Lk+1 is recognisable by the base case. It follows
that L1 + . . . + Lk+1 is recognisable.

6. Assume that L is recognisable. Then L ∩ a∗b∗ is recognisable (why?).
But this language is just the language of Proposition 2.4.4, which we
know to be non-recognisable. Thus L cannot be recognisable.

S.3 Non-deterministic automata

S.3.1 Accessible automata

1. It is usually more convenient to draw the transition trees upside-down.
All leaves are closed, so I omit the ×.

(i)
p

0

����
��

��
�� 1

��>
>>

>>
>>

>

q
0

����
��

��
��

1
��

q

p q

(ii)
p

a

����
��

��
�� b

��>
>>

>>
>>

>

q
a

����
��

��
��

b

��

r

a

��

b

��>
>>

>>
>>

>

p s
a

����
��

��
��

b

��

s p

r q



152 SOLUTIONS TO EXERCISES

(iii)
p

a

����
��

��
�� b

��?
??

??
??

?

s
a

����
��

��
��

b

��

u

a

��

b

��?
??

??
??

?

t
a

����
��

��
��

b

��

u u u

t t

S.3.2 Non-deterministic automata

1. (i)
a b

→ {q} {r} ∅
{r} {s} ∅
{s} ∅ {t}

← {t} {t} {t}
∅ ∅ ∅

// ?>=<89:; a //

b

��

?>=<89:; a //

b

����
��

��
�

?>=<89:; b //

a

wwooooooooooooooo
?>=<89:;/.-,()*+ EDBC a,b@AOO

?>=<89:; EDBC a,b@AOO
(ii)

a b
→ {q} {q, r} {q}
{q, r} {q, r, s} {q}
{q, r, s} {q, r, s} {q, t}
← {q, t} {q, r} {q}

// ?>=<89:; a //EDGFb@A
// ?>=<89:;

a
//

b
oo ?>=<89:; b //

EDGFa@A
// ?>=<89:;/.-,()*+BC@A

a

OO

BC@A
b

OO



S.3. NON-DETERMINISTIC AUTOMATA 153

(iii)

a b
→ {q} {q, r} {q}
{q, r} {q, r, s} {q}
{q, r, s} {q, r, s} {q, t}
← {q, t} {q, r, t} {q, t}
← {q, r, t} {q, r, s, t} {q, t}
← {q, r, s, t} {q, r, s, t} {q, t}

// ?>=<89:; a //EDGFb@A
// ?>=<89:;

a
//

b
oo ?>=<89:;

b
//

EDGFa@A
// ?>=<89:;/.-,()*+ a //EDGFb@A

// ?>=<89:;/.-,()*+
a

//

b
oo ?>=<89:;/.-,()*+EDGFa@A

//BC@A
b

OO

(iv)

a b
↔ {s, t} {s, t} {s}

{s} {s, t} ∅
∅ ∅ ∅

// ?>=<89:;/.-,()*+ b //EDGFa@A
// ?>=<89:;

a
oo

b

��?>=<89:; EDBC a,b@AOO

2. A non-deterministic automaton that recognises the language is

// ?>=<89:; 1 //
EDGF0,1@A
// ?>=<89:; 0,1 // ?>=<89:; 0,1 // ?>=<89:;/.-,()*+



154 SOLUTIONS TO EXERCISES

The transition table of the corresponding deterministic machine is

0 1
→ 0 0 1

1 10 11
10 100 101
11 110 111

← 100 0 1
← 101 10 11
← 110 100 101
← 111 110 111

3. The non-deterministic automaton for this language is clear: it has the
same basic shape as the non-deterministic automaton in Question 2,
but has n + 1 states.

A deterministic automaton for this language must have enough states
to ‘remember’ factors of the form 1x where x is a binary string of length
at most n−1. The number of such strings is 20+21+. . .+2n−1 = 2n−1.
There must also be an initial state that remembers sequences of 0’s not
preceded by a 1, or factors of the form (0n)+. This gives us 2n states.

A formal proof of this result will be given in answer to Exercises 6.4,
Question 3.

S.3.3 Applications

1. (i)
// ?>=<89:; a //

b

��

?>=<89:;
a,b

��?>=<89:; b // ?>=<89:;/.-,()*+ EDBC a,b@AOO
(ii)

// ?>=<89:; a //

b

��

EDGFa,b@A
// ?>=<89:;

a,b

��?>=<89:; b // ?>=<89:;/.-,()*+



S.3. NON-DETERMINISTIC AUTOMATA 155

(iii)

// ?>=<89:; a //

b

��

EDGFa,b@A
// ?>=<89:; a // ?>=<89:; a // ?>=<89:;/.-,()*+ EDBC a,b@AOO
?>=<89:;

b
// ?>=<89:; b

77ooooooooooooooo

(iv)

?>=<89:; ?>=<89:; ?>=<89:;
a

����
��

��
�

// ?>=<89:;/.-,()*+��
a

OO
b

??�������

b
//

b

��

��b

__??????? ?>=<89:;
a

��?>=<89:;
a

??������� ?>=<89:;
b

oo ?>=<89:;a

__???????

(v)

// ?>=<89:;
a

//BC@A
a,b

GF // ?>=<89:;
a

//
GFEDa,bBC
oo ?>=<89:;

b
//

GFEDa,bBC
oo ?>=<89:;/.-,()*+GFED

a,bBC
oo

2. Consider the automaton

// ?>=<89:; a // ?>=<89:;/.-,()*+
over the alphabet A = {a, b}. This recognises the language {a}. Now
consider the automaton obtained from the above machine by making
the current terminal state an ordinary state and all other states termi-
nal:

// ?>=<89:;/.-,()*+ a // ?>=<89:;
This machine recognises the language {ε}.



156 SOLUTIONS TO EXERCISES

S.4 ε-automata

S.4.1 Automata with ε-transitions

1. (i)

state ⋆ E(⋆) E(⋆) · a E(⋆) · b E(E(⋆) · a) E(E(⋆) · b)
p {p, q, t} {r} {u} {r} {u}
q {q} {r} ∅ {r} ∅
r {r} {s} ∅ {s} ∅
s {s} {s} {s} {s} {s}
t {t} ∅ {u} ∅ {u}
u {u} ∅ {v} ∅ {v, s}
v {v, s} {s} {s} {s} {s}

In this case, ε is not accepted and so there is no need for an extra
state. The automaton Asda is

// p?>=<89:; a //

b

��

r?>=<89:;
b

��

ED

BC
a

oo

u?>=<89:; a //

b

��

∅?>=<89:; EDBCa,b@AOO
v, sGFED@ABC?>=<89:; a,b // s?>=<89:;/.-,()*+ EDBCa,b@AOO

The language L(A) = (a2 + b2)(a + b)∗.

(ii)

state ⋆ E(⋆) E(⋆) · 0 E(⋆) · 1 E(⋆) · 2
p {p, q, r} {p} {q} {r}
q {q, r} ∅ {q} {r}
r {r} ∅ ∅ {r}

state ⋆ E(E(⋆) · 0) E(E(⋆) · 1) E(E(⋆) · 2)

p {p, q, r} {q, r} {r}
q ∅ {q, r} {r}
r ∅ ∅ {r}



S.4. ε-AUTOMATA 157

In this case, ε is accepted and there is a need for an extra state.
The automaton Asda is

// ♦, pWVUTPQRSONMLHIJK 0 //

1

��

2

  @
@@

@@
@@

@

p, q, r_^]\XYZ[WVUTPQRS
1

~~~~
~~

~~
~~

BCED 0GF��
2

��

q, rWVUTPQRSONMLHIJK
0
��

2 //
@AGF1
ED��

rWVUTPQRSONMLHIJK
0,1~~~~

~~
~~

~~

BCED 2GF��

∅WVUTPQRSGF@A0,1,2 BCOO
The language L(A) = 0∗1∗2∗.

(iii)

state ⋆ E(⋆) E(⋆) · a E(⋆) · b E(E(⋆) · a) E(E(⋆) · b)
1 {1, 5} {3} {2} {3} {1, 2, 5}
2 {1, 2, 5} {3} {2} {3} {1, 2, 5}
3 {3} {4} ∅ {1, 4, 5} ∅
4 {1, 4, 5} {3} {2} {3} {1, 2, 5}
5 {1, 5} {3} {2} {3} {1, 2, 5}

In this case, ε is accepted and there is a need for an extra state.
The automaton Asda is

∅WVUTPQRSBCED a,b
GF��

// ♦, 1WVUTPQRSONMLHIJK a //

b   @
@@

@@
@@

@
3WVUTPQRS oo a //

b

OO

1, 4, 5_^]\XYZ[WVUTPQRS
b~~||

||
||

||

1, 2, 5_^]\XYZ[WVUTPQRS
a

OO

EDBC b@AOO
The language L(A) = (b + a2)∗.



158 SOLUTIONS TO EXERCISES

S.4.2 Applications of ε-automata

1. (i) ?>=<89:; ?>=<89:; b // ?>=<89:;
b����

��
��

�

// ?>=<89:;/.-,()*+ ε //
��

a

OO

?>=<89:;/.-,()*+
b

OO

(ii)

// ?>=<89:; a //

GF EDε

��?>=<89:; a //
GF EDε

��?>=<89:; b // ?>=<89:; b //BC@A
ε

OO
?>=<89:;/.-,()*+
BC@A

ε

OO

(iii)

// ?>=<89:; a //

b

��

?>=<89:; a // ?>=<89:; BCED bGF��

ε

��

?>=<89:;
b

��?>=<89:; ε //GF@Aa BCOO ?>=<89:; a //

b

��

?>=<89:;
b

��?>=<89:;
a

// ?>=<89:;/.-,()*+

S.5 Kleene’s Theorem

S.5.1 Regular languages

1. (i) (a3 + b)∗.

(ii) b∗ab∗ab∗ab∗.

(iii) b∗ab∗ab∗ + b∗ab∗ab∗ab∗.

(iv) (b + ab + a2b)∗(ε + a + a2).

(v) b∗ + (b∗ab∗ab∗ab∗)∗.



S.5. KLEENE’S THEOREM 159

(vi) (a + b)∗(a2 + b2).

(vii) This is a little trickier. Let’s consider first the case where the
double letter is aa. The strings we want are of the form x(aa)y
where x has no double letters and does not end in a, and y has no
double letters and does not begin with a. A string with no double
letters must have letters that alternate. Thus they are of the form
(ε + b)(ab)∗(ε + a). Thus the set of strings where the only double
letter is aa is described by

(ε + b)(ab)∗aa[b(ab)∗(ε + a) + ε].

But b(ab)∗ = (ba)∗b. Thus we get, with a little calculation,

(ε + b)(ab)∗aa(ba)∗(ε + b).

Hence the answer to the question is

(ε + b)(ab)∗aa(ba)∗(ε + b) + (ε + a)(ba)∗bb(ab)∗(ε + a).

2. (i) By definition r∗ = ε + r + r2 + r3 + . . .. Rearrange the right-hand
side into sums of even and odd powers:

r∗ = (ε + r2 + r4 + . . .) + (r + r3 + r5 + . . .).

The first term is just (rr)∗ and the second term is r(rr)∗. Hence
the result.

(ii) We need only prove that (r+s)∗ ⊆ (r∗s∗)∗ (or, rather, the languages
described by these regular expressions.) The left-hand side is the
sum of terms of the form (r+s)n, and (r+s)n is the sum of terms
of the form xn1 . . . xns where n1 + . . . + ns = n and each xi is r or
s. But such a term is of the form (r∗s∗)t for some t. Hence result.

(iii) By definition (rs)∗r is the sum of terms of the form (rs)nr which
is equal to the sum of terms of the form r(sr)n which is equal to
r(sr)∗.

3. These are just a sequence of easy verifications. I shall prove (iv), as an
example. Let x ∈ L · (M ·N). Then x = ly where l ∈ L and y ∈M ·N .
But y ∈ M · N implies that y = mn where m ∈ M and n ∈ N . Thus
x = l(mn) = (lm)n ∈ (L ·M) · N . Hence L · (M · N) ⊆ (L ·M) · N .
The reverse inclusion is proved similarly.



160 SOLUTIONS TO EXERCISES

S.5.2 An algorithmic proof of Kleene’s theorem

1. (i) The tree for this regular expression is

a∗(ba∗)∗

wwwwwwwww

JJJJJJJJJ

a∗ (ba∗)∗

ba∗

An automaton can now be constructed in steps from the tree.
Automata for the leaves of this tree are

// ?>=<89:;/.-,()*+ EDBC a@AOO
and

// ?>=<89:; b // ?>=<89:;/.-,()*+ EDBC a@AOO
The automaton for (ba∗)∗ is

// ?>=<89:;
ε

��

ε // ?>=<89:;/.-,()*+
ε

oo

?>=<89:; b // ?>=<89:; EDBC a@AOO
ε

OO

Finally, we can construct the automaton for a∗(ba∗)∗

// ?>=<89:; ε //EDBC a@AOO ?>=<89:;
ε

��

ε // ?>=<89:;/.-,()*+
ε

oo

?>=<89:; b // ?>=<89:; EDBC a@AOO
ε

OO



S.5. KLEENE’S THEOREM 161

(ii) The tree for this regular expression is

(a∗b + b+a)∗

a∗b + b+a

qqqqqqqqqqq

MMMMMMMMMMM

a∗b b+a

An automaton can now be constructed in steps from the tree.

(iii)

(a2 + b)∗(a + b2)∗

mmmmmmmmmmmm

QQQQQQQQQQQQ

(a2 + b)∗ (a + b2)∗

a2 + b a + b2

An automaton can now be constructed in steps from the tree.

2. (i) b∗aa∗b(a + b)∗.

(ii) a∗b(ab∗a∗b)∗.

(iii) (a + ba + b2)(a + b)∗.

(iv) (ab)∗.

(v) a + a3 + a5(a3)∗.

3. We have to prove Lemma 5.2.3. Let A be a normalised automaton,
and let x ∈ L(A). Then by definition, we can factorise x = x1 . . . xn in
such a way that

// αWVUTPQRS r1 // q1WVUTPQRS r2 // q2WVUTPQRS ___ qn−1WVUTPQRS rn // ωWVUTPQRSONMLHIJK
is a path in A where xi ∈ L(ri).

Let B be the normalised automaton that results when one of the op-
erations (T), (L) or (S) is applied. If none of the states in the path



162 SOLUTIONS TO EXERCISES

is affected by one of these rules, then clearly x ∈ L(B). So we shall
assume that some states on this path are affected by one of the rules.
Suppose first, that rule (T) has been applied. Then it is immediate
that x ∈ L(B). Next, suppose that rule (L) has been applied to a loop
on state q with label r. Then q occurs somewhere in our path in a se-
quence of consecutive positions. Thus x = uy1 . . . yrv, where yj ∈ L(r),
and u labels a path from α to q, and v labels a path that starts at
q and ends at ω. But y1 . . . yr ∈ L(r∗), and so x ∈ L(B). Finally,
suppose that rule (S) has been applied with the elimination of state q.
Then q occurs somewhere in our path. Thus x = uyzv where y ∈ L(r),
z ∈ L(s), and where y labels a transition that ends at q and s labels a
transition that starts at q. Now yz ∈ L(rs), and so x ∈ L(B). Hence
L(A) ⊆ L(B). The reverse inclusion is proved in a similar way, but
working backwards in each case.

4. (i) Simply substitute C∗R into CX + R and check that you get C∗R.

(ii) Since Y = CY + R we have that R ⊆ Y . We have that C2Y +
CR+R = Y and so CR ⊆ Y . Continuing in this way we get that
CRn ⊆ Y for all n ≥ 0. It follows that C∗R ⊆ Y .

(iii) Observe that z /∈ R but z ∈ CW + R. It follows that z ∈ CW .
Hence z = cw where c ∈ C and w ∈ W . We now invoke our
assumption: c 6= ε. It follows that |w| < |z|. Suppose that
w ∈ C∗R. Then z ∈ C∗R. Contradiction. Thus z ∈ W \ C∗R.
Contradiction.

S.6 Minimal automata

S.6.1 Partitions and equivalence relations

1. There are 15 equivalence relations on the set {1, 2, 3, 4}.

(i) The partitions are:

{{1, 2, 3, 4}},

{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}}, {{4}, {1, 2, 3}},



S.6. MINIMAL AUTOMATA 163

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}},

{{1}, {2}, {3, 4}}, {{3}, {4}, {1, 2}}, {{2}, {3}, {1, 4}},
{{1}, {4}, {2, 3}}, {{2}, {4}, {1, 3}}, {{1}, {3}, {2, 4}},

{{1}, {2}, {3}, {4}}.
(ii) I shall give one example of a set of ordered pairs. Consider the

partition {{1, 4}, {2, 3}}. Then the set of ordered pairs that cor-
responds to this partition is

{(1, 1), (2, 2), (3, 3), (4, 4), (1, 4), (4, 1), (2, 3), (3, 2)}.

(iii) I shall give one example of the table form. The table form of the
partition {{1, 4}, {2, 3}} is

1 2 3 4
1
√ × × √

2 ∗ √ √ ×
3 ∗ ∗ √ ×
4 ∗ ∗ ∗ √

2. Let P be a partition on the set X. Define

x ∼P y ⇔ x and y belong to the same block of P .

We prove that ∼P is reflexive, symmetric, and transitive. First, let
x ∈ X. Then by (P3), x belongs to some block B, say. Clearly, x
belongs to the same block as x. Hence x ∼P x, and so ∼P is reflexive.
Suppose that x ∼P y. Then x and y belong to the same block of P . It
follows that y and x belong to the same block of P . Hence y ∼P y, and
so ∼P is symmetric. Finally, suppose that x ∼P y and y ∼P z. Then
x and y belong to the same block B of P , and y and z belong to the
same block B′ of P . By (P2), we must have that B = B′ and so x and
z belong to the same block of P . It follows that x ∼P z, and so ∼P is
transitive.

ρ(y) ⊆ σ(x).



164 SOLUTIONS TO EXERCISES

S.6.2 The indistinguishability relation

1. We prove that ≃A is an equivalence relation. Let s ∈ S be a state.
Then s · x ∈ T ⇔ s · x ∈ T for all x ∈ A∗. Thus s ≃A s. Suppose
that s ≃A t. Then s · x ∈ T ⇔ t · x ∈ T for all x ∈ A∗. Hence
t · x ∈ T ⇔ s · x ∈ T for all x ∈ A∗. It follows that t ≃A s. Finally,
suppose that s ≃A t and t ≃A u. Suppose that s ·x ∈ T . Then t ·x ∈ T
and so u · x ∈ T . Thus s · x ∈ T ⇒ u · x ∈ T for all x ∈ A∗. It is
straightforward to prove the converse. Thus s ≃A u.

2. In Theorem 6.2.3, we proved that [s] · a = [s · a] for each a ∈ A is
well-defined. Clearly, [s] · ε = [s] = [s · ε]. Suppose that [s] · x = [s · x]
for all strings x of length n and all states s. Let y be a string of length
n + 1. Then we can write y = ax where a ∈ A and x has length n. By
the definition of the extended transition function [s] · y = [s] · (ax) =
([s] · a) · x. By definition ([s] · a) · x = [s · a] · x. By the induction
hypothesis [s · a] · x = [(s · a) · x] = [s · (ax)] = [s · y], as required.

3. (i) The indistinguishability relation is

{A = {1}, B = {2}, C = {4}, D = {3, 5, 6, 7}}.
The machine Ar is

// AGFED@ABC a //

b

��

BGFED@ABC
b

��

BCED aGF��

CGFED@ABC
a

//BC@A
b

GF // DGFED@ABC?>=<89:; EDBC a,b@AOO
(ii) The indistinguishability relation is

{A = {0, 5}, B = {1, 2}, C = {3, 4}}.
The machine Ar is

// AGFED@ABC?>=<89:; a,b // BGFED@ABC
a,b

��

CGFED@ABCa,b

__???????



S.6. MINIMAL AUTOMATA 165

(iii) The indistinguishability relation is

{A = {1, 5}, B = {7}, C = {4, 6}, D = {2, 8}, E = {3}}.

The machine Ar is

// A?>=<89:;
0
��

GF ED1

��
B?>=<89:;1oo
GFED0BC
oo C?>=<89:;

1
oo

0����
��

��
�

D?>=<89:;
1

//

0

??�������
E?>=<89:;/.-,()*+

0

__???????

EDBC 1@AOO
4. Let A = (S,A, i, δ, {t}) be an automaton with a unique terminal state

such that for each s ∈ S there exists x ∈ A∗ with s·x = t, and such that
τa is a bijection for each a ∈ A. We prove that A is reduced. Observe
first that we may define τx for each x ∈ A∗ by τx maps s to s · x. The
function τε is the identity function, and for each x = a1 . . . an, where
ai ∈ A, we have that τx = τa1

. . . τan
, the composite of the functions

τai
. Since the composite of bijections is a bijection, it follows that

τx is a bijection for all x ∈ A∗. Suppose that s ≃A s′ in A. Then
s · x ∈ {t} ⇔ s′ · x ∈ {t} for all x ∈ A∗. We shall prove that s = s′.
By assumption, there is a string x such that s · x = t. Thus s′ · x = t.
It follows that τx maps both s and s′ to the same element. But τx is a
bijection, and so s = s′, as required.

S.6.3 Isomorphisms of automata

1. (i) Let A = (S,A, s0, δ, F ). The identity function 1S: S → S satisfies
(IM1)–(IM4). Thus A ≡ A.

(ii) Let A = (S,A, s0, δ, F ) and B = (Q,A, q0, γ, G). Let θ: A → B.
We prove that θ−1 is an isomorphism from B to A. It is easy
to check that (IM1)–(IM3) hold. We prove (IM4). Let q ∈ Q
and a ∈ A. Let s ∈ S be such that θ(s) = q. By assumption
θ(s · a) = θ(s) · a = q · a. Thus θ−1(q · a) = s · a = θ−1(q) · a, as
required.

(iii) Let θ: A→ B and φ: B→ C be isomorphisms. It is easy to check
that φθ is an isomorphism from A to C.



166 SOLUTIONS TO EXERCISES

2. (i) An isomorphism is, in particular, a bijective function between the
sets of states. Thus the sets of states must have the same number
of elements.

(ii) By (IM3), the bijection between the sets of states gives a bijection
between the sets of terminal states.

(iii) Suppose that A is accessible. We prove that B is accessible. Let
q ∈ Q be a state in B. Then s = θ−1(q) is a state in A. By
assumption, s0 ·x = s for some x ∈ A∗. By Lemma 7.3.1, we have
that θ(s0 ·x) = θ(s0) ·x. By (IM2), we have that θ(s0) = q0. Thus
q = θ(s) = q0 · x, and so q is accessible. Hence B is accessible.

(iv) Suppose that A is reduced. We prove that B is reduced. Let

q ≃B q′.

Let θ(s) = q and θ(s′) = q′. We claim that s ≃A s′. To see
why, suppose that s · x ∈ F . Then θ(s · x) ∈ G by (IM3). But
θ(s · x) = θ(s) · x = q · x, by Lemma 6.3.1. Thus q · x ∈ G. Hence
q′ · x ∈ G. It follows that θ−1(q′ · x) ∈ F , by (IM3). But θ−1 is
an isomorphism, and so θ−1(q′ · x) = θ−1(q′) · x = s′ · x. Hence
s′ ·x ∈ F . Thus s ·x ∈ F implies s′ ·x ∈ F . The converse is proved
similarly. Hence s ≃A s′. But A is reduced, and so s = s′. Hence
q = q′. It follows that B is reduced.

3. Let the set of states of A be S with initial state s0, and let the set of
states of B be Q with initial state q0. Let s be an arbitrary state in
A. Then s = s0 · x for some x ∈ A∗ because A is accessible. Then
θ(s) = θ(s0) · x = q0 · x and φ(s) = φ(s0) · x = q0 · x. It follows that
θ(s) = φ(s). Since s was arbitrary, we have that θ = φ.



S.6. MINIMAL AUTOMATA 167

S.6.4 The minimal automaton

1.
subset rank
∅ 1
00 4
01 4
10 4
11 4

00 + 01 4
00 + 10 4
00 + 11 5
01 + 10 5
01 + 11 4
10 + 11 4

00 + 01 + 10 5
00 + 01 + 11 5
00 + 10 + 11 5
01 + 10 + 11 5

00 + 01 + 10 + 11 3

2. A machine A that recognises this language consists of n states s0, . . . , sn−1

arranged in a circle with the initial state s0 being terminal and where
si · a = si+1, si · b = si+1 for i = 0, . . . , n − 2 and sn−1 · a = s0, and
sn−1 · b = s0. Observe that A is accessible and satisfies the conditions
of Question 4 of Exercises 6.2. It follows that A is also reduced. Since
A is an accessible reduced automaton recognising the language, it is a
minimal automaton for the language.

3. We shall prove that a minimal automaton for the language has 2n states.
We construct a machine whose states are labelled by the 2n strings

ε +
n−1
∑

i=0

1(0 + 1)i.

The inital state is labelled ε the terminal states are those labelled by
the strings of length n. For all states which are not terminal or initial
input letter a takes state x to state xa. The letter 0 labels at loop
at the initial state, and the letter 1 takes the initial state to the one



168 SOLUTIONS TO EXERCISES

labelled 1. If x labels a terminal state and a is an input letter then we
map to the state given by the longest suffix of xa that begins with a 1
and whose length is at most n. I leave it as an exercise to prove that
this machine recognises the given language and is accessible. The result
will therefore be proved if we can show that this machine is reduced.

It is easy to see that states labelled by strings of different lengths are
distinguishable. If we can show that all the terminal states are distin-
guishable it will follow that all the other pairs of states having the same
sized label are distinguishable from the tree structure of the states. It
remains to prove that any two terminal states are distinguishable. Let
x and y label two terminal states. Reading from left to right suppose
they disagree for the first time at the ith position. We can suppose
without loss of generality that x has a 0 there and y a 1. Let u be any
string of length i. Then x · u will be a non-terminal state and y · u will
be a terminal state.

4. (i) This is straightforward.

(ii) We use (i). Let x ∈ L(A). Then s0 ·x ∈ F . Thus θ(s0 ·x) = q0 ·x ∈
G. Hence x ∈ L(B).

(iii) Let θ and φ both be homomorphisms from A. By definition they
agree on s0. Let s be an arbitrary state of A. By assumption
s = s0 · x. It follows quickly that θ(s) = φ(s) and so θ = φ.

(iv) Straightforward.

(v) Define θ by θ(s0) = q0 and if s = s0 · x then θ(s) = q0 · x. The fact
that B is reduced shows that θ is well-defined. The proof of the
rest is straightforward.

S.6.5 The method of quotients

1. The proofs are very simple. For example, it is clear that ε ∈ LM iff
ε ∈ L and ε ∈M . Thus δ(LM) = δ(L) ∩ δ(M).

2. To complete the proof of Proposition 6.5.6, we have to show that

δ∗(u−1L, x) = (ux)−1L

for all x ∈ A∗ and u ∈ A∗. The result is clearly true when x = ε and
when x = a ∈ A. Assume the result is true for all strings x of length



S.6. MINIMAL AUTOMATA 169

n. Let y be a string of length n + 1. Then y = ax where a ∈ A and
x has length n. Then δ∗(u−1L, y) = δ∗(u−1L, ax) = δ∗(δ(u−1L, a), x).
This equals δ∗((ua)−1L, x) using the base case, and this in turn equals
((ua)x)−1L = (uy)−1L, as required.

3. (i) • ε−1L = L.

• a−1L = b = L1.

• b−1L = ∅ = L2.

• a−1L1 = L2.

• b−1L1 = ε = L3.

• a−1L2 = L2.

• b−1L2 = L2.

• a−1L3 = L2.

• b−1L3 = L2.

The minimal automaton is therefore

// 0?>=<89:; a //

b ��?
??

??
??

1?>=<89:; b //

a

��

3?>=<89:;/.-,()*+
a,b����

��
��

�

2?>=<89:; EDBC a,b@AOO
(ii) • ε−1L = L.

• a−1L = L + ε = L1.

• b−1L = L.

• a−1L1 = L1.

• b−1L1 = L.

The minimal automaton is therefore

// 0?>=<89:; a //EDGFb@A
// 1?>=<89:;/.-,()*+

b
oo EDBC a@AOO

(iii) • ε−1L = L.

• a−1L = b(ab)∗ = L1.

• b−1L = ∅ = L2.



170 SOLUTIONS TO EXERCISES

• a−1L1 = ∅ = L2.

• b−1L1 = L.

• a−1L2 = L2.

• b−1L2 = L2.

The minimal automaton is therefore

// 0?>=<89:;/.-,()*+ a //

b ��?
??

??
??

1?>=<89:;
b

oo

a

��
2?>=<89:; EDBC a,b@AOO

(iv) • ε−1L = L.

• a−1L = bL = L1.

• b−1L = aL = L2.

• a−1L1 = ∅ = L3.

• b−1L1 = L.

• a−1L2 = L.

• b−1L2 = ∅ = L3.

• a−1L3 = b−1L3 = L3.

The minimal automaton is therefore

// 0?>=<89:;/.-,()*+ a //

b

��

1?>=<89:;
b

oo

a

��
2?>=<89:;

a

OO

b // 3?>=<89:; EDBC a,b@AOO
(v) • ε−1L = L.

• a−1L = (a + b)∗a2(a + b)∗ + a(a + b)∗ = L1.

• b−1L = (a + b)∗a2(a + b)∗ = L.

• a−1L1 = (a + b)∗ = L2.

• b−1L1 = L.

• a−1L2 = L2.



S.6. MINIMAL AUTOMATA 171

• b−1L2 = L2.

The minimal automaton is therefore

// 0?>=<89:; a //EDGFb@A
// 1?>=<89:;

b
oo

a

��
2?>=<89:;/.-,()*+ EDBC a,b@AOO

(vi) • ε−1L = L.

• a−1L = a∗bb∗ = L1.

• b−1L = ∅ = L2.

• a−1L1 = L1.

• b−1L1 = b∗ = L3.

• a−1L2 = ∅ = L2.

• b−1L2 = ∅ = L2.

• a−1L3 = ∅ = L2.

• b−1L3 = b∗ = L3.

The minimal automaton is therefore

// 0?>=<89:; a
//

b ��?
??

??
??

1?>=<89:; b //
EDGFa@A
// 3?>=<89:;/.-,()*+

a
����

��
��

�

BCED bGF��

2?>=<89:; EDBC a,b@AOO
(vii) • ε−1L = L.

• a−1L = (b2 + ab)∗b∗ = L1.

• b−1L = ∅ = L2.

• a−1L1 = b(b2 + ab)∗b∗ = L3.

• b−1L1 = b(b2 + ab)∗b∗ + b∗ = L4.

• a−1L2 = L2 = b−1L2.

• a−1L3 = ∅ = L2.



172 SOLUTIONS TO EXERCISES

• b−1L3 = (b2 + ab)∗b∗ = L1.

• a−1L4 = ∅ = L2.

• b−1L4 = (b2 + ab)∗b∗ = L1.

The minimal automaton is therefore

��
0?>=<89:;

b

����
��

��
�

a

��?
??

??
??

2?>=<89:;EDGFa,b@A
// 3?>=<89:;a

oo
b //

1?>=<89:;/.-,()*+
a

oo ??

b����
��

��
�

4?>=<89:;/.-,()*+
a

__???????

(viii) • ε−1L = L.

• a−1L = L + ab(a + b)∗ = L1.

• b−1L = L.

• a−1L1 = L1 + b(a + b)∗ = L2.

• b−1L1 = L.

• a−1L2 = L2.

• b−1L2 = (a + b)∗ = L3.

• a−1L3 = L3 = b−1L3.

The minimal automaton is therefore

// 0?>=<89:; a //EDGFb@A
// 1?>=<89:; a //

b
oo 2?>=<89:; b //BC@A

a

GF // 3?>=<89:;/.-,()*+ EDBC a,b@AOO

4. The quotients are: ∅, Lr = {an−rbn: n ≥ r}, and br for r = 0, 1, 2, . . ..



2008 Exam paper

Attempt 3 questions in 2 hours

1. (i) Write down a regular expression describing the language L recog-
nised by the non-deterministic automaton below.

// s?>=<89:;
a

//
@AGFa,b ED��

t?>=<89:;
b

//
@AGFa,b ED ��

u?>=<89:;
a

//
@AGFa,b ED��

v?>=<89:;/.-,()*+@AGFa,b ED��

(ii) Apply the accessible subset construction to the machine in (i), and
so find a deterministic automaton recognising the language L. To
obtain full credit, you must show all steps in the algorithm.

(iii) Apply the minimisation algorithm to the automaton constructed
in (ii), and so find the minimal automaton recognising the lan-
guage L. To obtain full credit, you must show all steps in the
algorithm.

2. (i) Write down a regular expression describing the language L accepted
by the following ε-automaton.

// s?>=<89:;
ε

//
@AGFb ED��

t?>=<89:; ε
//

@AGFa ED ��
u?>=<89:;/.-,()*+@AGFb ED��

(ii) Apply the standard algorithm to the machine in (i) that converts
it into a non-deterministic automaton without ε-transitions recog-
nising the language L. To obtain full credit, you must show all
steps in the algorithm.

(iii) Apply the standard algorithm to the machine below to determine
a regular expression for the language the machine recognises. To

173



174 2008 EXAM PAPER

obtain full credit, you must show all steps in the algorithm.

// s?>=<89:;
b

//
@AGFa ED��

t?>=<89:;/.-,()*+
a

��

@AGFb ED ��

u?>=<89:;b

eeKKKKKKKKKKKK BCED aGF��

3. (i) Define what is meant by a regular expression over the alphabet
A = {a, b}, and a regular language over the alphabet A.

(ii) State, without proof, Kleene’s Theorem.

(iii) Prove that the language L = {anbn: n ≥ 0} is not recognisable.

(iv) Prove that if L and M are both recognisable languages then L∩M
is recognisable.

(v) Prove that the language M = {x ∈ (a + b)∗: |x|a = |x|b} is not
recognisable.

4. (i) Let A be a complete deterministic automaton with input alphabet
A. Define the indistinguishability relation ≃A on A.

(ii) Prove that ≃A is an equivalence relation on the set of states of A,
and that for each letter a ∈ A, we have that s ≃A t implies that
s · a ≃A t · a.

(iii) Prove that if s ≃A t then s is terminal if and only if t is terminal.

(iv) What does it mean to say that an automaton is reduced ?

(v) Prove that for each complete deterministic automaton A, there is
a reduced, complete deterministic automaton that recognises the
same language as A.



Solutions to 2008 exam

Below you will find outline solutions. Towards the end of the module, I will
go through the solutions in more detail giving you an opportunity to try the
questions first and to ask questions about them.

The rough format of the exam is two purely algroithmic questions and two
theory questions.

However, it is important to remember that the next exam will not simply
be the same questions with the numbers changed. The idea of giving you a
sample exam paper with solutions is to show you the sort of things you might
be asked: it is about getting a sense of the style of the questions.

1. (i) (a + b)∗a(a + b)∗b(a + b)∗a(a + b)∗. [2 marks]

(ii) The first step is to construct the transition tree. Because this
almost completely solves the problem you get [7 marks] for this
part of the question.

s
a

wwoooooooooooooo
b

''PPPPPPPPPPPPP

s, t
a

wwpppppppppppp
b

''NNNNNNNNNNNN s,×

s, t,× s, t, u
a

wwppppppppppp
b

''OOOOOOOOOOO

s, t, u, v
a

wwppppppppppp
b

''NNNNNNNNNNN
s, t, u,×

s, t, u, v,× s, t, u, v,×

175



176 SOLUTIONS TO 2008 EXAM

You then have to carry out the glueing part of the procedure
to obtain the required complete deterministic automaton. This
gets you an additional [2 marks]. The resulting machine has the
following form

// ?>=<89:;1
a //

b

�� ?>=<89:;2
b //

a

�� ?>=<89:;3
a //

b

�� ?>=<89:;765401234

a,b

��

(iii) The table that results in carrying out the minimisation algorithim
is

s1 s2 s3 s4

s1
√

X X X

s2 ∗ √
X X

s3 ∗ ∗ √
X

s4 ∗ ∗ ∗ √

It follows that the associated equivalence classes are

{s1}, {s2}, {s3}, {s4}.

Thus the machine is already reduced. The marks are awarded as
follows: [2 marks] for initialization, [2 marks] for the correct appli-
cation of the algorithm and [5 marks] for the correct equivalence
classes.

2. (i) b∗a∗b∗. [2 marks]

(ii) We first construct the table by applying the appropriate algorithm.
This is the key to the whole procedure and for it you get [6 marks].

∗ E(∗) E(∗) · a E(∗) · b E(E(∗) · a) E(E(∗) · b)
s {s, t, u} {t} {s, u} {t, u} {s, t, u}
t {t, u} {t} {u} {t, u} {u}
u {u} ∅ {u} ∅ {u}

The machine we want is constructed from the last two columns of
this table, when there are 2 inputs. However, in this case there
will be an extra state to recognise the empty string. There are



177

[3 marks] for the machine itself.

///.-,()*+��������
// ?>=<89:;s

a,b //

b

��

a,b

66?>=<89:;t
a,b //

a

�� ?>=<89:;/.-,()*+u

b

��

(iii) The first step is to normalise the machine. If you don’t do this
you will automatically get zero.

// ?>=<89:;α ε // ?>=<89:;s

a

��
b //?>=<89:;t

b

��

a

��

ε // ?>=<89:;76540123ω

?>=<89:;u

b

__?????????

a

HH

Each step of the algorithm should be shown making clear what
you are doing at each stage.

First we eliminate loops.

// ?>=<89:;α ε // ?>=<89:;s a∗b //?>=<89:;t

b∗a

��

b∗ // ?>=<89:;76540123ω

?>=<89:;u

a∗b

__?????????

From this point on there are a number of different routes to a
correct solution.

Eliminate state u.

// ?>=<89:;α ε // ?>=<89:;s a∗b //?>=<89:;t

b∗a+b




b∗ // ?>=<89:;76540123ω

Eliminate state t.

// ?>=<89:;α ε // ?>=<89:;s a∗b+ //

a∗b+a+b

�� ?>=<89:;76540123ω



178 SOLUTIONS TO 2008 EXAM

Eliminating loops and then state s we get

// ?>=<89:;α
(a∗b+a+b)∗a∗b+ // ?>=<89:;76540123ω

Thus
L(A) = (a∗b+a+b)∗a∗b+.

[9 marks]

3. (i) a and b are regular expressions, as are ∅ and ε; if r and s are regular
expressions so too are r + s, rs and r∗; every regular expression is
obtained in this way. [2 marks]

A language is regular if it is described by means of a regular ex-
pression. [1 mark]

(ii) A language is recognisable if and only if it is regular. [2 marks]

(iii) This is a standard piece of bookwork. Suppose that L were recog-
nised by the machine A with initial state i. Define qm = i · am.
Suppose that qm = qn for some m 6= n. Then ambn ∈ L(A) but
ambn /∈ L. This is a contradiction and so L is not recognisable.
[5 marks]

(iv) Let L = L(A) and M = L(B) where A = (S,A, s0, γ, F ) and
B = (Q,S, q0, δ, G). Put

A×B = (S ×Q,A, (s0, q0), γ × δ, F ×G),

a finite state automaton. [2 marks]

We now check that x ∈ L(A × B) iff x ∈ L ∩M . [4 marks] We
have that x ∈ L(A×B) iff (s0, q0) ·x is terminal iff (s0 ·x, q0 ·x) is
terminal iff s0 ·x and q0 ·x are both terminal iff x ∈ L and x ∈M
iff x ∈ L ∩M , as required.

(v) Suppose that M is recognisable. The language a∗b∗ is recognisable
by Kleene’s Theorem. Thus by (iv), we have that a∗b∗ ∩ M is
recognisable. But L = a∗b∗∩M , which is not recognisable by (iii)
above. Contradiction, and so M is not recognisable. [4 marks]

4. (i) Let s and t be a pair of states. We say that s ≃A t if and only if
for all x ∈ A∗ we have that s · x is terminal iff t · x is terminal.
[1 mark]



179

(ii) We have to show that ≃A is reflexive, symmetric and transitive.
[1 mark] will be awarded for each of these.

Suppose that s ≃A t. Let a ∈ A. Suppose that (s · a) · x is
terminal. Then s · (ax) is terminal. Thus by assumption, t · (ax)
is terminal and so (t · a) · x is terminal. The converse is also true
and so we have proved that s · a ≃A t · a. [3 marks]

(iii) Suppose that s is terminal. Then s · ε is terminal, and so by
assumption t · ε is terminal yielding t is terminal. The converse is
proved similarly.

(iv) An automaton is reduced iff ≃A is the equality relation. [1 mark]

(v) Let A = (S,A, s0, δ, T ) be an automaton. We define a machine
Ar = A/ ≃A as follows. The set of states is the set of ≃A-
equivalence classes; I will denote the ≃A-equivalence class con-
taining the state s by [s]. The initial state is [s0]. A state [s]
is terminal iff s is terminal. The transition function is given by
[s] · a = [s · a]; this is well-defined by (ii). [2 marks]

We have to prove that L(Ar) = L(A). By induction, [s]·x = [s·x].
We have that x ∈ L(Ar) iff [s0] ·x is terminal iff [s0 ·x] is terminal
iff by (iii) s0 · x is terminal iff x ∈ L(A), as required. [4 marks]

It remains to be proved that Ar is reduced. The states [s] and
[t] are indistinguishable iff for all strings x we have that [s] · x
is terminal iff [t] · x is terminal iff [s · x] is terminal iff [t · x] is
terminal iff, by (iii), s · x is terminal iff t · x is terminal, which
means precisely that s and t are indistinguishable in A, and so
[s] = [t], as required. [4 marks]



180 SOLUTIONS TO 2008 EXAM



Bibliography

[1] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: principles, techniques,
and tools, Addison-Wesley, 1986.

[2] M. A. Arbib, Brains, machines and mathematics, Springer-Verlag,
1987.

[3] M. P. Béal, D. Perrin, Symbolic dynamics and finite automata, in
Handbook of formal languages, Volume 2 (editors G. Rozenberg, A. Sa-
lomaa), Springer, 1997, 463–506.

[4] W. Brauer, Automatentheorie, B.G. Teubner, Stuttgart, 1984.

[5] J. Carroll, D. Long, Theory of finite automata, Prentice-Hall Interna-
tional, 1989.

[6] N. Chomsky, Three models for the description of languages, IRE Trans-
actions of Information Theory 2 (1956), 113–124.

[7] P. S. Churchland, Neurophilosophy, The MIT Press, 1990.

[8] D. I. A. Cohen, Introduction to computer theory, Second Edition, John
Wiley and Sons, 1997.

[9] M. Chrochemore, C. Hancart, Automata for matching patterns, in
Handbook of formal languages, Volume 2 (editors G. Rozenberg, A. Sa-
lomaa), Springer, 1997, 399–462.

[10] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Pater-
son, W. P. Thurston, Word processing in groups, Jones and Bartlett,
1992.

181



182 BIBLIOGRAPHY

[11] J. E. F. Friedl, Mastering regular expressions, Second Edition, O’Reilly,
2002.

[12] F. Gécseg, I. Peák, Algebraic theory of automata, Akadémiai Kiadó,
Budapest, 1972.

[13] V. M. Glushkov, The abstract theory of automata, Russian Mathemat-
ical Surveys 16 (1961), 1–53.

[14] R. I. Grogorchuk, V. V. Nekrashevich, V. I. Sushchanskii, Automata,
dynamical systems, and groups, Proceedings of the Steklov Institute of
Mathematics 231 (2000), 128–203.

[15] F. von Haeseler, Automatic sequences, Walter de Gruyter, 2003.

[16] A. Hodges, Alan Turing: the enigma, Vintage, 1992.

[17] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, lan-
guages and computation, Addison-Wesley, 1979.

[18] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to automata
theory, languages and computation, Second Edition, Addison Wesley,
2001.

[19] D. A. Huffman, The synthesis of sequential switching circuits, Journal
of the Franklin Institute 257 (1954), 161–190, 275–303.

[20] S. C. Kleene, Representation of events in nerve nets and finite au-
tomata, in Automata studies (editors C. E. Shannon, J. McCarthy),
Princeton University Press, 1956, 3–42.

[21] D. C. Kozen, Automata and computability, Springer-Verlag, 1997.

[22] H. R. Lewis, C. H. Papadimitriou, Elements of the theory of computa-
tion, Second Edition, Addison Wesley Longman, 1998.

[23] D. Lind, B. Marcus, Symbolic dynamics and coding, Cambridge Uni-
versity Press, 1995.

[24] M. Lothaire, Combinatorics on words, Cambridge University Press,
1997.



BIBLIOGRAPHY 183

[25] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent
in nervous activity, Bulletin of Mathematical Biophysics 5 (1943), 115–
133.

[26] G. H. Mealy, A method for synthesizing sequential circuits, Bell System
Technical Journal 34 (1955), 1045–1079.

[27] Yu. T. Medvedev, On the class of events representable in a finite au-
tomaton, 1956, in Russian, reprinted in English in [31].

[28] B. Mikolajczak (editor), Algebraic and structural automata theory,
North-Holland, 1991.

[29] M. Minsky, Computation: finite and infinite machines, New York,
Prentice-Hall, 1967.

[30] E. F. Moore, Gedanken-Experiments on sequential machines, in Au-
tomata studies (editors C. E. Shannon, J. McCarthy), Princeton Uni-
versity Press, 1956, 129–153.

[31] E. F. Moore (editor), Sequential machines: selected papers, Addison-
Wesley, 1964.

[32] J. Myhill, Finite automata amd the representation of events, Wright
Air Development Command Technical Report 57–624, (1957), 112–
137.

[33] A. Nerode, Linear automaton transformations, Proceedings of the
American Mathematical Society 9 (1958), 541–544.

[34] D. Perrin, Finite automata, in Handbook of theoretical computer science
(editor J. van Leeuwen), Elsevier Science Publishers B.V., 1990, 3–57.

[35] D. Perrin, Les débuts de la theorie des automates, Technique et Science
Informatique 14 (1995), 409–433.

[36] C. Petzold, Codes, Microsoft Press, 1999.

[37] J.-E. Pin, Varieties of formal languages, North Oxford Academic, 1986.



184 BIBLIOGRAPHY

[38] M. O. Rabin, D. Scott, Finite automata and their decision prob-
lems, IBM Journal of Research and Development 3 (1959), 114–125.
Reprinted in Sequential machines (editor E. F. Moore), Addison-
Wesley, Reading, Massachusetts, 1964, 63–91.

[39] E. Roche, Y. Schabes (editors), Finite-state language processing, The
MIT Press, 1997.

[40] A. Salomaa, Theory of automata, Pergamon Press, 1969.

[41] M. P. Schützenberger, Une théorie algébrique du codage, in Séminaire
Dubreil-Pisot (1955/56), exposé no. 15.

[42] M. P. Schützenberger, Une théorie algébrique du codage, Comptes Ren-
dus des Séances de l’Académie des Sciences Paris 242 (1956), 862–864.

[43] C. E. Shannon, J. McCarthy (editors), Automata studies, Princeton
University Press, Princeton, New Jersey, 1956.

[44] D. Shasha, C. Lazere, Out of their minds, Copernicus, 1995.

[45] C. C. Sims, Computation with finitely presented groups, Cambridge
University Press, 1994.

[46] M. Sipser, Introduction to the theory of computation, PWS Publishing
Company, 1997.

[47] M. Smith, Station X, Channel 4 Books, 2000.

[48] W. P. Thurston, Groups, tilings and finite state automata, Summer
1989 AMS Colloquium Lectures, National Science Foundation, Univer-
sity of Minnesota.

[49] A. M. Turing, On computable numbers with an application to the
Entscheidungsproblem, Proceedings of the London Mathematical Soci-
ety 2 (1936), 230–265. Erratum: Ibid 43 (1937), 544–546.



Index

aardvark, 6
acceptor, 14
accessible automaton, 54
accessible part, 54
accessible state, 54
accessible subset construction, 66
alphabet, 1
associative, 4
Aa, 54
Ac, 34
Ad, 65
Ar, 107
Arev, 69
As, 76

block of partition, 102
Boolean operations, 9

cofinite language, 46
complete deterministic automaton, 19
completion of an automaton, 34
concatenation, 3
congruent (numbers), 37

determinised automaton, 65
deterministic automaton, 19
distinguishable states, 105

ε (empty string), 3
ε-automaton, 73
ε-closure of a state, 75
equality of regular expressions, 86

equality of strings, 3
equivalence class, 103
equivalence relation, 102
extended transition function, 20

factor, 5
factorisation of string, 5

generalised automaton, 93

inaccessible state, 54
incomplete automaton, 32
indistinguishability relation, 105
indistinguishable states, 105
initial state, 17
input alphabet, 17
isomorphic automata, 115
isomorphism (automaton), 115

Kleene star of language, 10

language, 7
language accepted by automaton, 21
language recognised by automaton, 21
left quotient of language, 121
length of string, 4
letter (of alphabet), 2
lexicographic, 5
lexicon, 5

Method of Quotients, 126
minimal automaton (for language), 117

185



186 INDEX

modulo (a number), 37
monoid, 4

non-deterministic automaton, 62
normalised (generalised) automaton,

93
normalised ε-automaton, 89

partition, 101
plus (+) operation, 3
prefix, 5
product operation of languages, 9
proper factor, 5
proper prefix, 5
proper suffix, 5

quotient of language, 121

rank of language, 119
recognisable language, 21
reduced automaton, 106, 107
reduction of an automaton, 109
regular expression, 84
regular language, 86
regular operator, 84
Remainder Theorem, 37
reverse of language, 60
reverse of string, 60

semigroup, 4
ShortLex order, 4
sink state, 34
star (∗) operation, 3
state, 17
string, 1
subset construction, 64
substring, 5
suffix, 5
symbol (of alphabet), 2

table form of equivalence relation, 104
terminal state, 17
token (of computer language), 2
transition diagram, 17
transition function, 17
transition table, 19
transition tree, 57
tree of strings, 5
tree order, 4

well-formed automaton, 19

Zn, 38


