A class of subgroups of Thompson's group V

Mark V. Lawson
Department of Mathematics
and the
Maxwell Institute for Mathematical Sciences
Heriot-Watt University
Riccarton
Edinburgh EH14 4AS
Scotland
M.V.Lawson@ma.hw.ac.uk

January 3, 2007

Abstract

We prove that the subgroups of the Thompson group V which are closed under a binary operation introduced by K. S. Brown are in bijective correspondence with a class of varieties of algebras with a single binary operation. In addition, we prove that there are exactly three such proper subgroups which contain the Thompson group F.

2000 AMS Subject Classification: 20F05, 20M18.

1 Introduction

This paper is both an advertisement and application of our paper [14]. We shall show how semigroup theory can be used to obtain information about an important group: the Thompson group V. The results from that paper needed here are described in Section 2.

Kenneth S. Brown proved [3] that the Thompson group F is equipped with a binary operation, additional to its multiplication, which he denotes by $*$, such that $*$ is a group homomorphism from $F \times F$ to F. This operation is 'associative upto conjugacy' meaning that there is an element $x_{0} \in F$ such that for all elements $f, g, h \in F$ the following equation holds:

$$
f *(g * h)=((f * g) * h)^{x_{0}}
$$

In other words: the element x_{0} implements the associative law by means of conjugation. ${ }^{1}$ The group F is a subgroup of the group V, and this binary operation

[^0]can be extended to the whole V and gives rise to an injective homomorphism from $V \times V$ to V. It is natural to ask which proper subgroups of V are closed under the operation. ${ }^{2}$ We show that this question is equivalent to classifying certain special varieties of universal algebras. Those subgroups of this type which contain F can be described exactly: there are exactly three. The proof uses semigroup theory in two different ways: inverse semigroups are used to link subgroups of V closed under the operation to certain semigroup varieties; we then use the theory of semigroup varieties to show that only three semigroup varieties satisfy the conditions which arise. The Thompson groups F and V and the binary operation $*$ will be defined in Section 2.

2 Preliminaries

We summarise the theory developed in [14] needed to understand this paper. Our reference for inverse semigroup theory is [13].

Patrick Dehornoy proved that the Thompson groups F and V are closely related to varieties of semigroups: the group F is the geometry group of the variety of all semigroups whereas the group V is the geometry group of the variety of commutative semigroups $[5,6,7,8]$. In [14], we established a general result linking certain kinds of universal algebra varieties to a special class of inverse semigroups. To state this result we need some definitions.

Remark Although the results can be stated for arbitrary universal algebras, I shall state them here for the case where there is exactly one binary operation symbol, which I shall denote by \times.

We shall assume that there is a countably infinite set of variables X, and we shall work with terms $T(X)$ over these variables. A term is linear if any variable that occurs occurs exactly once. An identity $s \approx t$ is simply an ordered pair of terms. We say that it is linear if the same variables occur on each side, and no variable appears more than once on each side. A variety of algebras is linear if it can be defined by a set of linear identities. A substitution maps a finite number of variables to the set of terms. A relabelling substitution maps a finite number of variables bijectively to a finite number of variables. An identity $s^{\prime} \approx t^{\prime}$ is an instance of an identity $s \approx t$ if there is a substitution f such that $s^{\prime}=f(s)$ and $t^{\prime}=f(t)$. We say that it is a proper instance if f is not a relabelling substitution. The book by Jorge Almeida [1] is a good reference for the theory of varieties. An inverse semigroup S equipped with an additional binary operation $*$ such that $*: S \times S \rightarrow S$ is a homomorphism is called an

[^1]inverse algebra. ${ }^{3}$ Inverse subsemigroups of S which contain all the idempotents of S are said to be wide. ${ }^{4}$ An observation we shall use on a number of occasions is that wide inverse submonoids are also order ideals. We can now state a special case of Theorem 5.7 [14].

Theorem 2.1 There is an inverse algebra $\mathcal{L C} \mathcal{M}_{2}$, called the linear clause monoid, such that there is a bijection between the linear varieties and the wide inverse subalgebras of $\mathcal{L C} \mathcal{M}_{2}$.

In fact, the binary operation on $\mathcal{L C} \mathcal{M}_{2}$, which I shall denote by \otimes, is an injective homomorphism. We shall give two different, but equivalent, descriptions of $\mathcal{L C} \mathcal{M}_{2}$.

Description 1: This works with equivalence classes of linear identities. We say that two linear identities are equivalent if they differ only by a relabelling substitution. We denote the equivalence class of the linear identity $s \approx t$ by $[s, t]$, and the set of equivalence classes by $\mathcal{L C} \mathcal{M}_{2}$. The product of $[s, t]$ and $[u, v]$ is defined as follows. Without loss of generality, we can assume that t and u have no variables in common. It is possible to find substitutions f and g such that the following two properties hold:
(i) $f(t)=g(u)$.
(ii) If f^{\prime} and g^{\prime} are such that $f^{\prime}(t)=g^{\prime}(u)$ then there is a substitution h such that $f^{\prime}=h f$ and $g^{\prime}=h g$.

The proof of this is Theorem 3.4 and Proposition 8.3 of [14] We accordingly define the product of $[s, t]$ and $[u, v]$ to be $[f(s), g(v)]$. With respect to this operation, $\mathcal{L C} \mathcal{M}_{2}$ is an inverse monoid: the identity is $[x, x]$, the idempotents are $[s, s]$, and the inverse of $[s, t]$ is $[t, s]$. The additional binary operation on $\mathcal{L C} \mathcal{M}_{2}$, which I shall denote by \otimes, is defined as follows. Given $\left[s_{1}, t_{t}\right]$ and $\left[s_{2}, t_{2}\right]$ assume, without loss of generality, that the variables in s_{1} are disjoint from those in s_{2}. Define

$$
\left[s_{1}, t_{1}\right] \otimes\left[s_{2}, t_{2}\right]=\left[s_{1} \times s_{2}, t_{1} \times t_{2}\right]
$$

Description 2: This will enable us to make the explicit connection with the Thompson group V. A good reference for this approach is [2]. Let M be a monoid. A right ideal R of M is a subset such that $R M \subseteq R$. A bijective function $\theta: R \rightarrow R^{\prime}$ is called a right ideal isomorphism if R and R^{\prime} are right ideals and $\theta(r m)=\theta(r) m$ for all $r \in R$ and $m \in M$. A right ideal R is said to be essential if $R \cap R^{\prime} \neq \emptyset$ for all right ideals R^{\prime}. We define the inverse monoid T_{2} to be the set of all right ideal isomorphisms between essential finitely generated right ideals of the free monoid on 2 generators; it can be shown that such right

[^2]ideals are precisely those generated by maximal finite prefix codes. ${ }^{5}$ It remains to describe how T_{2} can be viewed as an inverse algebra. The free monoid on two generators consists of all finite strings over an alphabet with two letters. Let this alphabet consist of p and q, and denote the free monoid on this alphabet by M_{2}. If Z and Z^{\prime} are maximal prefix codes so is $p Z \cup q Z^{\prime}$. Let $\beta_{1}: Z_{1} M_{2} \rightarrow Z_{1}^{\prime} M_{2}$ and $\beta_{2}: Z_{2} M_{2} \rightarrow Z_{2}^{\prime} M_{2}$ be two elements of T_{2}. Define $\beta_{1} \circ \beta_{2}$ as follows: its domain is $\left(p Z_{1} \cup q Z_{2}\right) M_{2}$, its codomain is $\left(p Z_{1}^{\prime} \cup q Z_{2}^{\prime}\right) M_{2}$, and the rule is $p z \mapsto p \beta_{1}(z)$ and $q z \mapsto q \beta_{2}(z)$.

The following was proved in a more general frame as Theorem 6.10 of [14].
Theorem 2.2 The inverse algebras $\mathcal{L C}_{2}$ and T_{2} are isomorphic.

The connection between the two inverse monoids above and Thompson's group V follows from the work of Section 8 of [14], but can be seen most easily using the following ideas. Let S be an inverse semigroup. Define the relation σ on S by $s \sigma t$ iff $u \leq s, t$ for some u, where the order is the natural partial order on the inverse semigroup. Then σ is a congruence and S / σ is a group. In addition, if ρ is any congruence on S such that S / ρ is a group then $\sigma \subseteq \rho$. For this reason, σ is called the minimum group congruence. The following can be deduced from [2], and Proposition 8.7 of [14].

Theorem 2.3 The group T_{2} / σ is isomorphic to the Thompson group V. In addition, the injective binary operation \circ on T_{2} induces an injective binary operation * on V when we define $*$ on V by

$$
\sigma(s) * \sigma(t)=\sigma(s \circ t)
$$

It is not hard to prove that the binary operation we have defined is essentially the same as the one given by Brown.

Remark Theorem 2.3 can be taken as the definition of the Thompson group V. It is identical to the one given by Scott in [16], although this needs a little decoding. The monoid T_{2} is the inverse semigroup of all right ideal isomorphisms between essential finitely generated right ideals. The group V consists of the maximal elements of T_{2}; the composition of two maximal elements need not be maximal, but does lie beneath a unique maximal element: this is defined to be the product in the group V. The Thompson group F is that subgroup of V consisting of all elements that preserve the 'dictionary order'. We shall not use this description here, but [2] contains a lot more on the Thompson groups F and V viewed in this way.

[^3]
3 Results

Our first main result, Proposition 3.2, tells us that the operation $*$ defined on the group V is closely related to the group-theoretic structure of V. It generalises Brown's observation mentioned in the second paragraph of this paper.

Let $u\left(x_{1}, x_{2}\right)=x_{1} \times x_{2}$. Then the definition of \otimes can be stated in the form

$$
u\left(\left[s_{1}, t_{1}\right],\left[s_{2}, t_{2}\right]\right)=\left[u\left(s_{1}, s_{2}\right), u\left(t_{1}, t_{2}\right)\right] .
$$

The following lemma generalises this to arbitrary linear terms u.
Lemma 3.1 Let $u\left(x_{1}, \ldots, x_{n}\right)$ be a linear term in $T(X)$ where the variables occur in the order indicated from left-to-right. Let $\left[s_{i}, t_{i}\right]$ be n elements of $\mathcal{L C} \mathcal{M}_{2}$ where, without loss of generality, we assume that the sets of variables of the s_{i} are disjoint. Then

$$
u\left(\left[s_{1}, t_{1}\right], \ldots,\left[s_{n}, t_{n}\right]\right)=\left[u\left(s_{1}, \ldots, s_{n}\right), u\left(t_{1}, \ldots, t_{n}\right)\right] .
$$

Proof We prove the result by induction on n. The case $n=1$ is immediate. Assume the result holds for all $n<m$. We prove the result for $n=m$. The term $u\left(x_{1}, \ldots, x_{m}\right)$ is equal to $u_{1}\left(x_{1}, \ldots, x_{r}\right) \times u_{2}\left(x_{r+1}, \ldots, x_{m}\right)$ for some r and some terms u_{1} and u_{2}. By the induction hypothesis, we therefore can write

$$
u_{1}\left(\left[s_{1}, t_{1}\right], \ldots,\left[s_{r}, t_{r}\right]\right)=\left[u_{1}\left(s_{1}, \ldots, s_{r}\right), u_{1}\left(t_{1}, \ldots, t_{r}\right)\right]
$$

and

$$
u_{2}\left(\left[s_{r+1}, t_{r+1}\right], \ldots,\left[s_{m}, t_{m}\right]\right)=\left[u_{2}\left(s_{r+1}, \ldots, s_{m}\right), u_{2}\left(t_{r+1}, \ldots, t_{m}\right)\right] .
$$

The result now follows from the definition of the operation \otimes on $\mathcal{L C} \mathcal{M}_{2}$.
A linear identity $s \approx t$ will be called reducible if there is a linear identity $s^{\prime} \approx t^{\prime}$ and a substitution f, which is not a relabelling substitution, such that $f\left(s^{\prime}\right)=s$ and $f\left(t^{\prime}\right)=t$. A linear identity which is not reducible will be called irreducible. Thus the irreducible linear identities are not proper instances of any other linear identity.

An element $g \in V$ is said to implement the linear identity $u \approx v$ (by conjugation) iff

$$
u\left(h_{1}, \ldots, h_{n}\right)=g v\left(h_{1}, \ldots, h_{n}\right) g^{-1}
$$

for all $h_{i} \in V$.
Proposition 3.2 Each linear identity is implemented by an element of V, and each element of V implements a linear identity.

Proof Let $u \approx v$ be any linear identity, where u contains n variables. Then [$u, v]$ is an element of in $\mathcal{L C} \mathcal{M}_{2}$. We calculate

$$
[u, v] v\left(\left[s_{1}, t_{1}\right], \ldots,\left[s_{n}, t_{n}\right]\right)[v, u] .
$$

By Lemma 3.1, this is equal to

$$
[u, v]\left[v\left(s_{1}, \ldots, s_{n}\right), v\left(t_{1}, \ldots, t_{n}\right)\right][v, u] .
$$

We now apply the definition of multiplication via unification to get

$$
\left[u\left(s_{1}, \ldots, s_{n}\right), u\left(t_{1}, \ldots, t_{n}\right)\right]
$$

which, by Lemma 3.1 again, gives

$$
u\left(\left[s_{1}, t_{1}\right], \ldots,\left[s_{n}, t_{n}\right]\right)
$$

Both claims now follow since every element of V is determined by a linear identity, and every linear identity gives rise to an element of V.

Remark There is a bijection between the elements of V and the irreducible linear identities (upto the choice of variables). This follows from the observation that on the inverse monoid $\mathcal{L C} \mathcal{M}_{2}$ each σ-class contains a unique maximum element. ${ }^{6}$ This is proved in [2] as Proposition 2.1, and is equivalent to the result stated in [4] that each element is represented by exactly one reduced tree diagram. Thus each element of V implements an irreducible linear identity.

A subgroup of V closed under $*$ will be called a subalgebra. The goal of the remainder of this paper is to classify the subalgebras of V that contain F.

Let S be an inverse semigroup. Inverse subsemigroups of S are mapped to subgroups of S / σ. We need a slightly stronger result.

Lemma 3.3 Let T be a wide inverse submonoid of the inverse monoid S. Denote the minimum group congruence on S by σ_{S} and the one on T by σ_{T}. Then the image of T in S / σ_{S} is isomorphic to T / σ_{T}.

Proof For each $t \in T$ we have that $\sigma_{T}(t) \subseteq \sigma_{S}(t)$. We define a function from T / σ_{T} to S / σ_{S} by $\sigma_{T}(t) \mapsto \sigma_{S}(t)$. This is clearly a homomorphism. It is injective because T is wide in S and so is an order ideal. The image of this map is precisely the image of T under the natural map determined by σ_{S}.

An inverse submonoid T of an inverse monoid S is said to be closed if $a \in T$ and $a \leq b$ implies that $b \in T$.

Lemma 3.4 Let S be an inverse monoid. Then the wide closed inverse submonoids of S are in bijective correspondence with the subgroups of $G=S / \sigma$.

Proof For each wide inverse submonoid U of S let $G(U)$ be the image of U in G. Observe that by Lemma 3.3, $G(U)$ is isomorphic to U / σ_{U}. Suppose that $G(U)=G(V)$. Let $a \in U$. Then there exists $b \in V$ such that $\sigma(a)=\sigma(b)$. Thus there exists $c \in S$ such that $c \leq a, b$. Now V is an order ideal and so $c \in V$.

[^4]But V is closed and so $a \in V$. Thus $U \subseteq V$. By symmetry $U=V$. Now let H be a subgroup of G. Let $U=\{a \in S: \sigma(a) \in H\}$. It is routine to check that U is a wide full inverse submonoid of S.

An inverse semigroup S is said to be E-unitary if $e \leq s$ where e is an idempotent implies that s is an idempotent. The linear clause monoid is E unitary; see Theorem 8.4 of [14].

Lemma 3.5 Let S be an E-unitary inverse algebra. Then $G=S / \sigma$ is an inverse algebra. In addition, the closed wide inverse subalgebras of S are in bijective correspondence with the subalgebras of G.

Proof Denote the algebra operation on S by \otimes. We define

$$
\sigma(s) \bullet \sigma(t)=\sigma(s \otimes t)
$$

The proof that this operation is well-defined and leads to an algebra structure is straightforward, once it is noted that in an E-unitary inverse semigroup $a \sigma b$ iff $a^{-1} b$ and $a b^{-1}$ are both idempotents. A complete proof is written out as Proposition 8.7 in [14]. Observe that by construction the natural map from S to G is also an algebra homomorphism. By Lemma 3.4, there is a bijection between the wide closed inverse submonoids of S and the subgroups of G. By our observation above, and the definition of the algebra operation on G, this bijection restricts to a bijection between subalgebras in S and subalgebras of G.

We say that a linear variety is closed if the following condition holds: if $s \approx t$ is a linear identity that holds in every element of the variety, and if $s^{\prime} \approx t^{\prime}$ is a linear identity such that $s=f\left(s^{\prime}\right)$ and $t=f\left(t^{\prime}\right)$ for some substitution f then $s^{\prime} \approx t^{\prime}$ holds in every element of the variety.

Lemma 3.6 There is a bijection between closed linear varieties and the closed wide inverse subalgebras of the linear clause monoid.

Proof This follows from Theorem 2.1, and the observation that the linear identity $s^{\prime} \approx t^{\prime}$ is an instance of the linear identity $s \approx t$ iff $\left[s^{\prime}, t^{\prime}\right] \leq[s, t]$ in the linear clause monoid.

The following is the key to classifying the subgroups of V closed under the operation $*$.

Theorem 3.7 There is a bijection between the closed linear varieties and the subalgebras of V. This bijection restricts to one between the closed linear varieties that satisfy the associativity law and the subalgebras of V that contain the Thompson group F.

Proof By Lemma 3.5, there is a bijection between the subalgebras of V and the closed wide inverse subalgebras of the linear clause monoid. By Lemma 3.6,
there is a bijection between the closed wide inverse subalgebras of the linear clause monoid and the closed linear varieties. Thus we have a bijection between the closed linear varieties and the subalgebras of V.

By work of Dehornoy, we know that the (linear) variety of semigroups corresponds to the Thompson group $F[6,8]$. Thus the subalgebras of V that contain F correspond to the closed linear varieties that are contained in the variety of semigroups; the reversal in order comes about because of Birkhoff's variety theorem [1].

By the second half of Theorem 3.7, to classify the subalgebras of V that contain F we have to classify the closed linear varieties of semigroups. Clearly, we need only the ones that are strictly contained in the variety of semigroups; I shall refer to these as 'proper' varieties. In what follows, I shall denote the binary operation symbol \times by concatenation. We shall be working with linear semigroup identities and these all have the form

$$
x_{1} \ldots x_{n} \approx x_{\tau(1)} \ldots x_{\tau(n)}
$$

where τ is a permutation of $1, \ldots, n$. Such an identity is said to be non-trivial if τ is not the identity. Observe that brackets can be omitted because we are assuming that we are always working with semigroups. A linear identity is said to be $\mathrm{P}_{p, q}$ if τ fixes the first p subscripts, but not the first $p+1$, and τ fixes the last q subscripts, but not the last $q+1$. Because of closure, we shall only be interested in linear identities which are either $P_{0,0}, P_{1,0}, P_{0,1}$ or $P_{1,1}$.

Proposition 3.8 There are exactly four closed linear proper varieties of semigroups:
(1) The variety of commutative semigroups: the variety of semigroups defined by $x y \approx y x$.
(2) The variety of semigroups defined by $x y z \approx x z y$.
(3) The variety of semigroups defined by $x y z \approx y x z$.
(4) The variety of semigroups defined by xuvz $\approx x v u z$.

Proof We begin with a number of observations which will be useful throughout our proof.
(a) A theorem of Putcha and Yaqub (see Exercise 6.3.9 of [1]) states that a variety of semigroups satisfying a non-trivial linear identity must satisfy an identity of the form

$$
x_{1} \ldots x_{p} y z t_{1} \ldots t_{q} \approx x_{1} \ldots x_{p} z y t_{1} \ldots t_{q}
$$

Thus a closed linear variety of semigroups satisfying a non-trivial linear identity must satisfy

$$
x u v z \approx x v u z
$$

(b) All the linear semigroup identities deducible from identities in $\mathrm{P}_{1,0}$ belong to $\mathrm{P}_{p, q}$ where $p \geq 1$.
(c) All the linear semigroup identities deducible from identities in $\mathrm{P}_{0,1}$ belong to $\mathrm{P}_{p, q}$ where $q \geq 1$.
(d) All the linear semigroup identities deducible from identities in $\mathrm{P}_{1,1}$ belong to $\mathrm{P}_{p, q}$ where $p, q \geq 1$.

The four varieties of semigroups (1)-(4) are distinct. This is well-known but for completeness I shall give an argument. The variety (1) is distinguished from the remaining three because they each contain non-commutative semigroups. The varieties (2),(3) and (4) are distinguished from each other by the bands ${ }^{7}$ they contain: variety (2) contains the left normal bands, variety (3) the right normal bands, and variety (4) the normal bands.

Next we prove that each of these varieties is closed. For (1), all linear semigroup identities hold and so this is closed. For (2), we note by observation (b) that the only linear semigroup identities which can be deduced belong to $\mathrm{P}_{p, q}$ where $p \geq 1$. But using $x y z \approx x z y$ and $x u v z \approx x v u z$ (observation (a)) we can deduce every such linear semigroup identity in $\mathrm{P}_{p, q}$ where $p \geq 1$. Suppose now that $s \approx t$ is in $\mathrm{P}_{p, q}$ where $p \geq 1$ and so in the variety and that $s^{\prime} \approx t^{\prime}$ is such that there is a substitution f such that $s=f\left(s^{\prime}\right)$ and $t=f\left(t^{\prime}\right)$. Then in fact $s^{\prime} \approx t^{\prime}$ belongs to $P_{p^{\prime}, q^{\prime}}$ for some $p^{\prime} \geq 1$ and so $s^{\prime} \approx t^{\prime}$ belongs to the variety. Thus (2) is closed. The proof that (3) is closed is similar to the proof for (2) and uses observation (c). To prove that (4) is closed, we apply observation (d) that the only linear semigroup identities we can deduce from $x u v z \approx x v u z$ are in $\mathrm{P}_{p, q}$ where $p, q \geq 1$. But every such linear semigroup identity can be deduced using xuvz $\approx x v u z$. Suppose now that $s \approx t$ is in $\mathrm{P}_{p, q}$ where $p, q \geq 1$ and so in the variety and that $s^{\prime} \approx t^{\prime}$ is such that there is a substitution f such that $s=f\left(s^{\prime}\right)$ and $t=f\left(t^{\prime}\right)$. Then in fact $s^{\prime} \approx t^{\prime}$ belongs to $P_{p^{\prime}, q^{\prime}}$ for some $p^{\prime}, q^{\prime} \geq 1$ and so $s^{\prime} \approx t^{\prime}$ belongs to the variety. Thus (4) is closed.

It remains to show that a closed linear semigroup variety must be equal to one of these four. By a theorem of Putcha and Yaqub [15] (see Proposition 6.3.8 of [1]), any semigroup variety satisfying a non-trivial linear identity of type $\mathrm{P}_{0,0}$ must satisfy an identity of the form

$$
x_{1} \ldots x_{r} y_{1} \ldots y_{r} \approx y_{1} \ldots y_{r} x_{1} \ldots x_{r}
$$

for r large enough. We deduce that a closed linear semigroup variety satisfying a non-trivial linear identity of type $\mathrm{P}_{0,0}$ is the variety of commutative semigroups. Taking into account the closure assumption, it follows that we can restrict our attention to closed linear semigroup varieties defined by semigroup identities of types $\mathrm{P}_{1,0}, \mathrm{P}_{0,1}$ or $\mathrm{P}_{1,1}$ only. However, if a closed linear semigroup variety satisfies a non-trivial identity from $\mathrm{P}_{1,0}$ and one from $\mathrm{P}_{0,1}$ then it satisfies a non-trivial identity from $P_{0,0}$ and so is the variety of commutative semigroups.

[^5]We deduce that a closed linear semigroup variety that is not the variety of semigroups or the variety of commutative semigroups is defined by: identities from $P_{1,1}$ alone; identities from $P_{1,0}$ alone; or identities from $P_{0,1}$ alone. The first case can be quickly dealt with. By observation (d), the only linear semigroup identities satisfied are those in $\mathrm{P}_{p, q}$ where $p, q \geq 1$. However, by observation (a) the linear semigroup identity $x u v z \approx x v u z$ holds. Thus every linear semigroup identity in $\mathrm{P}_{p, q}$ where $p, q \geq 1$ can be deduced. It follows that the linear semigroup variety in question is (4). To complete the proof, it is sufficient to show that a closed linear semigroup variety satisfying a non-trivial identity from $\mathrm{P}_{1,0}$ must satisfy $x y z \approx x z y$ and so be variety (2); it will then follow that an analogous argument will show that a closed linear semigroup variety satisfying a non-trivial identity from $\mathrm{P}_{0,1}$ must satisfy $x y z \approx y x z$ and so be variety (3). Let the linear identity satisfied be

$$
x x_{1} \ldots x_{n} \approx x x_{\tau(1)} \ldots x_{\tau(n)}
$$

where $n \geq 2$. If $n=2$ then the only non-trivial linear identity of the required form is $x y z \approx x z y$. Induction hypothesis: all closed linear semigroup varieties satisfying a non-trivial linear identity of type $\mathrm{P}_{1,0}$ with $n<m$ satisfy $x y z \approx x z y$. Consider now a closed linear semigroup variety satisfying

$$
x x_{1} \ldots x_{m} \approx x x_{\tau(1)} \ldots x_{\tau(m)}
$$

Use the identity $x u v y \approx x v u y$, which holds by observation (a), to rearrange $x_{\tau(1)} \ldots x_{\tau(m-1)}$ into a new product, u say, such that $u x_{\tau(m)}$ has the form $u^{\prime} x_{j-1} x_{j} v^{\prime}$ for some $1<j \leq m$. The identity

$$
x x_{1} \ldots x_{m} \approx x u^{\prime} x_{j-1} x_{j} v^{\prime}
$$

is an instance of a non-trivial linear identity of length $m-1$ belonging to $P_{1,0}$, and so we may invoke our induction hypothesis.

Combining Theorem 3.7 and Proposition 3.8, we have proved the following.
Theorem 3.9 There are exactly three proper subgroups of V strictly containing F and closed under the binary operation *. They are: a group V_{L} that corresponds to the semigroup variety defined by the linear semigroup identity $x y z \approx x z y$; a group V_{R} that corresponds to the semigroup variety defined by the linear semigroup identity $x y z \approx y x z$; and a group V_{N} that corresponds to the semigroup variety defined by the linear semigroup identity xuvy $\approx x v u y$. In addition, $V_{L} \cap V_{R}=V_{N}$ and the smallest subgroup of V containing V_{L} and V_{R} and closed under $*$ is V itself.

Remark The group V_{R} has been studied before by Dehornoy [8].
By restricting attention to the subalgebras of V containing F, we have made life easier: much is known about linear semigroup varieties. However, the theory
developed in this paper also shows that arbitrary subalgebras of V are classified by the closed linear varieties of algebras (over a single binary operation). Thus our understanding of certain kinds of subgroups of V depends on our understanding of certain kinds of varieties of universal algebras. The paper [9] adopts exactly the same approach as ours but adapted to the case of subalgebras of F.

Acknowledgements I am grateful to Jorge Almeida of the University of Porto for a very helpful correspondence on the subject of semigroup varieties. I would also like to thank the anonymous referee for their thorough reading of the original version of this paper and suggestions that led to significant improvements.

References

[1] J. Almeida, Finite semigroups and universal algebra, World Scientific, 1994.
[2] J.-C. Birget, The groups of Richard Thompson and complexity, Inter. J. Alg. Computation 14 (2004), 569-626.
[3] K. S. Brown, The homology of Richard Thompson's group F, in Topological and asymptotic aspects of group theory, 47-59, Contemp. Math., 394, Amer. Math. Soc., Providence, RI, 2006.
[4] J. W. Cannon, W. J. Floyd, W. R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. (2) 42 (1996), 215-256.
[5] P. Dehornoy, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc. 117 (1993), 293-304.
[6] P. Dehornoy, The structure group for the associativity identity, J. Pure and Appl. Alg. 111 (1996), 59-82.
[7] P. Dehornoy, Braids and self-distributivity, Birkhäuser, 2000.
[8] P. Dehornoy, Geometric presentations for Thompson's groups, J. Pure and Appl. Alg. 203 (2005), 1-44.
[9] R. Geoghegan, F. Guzmán, Associativity and Thompson's group, Contemporary Mathematics 394 (2006), 113-135.
[10] J.-Y. Girard, The geometry of interaction 1: interpretation of system F, in Logic Colloquium '88 (editors R. Fero et al), North-Holland, 1989, 221-260.
[11] P. Hines, The algebra of self-similarity and its applications, PhD Thesis, University of Wales, Bangor, 1998.
[12] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
[13] M. V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, 1998.
[14] M. V. Lawson, A correspondence between balanced varieties and inverse monoids, Inter. J. Alg. and Computation 16 (2006), 887-924.
[15] M. S. Putcha, A. Yaqub, Semigroups satisfying permutation identities, Semigroup Forum 3 (1971), 68-73.
[16] E. A. Scott, A construction which can be used to produce finitely presented infinite simple groups, J. Alg. 90 (1984), 294-322.

[^0]: ${ }^{1}$ In fact this operation is also discussed in my book [13] (pp 297-304) where it arose in Peter

[^1]: Hines PhD work [11] on analysing Girard's geometry of interaction program [10], although at that time we did not know about the connection with V.
 ${ }^{2}$ The subgroups of F closed under $*$ are considered in [9]. I am grateful to my colleague Nick Gilbert here at Heriot-Watt for first alerting me to this paper, and the referee for reminding me of it.

[^2]: ${ }^{3}$ For the purposes of this paper. Observe that 'algebra' here is being used in the sense of 'universal algebra'.
 ${ }^{4}$ The term 'full' is often used in semigroup theory, but this conflicts with the usage in category theory.

[^3]: ${ }^{5}$ A 'prefix code' is simply a subset of a free monoid in which no two elements are proper prefixes of each other.

[^4]: ${ }^{6}$ Inverse monoids with this property are known as F-inverse.

[^5]: ${ }^{7}$ Idempotent semigroups. See [12] for more on these classes of bands.

