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Abstract

We prove that the subgroups of the Thompson group V which are

closed under a binary operation introduced by K. S. Brown are in bi-

jective correspondence with a class of varieties of algebras with a single

binary operation. In addition, we prove that there are exactly three such

proper subgroups which contain the Thompson group F .

2000 AMS Subject Classification: 20F05, 20M18.

1 Introduction

This paper is both an advertisement and application of our paper [14]. We
shall show how semigroup theory can be used to obtain information about an
important group: the Thompson group V . The results from that paper needed
here are described in Section 2.

Kenneth S. Brown proved [3] that the Thompson group F is equipped with
a binary operation, additional to its multiplication, which he denotes by ∗,
such that ∗ is a group homomorphism from F × F to F . This operation is
‘associative upto conjugacy’ meaning that there is an element x0 ∈ F such that
for all elements f, g, h ∈ F the following equation holds:

f ∗ (g ∗ h) = ((f ∗ g) ∗ h)x0 .

In other words: the element x0 implements the associative law by means of con-
jugation.1 The group F is a subgroup of the group V , and this binary operation

1In fact this operation is also discussed in my book [13] (pp 297–304) where it arose in Peter

1



can be extended to the whole V and gives rise to an injective homomorphism
from V × V to V . It is natural to ask which proper subgroups of V are closed
under the operation.2 We show that this question is equivalent to classifying
certain special varieties of universal algebras. Those subgroups of this type
which contain F can be described exactly: there are exactly three. The proof
uses semigroup theory in two different ways: inverse semigroups are used to link
subgroups of V closed under the operation to certain semigroup varieties; we
then use the theory of semigroup varieties to show that only three semigroup
varieties satisfy the conditions which arise. The Thompson groups F and V and
the binary operation ∗ will be defined in Section 2.

2 Preliminaries

We summarise the theory developed in [14] needed to understand this paper.
Our reference for inverse semigroup theory is [13].

Patrick Dehornoy proved that the Thompson groups F and V are closely
related to varieties of semigroups: the group F is the geometry group of the va-
riety of all semigroups whereas the group V is the geometry group of the variety
of commutative semigroups [5, 6, 7, 8]. In [14], we established a general result
linking certain kinds of universal algebra varieties to a special class of inverse
semigroups. To state this result we need some definitions.

Remark Although the results can be stated for arbitrary universal algebras, I
shall state them here for the case where there is exactly one binary operation
symbol, which I shall denote by ×.

We shall assume that there is a countably infinite set of variables X, and
we shall work with terms T (X) over these variables. A term is linear if any
variable that occurs occurs exactly once. An identity s ≈ t is simply an ordered
pair of terms. We say that it is linear if the same variables occur on each side,
and no variable appears more than once on each side. A variety of algebras is
linear if it can be defined by a set of linear identities. A substitution maps a
finite number of variables to the set of terms. A relabelling substitution maps a
finite number of variables bijectively to a finite number of variables. An identity
s′ ≈ t′ is an instance of an identity s ≈ t if there is a substitution f such that
s′ = f(s) and t′ = f(t). We say that it is a proper instance if f is not a
relabelling substitution. The book by Jorge Almeida [1] is a good reference for
the theory of varieties. An inverse semigroup S equipped with an additional
binary operation ∗ such that ∗: S × S → S is a homomorphism is called an

Hines PhD work [11] on analysing Girard’s geometry of interaction program [10], although at
that time we did not know about the connection with V .

2The subgroups of F closed under ∗ are considered in [9]. I am grateful to my colleague Nick
Gilbert here at Heriot-Watt for first alerting me to this paper, and the referee for reminding
me of it.
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inverse algebra.3 Inverse subsemigroups of S which contain all the idempotents
of S are said to be wide.4 An observation we shall use on a number of occasions
is that wide inverse submonoids are also order ideals. We can now state a special
case of Theorem 5.7 [14].

Theorem 2.1 There is an inverse algebra LCM2, called the linear clause monoid,
such that there is a bijection between the linear varieties and the wide inverse
subalgebras of LCM2.

In fact, the binary operation on LCM2, which I shall denote by ⊗, is an in-
jective homomorphism. We shall give two different, but equivalent, descriptions
of LCM2.

Description 1: This works with equivalence classes of linear identities. We
say that two linear identities are equivalent if they differ only by a relabelling
substitution. We denote the equivalence class of the linear identity s ≈ t by
[s, t], and the set of equivalence classes by LCM2. The product of [s, t] and
[u, v] is defined as follows. Without loss of generality, we can assume that t and
u have no variables in common. It is possible to find substitutions f and g such
that the following two properties hold:

(i) f(t) = g(u).

(ii) If f ′ and g′ are such that f ′(t) = g′(u) then there is a substitution h such
that f ′ = hf and g′ = hg.

The proof of this is Theorem 3.4 and Proposition 8.3 of [14] We accordingly
define the product of [s, t] and [u, v] to be [f(s), g(v)]. With respect to this
operation, LCM2 is an inverse monoid: the identity is [x, x], the idempotents
are [s, s], and the inverse of [s, t] is [t, s]. The additional binary operation on
LCM2, which I shall denote by ⊗, is defined as follows. Given [s1, tt] and [s2, t2]
assume, without loss of generality, that the variables in s1 are disjoint from those
in s2. Define

[s1, t1] ⊗ [s2, t2] = [s1 × s2, t1 × t2].

Description 2: This will enable us to make the explicit connection with the
Thompson group V . A good reference for this approach is [2]. Let M be a
monoid. A right ideal R of M is a subset such that RM ⊆ R. A bijective
function θ: R → R′ is called a right ideal isomorphism if R and R′ are right
ideals and θ(rm) = θ(r)m for all r ∈ R and m ∈ M . A right ideal R is said to
be essential if R∩R′ 6= ∅ for all right ideals R′. We define the inverse monoid T2

to be the set of all right ideal isomorphisms between essential finitely generated
right ideals of the free monoid on 2 generators; it can be shown that such right

3For the purposes of this paper. Observe that ‘algebra’ here is being used in the sense of
‘universal algebra’.

4The term ‘full’ is often used in semigroup theory, but this conflicts with the usage in
category theory.
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ideals are precisely those generated by maximal finite prefix codes.5 It remains
to describe how T2 can be viewed as an inverse algebra. The free monoid on two
generators consists of all finite strings over an alphabet with two letters. Let this
alphabet consist of p and q, and denote the free monoid on this alphabet by M2.
If Z and Z ′ are maximal prefix codes so is pZ∪qZ ′. Let β1:Z1M2 → Z ′

1M2 and
β2:Z2M2 → Z ′

2M2 be two elements of T2. Define β1 ◦ β2 as follows: its domain
is (pZ1 ∪ qZ2)M2, its codomain is (pZ ′

1 ∪ qZ ′

2)M2, and the rule is pz 7→ pβ1(z)
and qz 7→ qβ2(z).

The following was proved in a more general frame as Theorem 6.10 of [14].

Theorem 2.2 The inverse algebras LCM2 and T2 are isomorphic.

The connection between the two inverse monoids above and Thompson’s
group V follows from the work of Section 8 of [14], but can be seen most easily
using the following ideas. Let S be an inverse semigroup. Define the relation
σ on S by s σ t iff u ≤ s, t for some u, where the order is the natural partial
order on the inverse semigroup. Then σ is a congruence and S/σ is a group. In
addition, if ρ is any congruence on S such that S/ρ is a group then σ ⊆ ρ. For
this reason, σ is called the minimum group congruence. The following can be
deduced from [2], and Proposition 8.7 of [14].

Theorem 2.3 The group T2/σ is isomorphic to the Thompson group V . In
addition, the injective binary operation ◦ on T2 induces an injective binary op-
eration ∗ on V when we define ∗ on V by

σ(s) ∗ σ(t) = σ(s ◦ t).

It is not hard to prove that the binary operation we have defined is essen-
tially the same as the one given by Brown.

Remark Theorem 2.3 can be taken as the definition of the Thompson group
V . It is identical to the one given by Scott in [16], although this needs a little
decoding. The monoid T2 is the inverse semigroup of all right ideal isomorphisms
between essential finitely generated right ideals. The group V consists of the
maximal elements of T2; the composition of two maximal elements need not be
maximal, but does lie beneath a unique maximal element: this is defined to be
the product in the group V . The Thompson group F is that subgroup of V
consisting of all elements that preserve the ‘dictionary order’. We shall not use
this description here, but [2] contains a lot more on the Thompson groups F
and V viewed in this way.

5A ‘prefix code’ is simply a subset of a free monoid in which no two elements are proper
prefixes of each other.
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3 Results

Our first main result, Proposition 3.2, tells us that the operation ∗ defined on the
group V is closely related to the group-theoretic structure of V . It generalises
Brown’s observation mentioned in the second paragraph of this paper.

Let u(x1, x2) = x1 × x2. Then the definition of ⊗ can be stated in the form

u([s1, t1], [s2, t2]) = [u(s1, s2), u(t1, t2)].

The following lemma generalises this to arbitrary linear terms u.

Lemma 3.1 Let u(x1, . . . , xn) be a linear term in T (X) where the variables
occur in the order indicated from left-to-right. Let [si, ti] be n elements of LCM2

where, without loss of generality, we assume that the sets of variables of the si

are disjoint. Then

u([s1, t1], . . . , [sn, tn]) = [u(s1, . . . , sn), u(t1, . . . , tn)].

Proof We prove the result by induction on n. The case n = 1 is immediate.
Assume the result holds for all n < m. We prove the result for n = m. The
term u(x1, . . . , xm) is equal to u1(x1, . . . , xr)×u2(xr+1, . . . , xm) for some r and
some terms u1 and u2. By the induction hypothesis, we therefore can write

u1([s1, t1], . . . , [sr, tr]) = [u1(s1, . . . , sr), u1(t1, . . . , tr)]

and

u2([sr+1, tr+1], . . . , [sm, tm]) = [u2(sr+1, . . . , sm), u2(tr+1, . . . , tm)].

The result now follows from the definition of the operation ⊗ on LCM2.

A linear identity s ≈ t will be called reducible if there is a linear identity
s′ ≈ t′ and a substitution f , which is not a relabelling substitution, such that
f(s′) = s and f(t′) = t. A linear identity which is not reducible will be called
irreducible. Thus the irreducible linear identities are not proper instances of any
other linear identity.

An element g ∈ V is said to implement the linear identity u ≈ v (by conju-
gation) iff

u(h1, . . . , hn) = gv(h1, . . . , hn)g−1

for all hi ∈ V .

Proposition 3.2 Each linear identity is implemented by an element of V , and
each element of V implements a linear identity.

Proof Let u ≈ v be any linear identity, where u contains n variables. Then
[u, v] is an element of in LCM2. We calculate

[u, v]v([s1, t1], . . . , [sn, tn])[v, u].
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By Lemma 3.1, this is equal to

[u, v][v(s1, . . . , sn), v(t1, . . . , tn)][v, u].

We now apply the definition of multiplication via unification to get

[u(s1, . . . , sn), u(t1, . . . , tn)],

which, by Lemma 3.1 again, gives

u([s1, t1], . . . , [sn, tn]).

Both claims now follow since every element of V is determined by a linear iden-
tity, and every linear identity gives rise to an element of V .

Remark There is a bijection between the elements of V and the irreducible
linear identities (upto the choice of variables). This follows from the observa-
tion that on the inverse monoid LCM2 each σ-class contains a unique maximum
element.6 This is proved in [2] as Proposition 2.1, and is equivalent to the re-
sult stated in [4] that each element is represented by exactly one reduced tree
diagram. Thus each element of V implements an irreducible linear identity.

A subgroup of V closed under ∗ will be called a subalgebra. The goal of the
remainder of this paper is to classify the subalgebras of V that contain F .

Let S be an inverse semigroup. Inverse subsemigroups of S are mapped to
subgroups of S/σ. We need a slightly stronger result.

Lemma 3.3 Let T be a wide inverse submonoid of the inverse monoid S. De-
note the minimum group congruence on S by σS and the one on T by σT . Then
the image of T in S/σS is isomorphic to T/σT .

Proof For each t ∈ T we have that σT (t) ⊆ σS(t). We define a function from
T/σT to S/σS by σT (t) 7→ σS(t). This is clearly a homomorphism. It is injec-
tive because T is wide in S and so is an order ideal. The image of this map is
precisely the image of T under the natural map determined by σS .

An inverse submonoid T of an inverse monoid S is said to be closed if a ∈ T
and a ≤ b implies that b ∈ T .

Lemma 3.4 Let S be an inverse monoid. Then the wide closed inverse sub-
monoids of S are in bijective correspondence with the subgroups of G = S/σ.

Proof For each wide inverse submonoid U of S let G(U) be the image of U in
G. Observe that by Lemma 3.3, G(U) is isomorphic to U/σU . Suppose that
G(U) = G(V ). Let a ∈ U . Then there exists b ∈ V such that σ(a) = σ(b). Thus
there exists c ∈ S such that c ≤ a, b. Now V is an order ideal and so c ∈ V .

6Inverse monoids with this property are known as F -inverse.
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But V is closed and so a ∈ V . Thus U ⊆ V . By symmetry U = V . Now let H
be a subgroup of G. Let U = {a ∈ S: σ(a) ∈ H}. It is routine to check that U
is a wide full inverse submonoid of S.

An inverse semigroup S is said to be E-unitary if e ≤ s where e is an
idempotent implies that s is an idempotent. The linear clause monoid is E-
unitary; see Theorem 8.4 of [14].

Lemma 3.5 Let S be an E-unitary inverse algebra. Then G = S/σ is an
inverse algebra. In addition, the closed wide inverse subalgebras of S are in
bijective correspondence with the subalgebras of G.

Proof Denote the algebra operation on S by ⊗. We define

σ(s) • σ(t) = σ(s ⊗ t).

The proof that this operation is well-defined and leads to an algebra structure
is straightforward, once it is noted that in an E-unitary inverse semigroup a σ b
iff a−1b and ab−1 are both idempotents. A complete proof is written out as
Proposition 8.7 in [14]. Observe that by construction the natural map from S
to G is also an algebra homomorphism. By Lemma 3.4, there is a bijection
between the wide closed inverse submonoids of S and the subgroups of G. By
our observation above, and the definition of the algebra operation on G, this
bijection restricts to a bijection between subalgebras in S and subalgebras of G.

We say that a linear variety is closed if the following condition holds: if s ≈ t
is a linear identity that holds in every element of the variety, and if s′ ≈ t′ is a
linear identity such that s = f(s′) and t = f(t′) for some substitution f then
s′ ≈ t′ holds in every element of the variety.

Lemma 3.6 There is a bijection between closed linear varieties and the closed
wide inverse subalgebras of the linear clause monoid.

Proof This follows from Theorem 2.1, and the observation that the linear iden-
tity s′ ≈ t′ is an instance of the linear identity s ≈ t iff [s′, t′] ≤ [s, t] in the
linear clause monoid.

The following is the key to classifying the subgroups of V closed under the
operation ∗.

Theorem 3.7 There is a bijection between the closed linear varieties and the
subalgebras of V . This bijection restricts to one between the closed linear vari-
eties that satisfy the associativity law and the subalgebras of V that contain the
Thompson group F .

Proof By Lemma 3.5, there is a bijection between the subalgebras of V and
the closed wide inverse subalgebras of the linear clause monoid. By Lemma 3.6,
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there is a bijection between the closed wide inverse subalgebras of the linear
clause monoid and the closed linear varieties. Thus we have a bijection between
the closed linear varieties and the subalgebras of V .

By work of Dehornoy, we know that the (linear) variety of semigroups cor-
responds to the Thompson group F [6, 8]. Thus the subalgebras of V that
contain F correspond to the closed linear varieties that are contained in the
variety of semigroups; the reversal in order comes about because of Birkhoff’s
variety theorem [1].

By the second half of Theorem 3.7, to classify the subalgebras of V that
contain F we have to classify the closed linear varieties of semigroups. Clearly,
we need only the ones that are strictly contained in the variety of semigroups;
I shall refer to these as ‘proper’ varieties. In what follows, I shall denote the
binary operation symbol × by concatenation. We shall be working with linear
semigroup identities and these all have the form

x1 . . . xn ≈ xτ(1) . . . xτ(n)

where τ is a permutation of 1, . . . , n. Such an identity is said to be non-trivial
if τ is not the identity. Observe that brackets can be omitted because we are
assuming that we are always working with semigroups. A linear identity is said
to be Pp,q if τ fixes the first p subscripts, but not the first p + 1, and τ fixes the
last q subscripts, but not the last q + 1. Because of closure, we shall only be
interested in linear identities which are either P0,0, P1,0, P0,1 or P1,1.

Proposition 3.8 There are exactly four closed linear proper varieties of semi-
groups:

(1) The variety of commutative semigroups: the variety of semigroups defined
by xy ≈ yx.

(2) The variety of semigroups defined by xyz ≈ xzy.

(3) The variety of semigroups defined by xyz ≈ yxz.

(4) The variety of semigroups defined by xuvz ≈ xvuz.

Proof We begin with a number of observations which will be useful throughout
our proof.

(a) A theorem of Putcha and Yaqub (see Exercise 6.3.9 of [1]) states that a
variety of semigroups satisfying a non-trivial linear identity must satisfy
an identity of the form

x1 . . . xpyzt1 . . . tq ≈ x1 . . . xpzyt1 . . . tq.

Thus a closed linear variety of semigroups satisfying a non-trivial linear
identity must satisfy

xuvz ≈ xvuz.
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(b) All the linear semigroup identities deducible from identities in P1,0 belong
to Pp,q where p ≥ 1.

(c) All the linear semigroup identities deducible from identities in P0,1 belong
to Pp,q where q ≥ 1.

(d) All the linear semigroup identities deducible from identities in P1,1 belong
to Pp,q where p, q ≥ 1.

The four varieties of semigroups (1)–(4) are distinct. This is well-known but
for completeness I shall give an argument. The variety (1) is distinguished from
the remaining three because they each contain non-commutative semigroups.
The varieties (2),(3)and (4) are distinguished from each other by the bands7

they contain: variety (2) contains the left normal bands, variety (3) the right
normal bands, and variety (4) the normal bands.

Next we prove that each of these varieties is closed. For (1), all linear
semigroup identities hold and so this is closed. For (2), we note by observation
(b) that the only linear semigroup identities which can be deduced belong to
Pp,q where p ≥ 1. But using xyz ≈ xzy and xuvz ≈ xvuz (observation (a)) we
can deduce every such linear semigroup identity in Pp,q where p ≥ 1. Suppose
now that s ≈ t is in Pp,q where p ≥ 1 and so in the variety and that s′ ≈ t′ is
such that there is a substitution f such that s = f(s′) and t = f(t′). Then in
fact s′ ≈ t′ belongs to Pp′,q′ for some p′ ≥ 1 and so s′ ≈ t′ belongs to the variety.
Thus (2) is closed. The proof that (3) is closed is similar to the proof for (2)
and uses observation (c). To prove that (4) is closed, we apply observation (d)
that the only linear semigroup identities we can deduce from xuvz ≈ xvuz are
in Pp,q where p, q ≥ 1. But every such linear semigroup identity can be deduced
using xuvz ≈ xvuz. Suppose now that s ≈ t is in Pp,q where p, q ≥ 1 and so
in the variety and that s′ ≈ t′ is such that there is a substitution f such that
s = f(s′) and t = f(t′). Then in fact s′ ≈ t′ belongs to Pp′,q′ for some p′, q′ ≥ 1
and so s′ ≈ t′ belongs to the variety. Thus (4) is closed.

It remains to show that a closed linear semigroup variety must be equal to
one of these four. By a theorem of Putcha and Yaqub [15] (see Proposition 6.3.8
of [1]), any semigroup variety satisfying a non-trivial linear identity of type P0,0

must satisfy an identity of the form

x1 . . . xry1 . . . yr ≈ y1 . . . yrx1 . . . xr

for r large enough. We deduce that a closed linear semigroup variety satisfying a
non-trivial linear identity of type P0,0 is the variety of commutative semigroups.
Taking into account the closure assumption, it follows that we can restrict our
attention to closed linear semigroup varieties defined by semigroup identities
of types P1,0, P0,1 or P1,1 only. However, if a closed linear semigroup variety
satisfies a non-trivial identity from P1,0 and one from P0,1 then it satisfies a
non-trivial identity from P0,0 and so is the variety of commutative semigroups.

7Idempotent semigroups. See [12] for more on these classes of bands.
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We deduce that a closed linear semigroup variety that is not the variety of semi-
groups or the variety of commutative semigroups is defined by: identities from
P1,1 alone; identities from P1,0 alone; or identities from P0,1 alone. The first
case can be quickly dealt with. By observation (d), the only linear semigroup
identities satisfied are those in Pp,q where p, q ≥ 1. However, by observation
(a) the linear semigroup identity xuvz ≈ xvuz holds. Thus every linear semi-
group identity in Pp,q where p, q ≥ 1 can be deduced. It follows that the linear
semigroup variety in question is (4). To complete the proof, it is sufficient to
show that a closed linear semigroup variety satisfying a non-trivial identity from
P1,0 must satisfy xyz ≈ xzy and so be variety (2); it will then follow that an
analogous argument will show that a closed linear semigroup variety satisfying
a non-trivial identity from P0,1 must satisfy xyz ≈ yxz and so be variety (3).
Let the linear identity satisfied be

xx1 . . . xn ≈ xxτ(1) . . . xτ(n)

where n ≥ 2. If n = 2 then the only non-trivial linear identity of the required
form is xyz ≈ xzy. Induction hypothesis: all closed linear semigroup varieties
satisfying a non-trivial linear identity of type P1,0 with n < m satisfy xyz ≈ xzy.
Consider now a closed linear semigroup variety satisfying

xx1 . . . xm ≈ xxτ(1) . . . xτ(m).

Use the identity xuvy ≈ xvuy, which holds by observation (a), to rearrange
xτ(1) . . . xτ(m−1) into a new product, u say, such that uxτ(m) has the form
u′xj−1xjv

′ for some 1 < j ≤ m. The identity

xx1 . . . xm ≈ xu′xj−1xjv
′

is an instance of a non-trivial linear identity of length m − 1 belonging to P1,0,
and so we may invoke our induction hypothesis.

Combining Theorem 3.7 and Proposition 3.8, we have proved the following.

Theorem 3.9 There are exactly three proper subgroups of V strictly contain-
ing F and closed under the binary operation ∗. They are: a group VL that
corresponds to the semigroup variety defined by the linear semigroup identity
xyz ≈ xzy; a group VR that corresponds to the semigroup variety defined by
the linear semigroup identity xyz ≈ yxz; and a group VN that corresponds to
the semigroup variety defined by the linear semigroup identity xuvy ≈ xvuy. In
addition, VL ∩ VR = VN and the smallest subgroup of V containing VL and VR

and closed under ∗ is V itself.

Remark The group VR has been studied before by Dehornoy [8].

By restricting attention to the subalgebras of V containing F , we have made
life easier: much is known about linear semigroup varieties. However, the theory
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developed in this paper also shows that arbitrary subalgebras of V are classified
by the closed linear varieties of algebras (over a single binary operation). Thus
our understanding of certain kinds of subgroups of V depends on our under-
standing of certain kinds of varieties of universal algebras. The paper [9] adopts
exactly the same approach as ours but adapted to the case of subalgebras of F .
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