The polycyclic monoids P_{n} and the Thompson groups $V_{n, 1}$

Mark V. Lawson
Department of Mathematics
and the
Maxwell Institute for Mathematical Sciences
Heriot-Watt University
Riccarton
Edinburgh EH14 4AS
Scotland
M.V.Lawson@ma.hw.ac.uk

December 21, 2006

Abstract

We construct what we call the strong orthogonal completion C_{n} of the polycyclic monoid P_{n} on n generators. The inverse monoid C_{n} is congruence free and its group of units is the Thompson group $V_{n, 1}$. Copies of C_{n} can be constructed from partitions of sets into n blocks each block having the same cardinality as the underlying set.

2000 AMS Subject Classification: 20M18, 20E32.

1 Introduction

The goal of this paper is to describe the precise algebraic connection between the polycyclic inverse monoid P_{n} and the Thompson group $V_{n, 1}$. The polycyclic monoids were introduced by Nivat and Perrot [14] as generalisations of the bicyclic monoid. They have numerous applications including to the study of context-free languages $[6,7]$, the construction of the Cuntz C^{*}-algebras $[15,16]$, and in the definition of amenability given in [5]. They are discussed in detail in Chapter 9 of my book [8], and I outline their properties below. Prior knowledge of these semigroups is not necessary to read this paper

In a previous paper [12], I showed how to construct the orthogonal completion D_{n} of the polycyclic monoid P_{n}. In this paper, I shall construct a quotient
of this completion, called the strong completion C_{n}. The group of units of C_{n} will turn out to be the Thompson group $V_{n, 1}$. Birget [3] described one connection between the Thompson group $V=V_{2,1}$ and the polycyclic monoid on two generators: he proved that the group is a subgroup of a quotient algebra of the monoid. Our approach owes a lot to Birget's but is different. Birget works with semigroup algebras and as a result he obtains a representation of the Thompson group as a subgroup. A particular case of our result on V can be found in [1].

2 Orthogonal completions of inverse semigroups

In this section, I shall recall some results from [12].
Throughout this paper, we shall be dealing with inverse semigroups with zero. We shall always require that homomorphisms between such semigroups map zero to zero. Multiplication in semigroups will usually be denoted by concatenation, but occasionally I shall use • for clarity. Inverse semigroups come equipped with their own order, called the natural partial order, and this will always be the order used. We write $\mathbf{d}(s)=s^{-1} s$ and $\mathbf{r}(s)=s s^{-1}$ for each element s in the inverse semigroup S. A pair of elements $s, t \in S$ is said to be orthogonal if

$$
s^{-1} t=0=s t^{-1}
$$

Observe that s and t are orthogonal iff $\mathbf{d}(s) \mathbf{d}(t)=0$ and $\mathbf{r}(s) \mathbf{r}(t)=0$. A subset of S is said to be orthogonal iff each pair of distinct elements in it is orthogonal. We denote by $s+t$ the join of orthogonal elements s and t if it exists. More generally, we denote by $\sum A$ the join of the orthogonal subset A if it exists. In these cases, we talk about orthogonal joins. Let $D(S)$ denote the set of finite orthogonal subsets of the inverse semigroup S that contain zero. Then $D(S)$ is an inverse semigroup under multiplication of subsets, and an inverse monoid if S is an inverse monoid. An inverse semigroup with zero S will be said to be orthogonally complete if it satisfies the following two axioms:
(DC1) S has all joins of finite orthogonal subsets.
(DC2) Multiplication distributes over finite orthogonal joins.
The semigroup $D(S)$ is orthogonally complete as is the symmetric inverse monoid $I(X)$ on the set X.

Lemma 2.1 Let S be orthogonally complete.
(i) If $\sum_{i=1}^{n} a_{i}$ exists, then $\sum_{i=1}^{n} a_{i}^{-1}$ exists and

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{-1}=\sum_{i=1}^{n} a_{i}^{-1}
$$

(ii) If $\sum_{i=1}^{n} a_{i}$ exists, then both $\sum_{i=1}^{n} \mathbf{d}\left(a_{i}\right)$ and $\sum_{i=1}^{n} \mathbf{r}\left(a_{i}\right)$ exist and

$$
\mathbf{d}\left(\sum_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} \mathbf{d}\left(a_{i}\right) \text { and } \mathbf{r}\left(\sum_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} \mathbf{r}\left(a_{i}\right)
$$

Homomorphisms between inverse semigroups with zero map finite orthogonal subsets to finite orthogonal subsets. If the orthogonal joins are preserved then we say that the homomorphism is orthogonal join preserving. Define the function $\iota: S \rightarrow D(S)$ by $s \mapsto\{0, s\}$. This is an injective homomorphism.

Theorem 2.2 Let S be an inverse semigroup with zero, and let $\theta: S \rightarrow T$ be a homomorphism to an orthogonally complete inverse semigroup T. Then there is a unique orthogonal join preserving homomorphism $\phi: D(S) \rightarrow T$ such that $\phi \iota=\theta$.

The inverse monoid $D(S)$ is called the orthogonal completion of S.
Put $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$. A string in A_{n}^{*}, the free monoid generated by A_{n}, will be called positive. If $u=v w$ are strings, then v is called a prefix of u, and a proper prefix if w is not the empty string. A pair of elements of A_{n}^{*} is said to be prefix-comparable if one is a prefix of the other. If x and y are prefix-comparable we define

$$
x \wedge y= \begin{cases}x & \text { if } y \text { is a prefix of } x \\ y & \text { if } x \text { is a prefix of } y\end{cases}
$$

The polycyclic monoid P_{n}, where $n \geq 2$, is defined as a monoid with zero by the following presentation

$$
P_{n}=\left\langle a_{1}, \ldots, a_{n}, a_{1}^{-1}, \ldots, a_{n}^{-1}: a_{i}^{-1} a_{i}=1 \text { and } a_{i}^{-1} a_{j}=0, i \neq j\right\rangle
$$

Intuitively, think of a_{1}, \ldots, a_{n} as partial bijections of a set X and $a_{1}^{-1}, \ldots, a_{n}^{-1}$ as their respective partial inverses. The first relation says that each partial bijection a_{i} has domain the whole of X and the second says that the ranges of distinct a_{i} are disjoint. As a concrete example of P_{2}, one can take as a_{1} and a_{2} the two maps that shrink the Cantor set to its lefthand and righthand sides, respectively. Every non-zero element of P_{n} is of the form $y x^{-1}$ where $x, y \in A_{n}^{*}$, and where we identify the identity with the element $1=\varepsilon \varepsilon^{-1}$. The product of two elements $y x^{-1}$ and $v u^{-1}$ is zero unless x and v are prefix-comparable. If they are prefix-comparable then

$$
y x^{-1} \cdot v u^{-1}= \begin{cases}y z u^{-1} & \text { if } v=x z \text { for some string } z \\ y(u z)^{-1} & \text { if } x=v z \text { for some string } z\end{cases}
$$

The non-zero idempotents in P_{n} are the elements of the form $x x^{-1}$, where x is positive, and the natural partial order is given by $y x^{-1} \leq v u^{-1}$ iff $(y, x)=(v, u) p$ for some positive string p. Observe that an element lying above a non-zero idempotent in a polycyclic monoid is itself a non-zero idempotent. Inverse semigroups with this property are said to be E^{*}-unitary.

Lemma 2.3 Let $x x^{-1}$ and $y y^{-1}$ be non-zero idempotents. Then $x x^{-1} \cdot y y^{-1} \neq 0$ if and only if either $x x^{-1} \leq y y^{-1}$ or $y y^{-1} \leq x x^{-1}$. When non-zero $x x^{-1} \cdot y y^{-1}$ is equal to $(x \wedge y)(x \wedge y)^{-1}$.

Remark Suppose that in the polycyclic monoid

$$
x y^{-1} \leq u v^{-1}, w z^{-1}
$$

Then either $u v^{-1}=w z^{-1}, u v^{-1} \leq w z^{-1}$ or $u v^{-1} \geq w z^{-1}$.
A prefix code in A_{n}^{*} is a non-empty subset C with the property that no element of C is a proper prefix of any other element of C. A prefix code is maximal if it is not contained in any other prefix code. The following is essentially Proposition II.4.7 of [2].

Lemma 2.4 Let $C \subseteq A_{n}^{*}$ be a maximal prefix code such that $C \neq\{\varepsilon\}$. Then there exists a string u such that $u a_{1}, \ldots, u a_{n} \in C$ and

$$
C^{\prime}=C \backslash\left\{u a_{1}, \ldots, u a_{n}\right\} \cup\{u\}
$$

is a maximal prefix code.

The following result was inspired by [3] and is crucial to our work.
Lemma 2.5 A subset

$$
\left\{y_{1} x_{1}^{-1}, \ldots, y_{m} x_{m}^{-1}\right\}
$$

of P_{n} is orthogonal iff $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{m}\right\}$ are both prefix codes.

If $A=\left\{x_{1} x_{1}^{-1}, \ldots, x_{n} x_{n}^{-1}\right\} \cup\{0\}$ is an orthogonal subset of P_{n}, then $Z_{A}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is the associated prefix code.

Theorem 2.6 The orthogonal completion of the polycyclic monoid P_{n} is isomorphic to the inverse monoid R_{n} consisting of right ideal isomorphisms between the finitely generated right ideals of the free monoid on n generators.

An idempotent e of S is called essential if for each non-zero idempotent $f \in S$ we have that $e f \neq 0$.

Lemma 2.7 The following are equivalent in $D\left(P_{n}\right)$:
(i) A is an essential idempotent.
(ii) $A B$ is non-zero for all non-zero idempotents B.
(iii) Z_{A} is a maximal prefix code.

Lemma 2.8 Let S be an inverse monoid with zero. Let S^{e} denote the set of elements such that both $\mathbf{d}(s)$ and $\mathbf{r}(s)$ are essential idempotents. Then S^{e} is an inverse submonoid of S.

By Lemma 2.7, the essential idempotents in $D\left(P_{n}\right)$ are those whose associated prefix codes are maximal. By Lemmas 2.5 and 2.7 , the elements of $D^{e}\left(P_{n}\right)$ are those in which the domains and ranges correspond to maximal prefix codes.

Proposition 2.9 The inverse semigroup $D^{e}\left(P_{n}\right)$ is isomorphic to the inverse monoid of right ideal isomorphisms between the finitely generated essential right ideals of the free monoid on n generators.

From Birget [3] and Scott [17] the following is now immediate.
Corollary 2.10 The maximum group homomorphic image of $D^{e}\left(P_{n}\right)$ is the Thompson group $V_{n, 1}$.

Notation and a convention We write $D_{n}=D\left(P_{n}\right)$. The elements of D_{n} are finite orthogonal sets containing zero. Because the zero is always there, I shall almost always ignore it in what follows. Except when I am specifically interested in the zero element $\{0\}$, it will always be the non-zero elements which are of interest.

To conclude this section, we shall examine in more detail the properties of the set of idempotents of the inverse semigroup D_{n}. Unproved statements follow from results in [12]. The set of idempotents of D_{n} is in bijective correspondence with the set of finite prefix codes in A_{n}^{*}, and the set of essential idempotents in D_{n} is in bijective correspondence with the set of finite maximal prefix codes in A_{n}^{*}. The set of idempotents in D_{n} forms a semilattice with respect to the natural partial order. There is therefore a corresponding semilattice structure on the finite prefix codes. To describe it, we shall use the following. We say that the string x is an extension of the string y if $x=y z$ for some string z. We define $x \wedge y$ to be the shortest extension of x and y if it is defined (which will be the case only when x and y are prefix-comparable). Given two prefix codes X and Y we define $X \leq Y$ iff each element of X is an extension of an element of Y. For arbitrary prefix codes X and Y, the prefix code $X \circ Y$ is either empty or consists of the set of shortest extensions of all pairs of elements one from X and one from Y. In the case X and Y are both maximal prefix codes then $X \circ Y$ is always non-empty and a maximal prefix code; in this case, the maximal prefix code is obtained by 'overlaying' the two codes and taking the result as their meet. If $E\left(D_{n}\right)$ is the semilattice of idempotents of D_{n} and $\mathcal{P} \mathcal{C}_{n}$ the semilattice of finite prefix codes in A_{n}^{*}, then the function $E \mapsto Z_{E}$ is an isomorphism of semilattices.

There are a number of unary operations which can also be defined on $\mathcal{P} \mathcal{C}_{n}$ which then have algebraic correlates in $E\left(D_{n}\right)$:

- Let E correspond to a (maximal) prefix code Z_{E}. Conjugates of the form $y^{-1} E y$ also correspond to (maximal) prefix codes: the corresponding (maximal) prefix code is $y^{-1} Z_{E}$ where here $y^{-1} x$ means remove the prefix y from x if y is a prefix of x and is undefined otherwise; in terms of trees, $y^{-1} Z_{E}$ is the portion of the (maximal) prefix code which starts at y and so is itself a (maximal) prefix code.
- Conjugates of the form $y E y^{-1}$ correspond to prefix codes: the corresponding code is $y Z_{E}$; in terms of trees we are attaching the prefix code Z_{E} to the 'stalk y '.

Lemma 2.11

(i) Let E and F be idempotents in D_{n} such that Z_{E} and Z_{F} are maximal prefix codes. Then $Z_{E F}$ is a maximal prefix code.
(ii) Let E be an idempotent such that Z_{E} is a maximal prefix code. Then for all $A \in D_{n}$, we have that $E A=\{0\}$ iff $A=\{0\}$, and dually.
(iii) Let $F=\left\{x x^{-1}\right.$: finite number of x 's $\}$ and E_{x}, where $x x^{-1} \in F$, be idempotents in D_{n} such that $Z_{E_{x}}$ and Z_{F} are maximal prefix codes. Then

$$
G=\bigcup_{x x^{-1} \in F} x E_{x} x^{-1}
$$

is such that Z_{G} is a maximal prefix code. This result can be described in terms of trees: we take the tree corresponding to the maximal prefix code Z_{F} and glue to each leaf x the tree corresponding to the maximal prefix code E_{x}. The tree we get clearly corresponds to a maximal prefix code.
(iv) Let $F=\left\{x x^{-1}\right.$: finite number of $\left.x^{\prime} s\right\}$, E_{x}, where $x x^{-1} \in F$, and

$$
G=\bigcup_{x x^{-1} \in F} x E_{x} x^{-1}
$$

be idempotents in D_{n} where Z_{G} and $Z_{E_{x}}$ are maximal prefix codes. Then F is a maximal prefix code. This result can be described in terms of trees: we take the tree corresponding to a maximal prefix code and erase a subtree tree which corresponds to a maximal prefix code. The tree we get clearly corresponds to a maximal prefix code.

Proof The proofs of (i) and (ii) follow from Lemmas 2.7 and 2.8. The proof of (i) follows from the fact that the product of two essential idempotents is an essential idempotent. To prove (ii), let e be an essential idempotent and a an arbitrary element. Then $e a=0$ iff $e a a^{-1}=0$, but this occurs iff $a a^{-1}=0$, because e is essential. This in turn occurs iff $a=0$. The proof of (iii) can either
be done directly from the definitions or it is essentially Proposition II.4.1(1) of [2]. The proof of (iv) can either be done directly or is essentially Proposition II.4.1(3) of [2].

3 Strong orthogonal completions of polycyclic monoids

To explain the motivation of this paper, I need to return to the definition of P_{n}. The idempotents $a_{1} a_{1}^{-1}, \ldots, a_{n} a_{n}^{-1}$ are pairwise orthogonal, and so their orthogonal join is an idempotent in D_{n}. We would like to force this orthogonal join to be the identity. To do this, I shall define a congruence \equiv on D_{n} which will force this to happen in the most efficient way. The quotient monoid $C_{n}=D_{n} / \equiv$ will still be orthogonally complete but the orthogonal join of (the images of) the idempotents $a_{i} a_{i}^{-1}$ will now be the identity. It will transpire that the congruence \equiv restricted to D_{n}^{e}, will be the minimum group congruence. Consequently, the group of units of C_{n} will then be the Thompson group $V_{n, 1}$ by Corollary 2.10. Most of this section will be taken up with defining the congruence \equiv and determining its properties.

Let $A, B \in D_{n}$ where $A=\left\{x_{i} y_{i}^{-1}: 1 \leq i \leq p\right\}$ and $B=\left\{u_{j} v_{j}^{-1}: 1 \leq j \leq q\right\}$. Define $A \preceq B$ iff we can write

$$
A=\bigcup_{j=1}^{q} u_{j} E_{j} v_{j}^{-1}
$$

where E_{j} is an idempotent in D_{n} and $Z_{E_{j}}$ is a maximal prefix code. I shall write $A \preceq_{e} B$ iff $A=B \backslash\left\{u_{j} v_{j}^{-1}\right\} \cup u_{j}\left\{a_{1} a_{1}^{-1}, \ldots, a_{n} a_{n}^{-1}\right\} v_{j}^{-1}$. I shall write $A \preceq_{e}^{*} B$ if $A=A_{1} \preceq_{e} A_{2} \preceq_{e} \ldots \preceq_{e} A_{n}=B$ for some n.

Remarks

(i) If $A \preceq B$ then each element in A lies beneath an element of B, and each non-zero element of B lies above a non-zero element of B.
(ii) Define $A_{j}=u_{j} E_{j} v_{j}^{-1}$. Then with slight abuse of notation, we have that $A_{j} \preceq u_{j} v_{j}^{-1}$. The A_{j} are orthogonal.

Lemma 3.1

(i) If $A \preceq B$ then $A \leq B$.
(ii) The relation \preceq is a partial order D_{n}.
(iii) If $A \preceq B$ then $A=\{0\}$ iff $B=\{0\}$.
(iv) If $A \preceq B$ then A is an idempotent iff B is an idempotent.
(v) If $A \preceq B$ then $A^{-1} \preceq B^{-1}$.
(vi) Let A and B be non-zero. If $A \preceq B$ then $A C=\{0\}$ iff $B C=\{0\}$, and dually.
(vii) If $A \preceq B$ then $A C \preceq B C$, and dually.
(viii) $A \preceq B$ iff $A^{-1} A \preceq B^{-1} B$ and $A \leq B$.
(ix) Let A, B, C all be non-zero, and $A, B \preceq C$. Then there exists a non-zero D such that $D \preceq A, B$.
(x) $A \preceq B$ iff $A \preceq_{e}^{*} B$.

Proof (i) By Lemma 2.3(i) [12], $A \leq B$ if each element of A lies beneath an element of B with respect to the natural partial order. The result is therefore immediate from the definition.
(ii) Reflexivity follows from the fact that $\{\varepsilon\}$ is a maximal prefix code. Antisymmetry follows from (i), above. We now prove transitivity. Let $A=\left\{x_{i} y_{i}^{-1}\right\}$, $B=\left\{u_{j} v_{j}^{-1}\right\}$, and $C=\left\{w_{k} z_{k}^{-1}\right\}$ be such that $A \preceq B \preceq C$. We prove that $A \preceq C$. Let $A=\sum_{j} u_{j} E_{j} v_{j}^{-1}$ where the $Z_{E_{j}}$ are maximal prefix codes, and let $B=\sum_{k} w_{k} F_{k} z_{k}^{-1}$ where the $Z_{F_{k}}$ are maximal prefix codes. The element $w_{k} z_{k}^{-1}$ lies above the set of elements of A given by

$$
w_{k}\left(\bigcup_{r r^{-1} \in F_{k}} r E_{j} r^{-1}\right) z_{k}^{-1}
$$

for some j. The fact that the expression within the brackets is associated with a maximal prefix code follows by Lemma 2.11. Thus $A \preceq C$, as required.
(iii) This is immediate from the definition.
(iv) This follows by Remarks (i), the fact that idempotents in an inverse semigroup form an order ideal, and the fact that P_{n} is E^{*}-unitary.
(v) Suppose that $A \preceq B$. Then $A=\sum_{j=1}^{n} u_{j} E_{j} v_{j}^{-1}$. Taking inverse of both sides gives the result.
(vi) This is immediate from the definition.
(vii) By (vi), we may assume that both products are non-zero. The result follows by multiplying out and using Lemma 2.11 when necessary.
(viii) Suppose $A \preceq B$. Then from (v) and (vii), we have that $A^{-1} A \preceq$ $B^{-1} B$, and from (i), we have that $A \leq B$. To prove the converse, suppose that $A^{-1} A \preceq B^{-1} B$ and $A \leq B$. Then $A=B A^{-1} A$. By (vii), we have that $B A^{-1} A \preceq B B^{-1} B$, and so $A \preceq B$, as required.
(ix) Let $C=\left\{x_{i} y_{i}^{-1}\right\}, A=\left\{u_{j} v_{j}^{-1}\right\}, B=\left\{w_{k} z_{k}^{-1}\right\}$ where $A, B \preceq C$. Thus $A=\cup_{i} x_{i} E_{i} y_{i}^{-1}$ and $B=\cup_{i} x_{i} F_{i} y_{i}^{-1}$ where E_{i} and F_{i} are associated with maximal prefix codes. Define $D=\cup_{i} x_{i} E_{i} F_{i} y_{i}^{-1}$. To show that $D \preceq A$, choose a typical element of A : namely, $x_{i} p p^{-1} y_{i}^{-1}$ where $p p^{-1} \in E_{i}$. A subset of D is $x_{i} p p^{-1} F_{i} y_{i}^{-1}$, which can be rewritten as $\left(x_{i} p\right)\left(p^{-1} F_{i} p\right)\left(y_{i} p\right)^{-1}$ where $p^{-1} F_{i} p$ is a maximal prefix code by Lemma 2.11. It follows that $D \preceq A$, and a similar argument shows that $D \preceq B$.
(x) One direction is immediate by the transitivity proved in (ii). We prove that $A \preceq B$ implies $A \preceq_{e}^{*} B$. Observe that it is enough to prove that $A \preceq u v^{-1}$ implies that $A \preceq_{e}^{*} u v^{-1}$. By Lemma $2.4, C \neq\{\varepsilon\}$ is a maximal prefix code iff there exists u such that $u A_{n} \subseteq C$ and $C^{\prime}=C \backslash\left\{u a_{1}, \ldots, u a_{n}\right\} \cup\{u\}$ is a maximal prefix code. Observe that $\left|C^{\prime}\right|<|C|$. Let E be such that $Z_{E}=C$, and let E^{\prime} be such that $Z_{E^{\prime}}=C^{\prime}$. Then $E \preceq_{e} E^{\prime}$. By induction we get that $E \preceq_{e}^{*}\{0,1\}$. It follows that Z_{E} is a maximal prefix code iff $E \preceq_{e}^{*}\{0,1\}$. Observing that $A^{\prime} \preceq_{e} B^{\prime}$ implies that $u A^{\prime} v^{-1} \preceq_{e} u B^{\prime} v^{-1}$, the result follows.

Remark Lemma 3.1 shows that the partial order \preceq refines the natural partial order on D_{n}. At the same time it shares a number of important properties with the natural partial order: namely, (v) and (viii).

A congruence ρ on an inverse semigroup S is said to be 0 -restricted if the only element of S which is ρ-related to zero is zero. It is said to be idempotent pure if the only elements of S which are ρ-related to idempotents are themselves idempotents.

Define \equiv on D_{n} as follows. We require $\{0\} \equiv\{0\}$, and if A and B are both non-zero, then $A \equiv B$ iff there exists a non-zero C such that $C \preceq A, B$.

Proposition 3.2 With the above definition we have the following.
(i) The relation \equiv is a 0 -restricted, idempotent pure congruence on D_{n}.
(ii) The congruence \equiv restricted to D_{n}^{e} is the minimum group congruence.
(iii) The congruence \equiv restricted to the image of P_{n} in D_{n} is equality.
(iv) The congruence \equiv is the smallest congruence on D_{n} in which all the essential idempotents are identified.
(v) Let $A_{i} \equiv B_{i}$ where the A_{i} (respectively the B_{i}) are orthogonal. Then $\sum A_{i} \equiv$ $\sum B_{i}$.

Proof (i) We show first that \equiv is an equivalence relation. Reflexivity: $\{0\} \equiv\{0\}$ by fiat; and $A \equiv A$ for all non-zero A since \preceq is a partial order by Lemma 3.1(ii). Symmetry: this is immediate from the definition. Transitivity: this follows by Lemma 3.1(ix). The fact that \equiv is a congruence follows from Lemma 3.1(vi) and (vii). The fact that \equiv is 0 -restricted follows from Lemma 3.1(iii). Idempotent purity follows by Lemma 3.1(iv).
(ii) By Lemma 3.1(viii), it is enough to prove the claim for idempotents. We prove that $E \leq F$ implies $E \preceq F$ when Z_{E} and Z_{F} are maximal prefix codes. Because Z_{E} is a maximal prefix code, it is easy to check that each element of F lies above an element of E. Fix $b b^{-1} \in F$ and let A be the set of all elements of E that lie beneath $b b^{-1}$. Each element of A is of the form $b w w^{-1} b^{-1}$ for some string w. Thus $A=b G b^{-1}$ where G is an idempotent and Z_{G} is a prefix code; it remains to show that it is a maximal prefix code. Let $x x^{-1}$ be any non-zero idempotent. The string $b x$ must be prefix comparable with a string $b w \in Z_{E}$
since Z_{E} is a maximal prefix code and $E \leq F$. Observe that $w \in Z_{G}$. Thus $b w(b w)^{-1} \cdot b x(b x)^{-1} \neq 0$ from which it follows that $w w^{-1} \cdot x x^{-1} \neq 0$. Thus G is an essential idempotent and so Z_{G} is a maximal prefix code.
(iii) Let $x y^{-1}$ and $u v^{-1}$ be such that $x y^{-1} \equiv u v^{-1}$. There are therefore idempotents E and F associated with maximal prefix codes such that $x E y^{-1}=$ $u F v^{-1}$. Observe that $x E x^{-1}=u F u^{-1}$ and $y E y^{-1}=v F v^{-1}$. Now $Z_{x E x^{-1}}=$ $x Z_{E}$ and $Z_{u F u^{-1}}=u Z_{F}$. Suppose $u=x z$. Then $Z_{E}=z Z_{F}$. But Z_{E} is a maximal prefix code and so z is the empty string. There is a similar dual argument. Thus $u=x$. Similarly $v=y$.
(iv) Let \simeq be any congruence on D_{n} which identifies the essential idempotents. Let $A \equiv B$. Then there exists $C \preceq A, B$. Thus we can write

$$
C=\sum x_{i} E_{i} y_{i}^{-1}=\sum u_{j} F_{j} v_{j}^{-1}
$$

where $A=\left\{x_{i} y_{i}^{-1}\right\}$ and $B=\left\{u_{j} v_{j}^{-1}\right\}$ and E_{i} and F_{j} correspond to maximal prefix codes. By assumption, $C \simeq A$ and $C \simeq B$ and so $A \simeq B$, as required.
(v) This is immediate from the definition.

Proposition 3.3 The congruence \equiv is the unique congruence defined on D_{n} which is 0 -restricted, idempotent pure, and identifies all the essential idempotents.

Proof Let \simeq be a 0-restricted idempotent pure congruence which identifies all the essential idempotents. By Proposition 3.2(iv), we have that \equiv is contained in \simeq. We prove that the reverse inclusion holds.

We show first that it is enough to prove the result for idempotents. Suppose that for E and F idempotents, we have that $E \simeq F$ implies $E \equiv F$. We prove that \simeq is contained in \equiv. Let $A \simeq B$. Then $A^{-1} A \simeq A^{-1} B$. Now \simeq is idempotent pure and so since $A^{-1} A$ is an idempotent, we have that $A^{-1} B$ is an idempotent. Without loss of generality we can assume that it is non-zero. By assumption, $A^{-1} A \equiv A^{-1} B$. But then $A \equiv A A^{-1} B$. Now $A A^{-1} \simeq B B^{-1}$ implies $A A^{-1} \equiv B B^{-1}$. Thus $A A^{-1} B \equiv B$. It follows that $A \equiv B$. Thus the theorem will be proved if we can prove it for idempotents.

Next we prove a slightly more general result. Let S be an inverse monoid with zero. Let \simeq be a 0 -restricted, idempotent pure congruence that identifies all the essential idempotents. Then $a \simeq 1$ iff a is an essential idempotent. There is only one direction to prove. Suppose $a \simeq 1$. Then a is an idempotent because \simeq is idempotent pure. Let f be any non-zero idempotent. Then $f a \simeq f$. Now \simeq is 0 -restricted and so $f a$ is non-zero. It follows that a is an essential idempotent. Thus \simeq identifies with the identity element all and only the essential idempotents.

Now we return to the particular case we are interested in. We look first at a special case. Let $E=\left\{u_{i} u_{i}^{-1}: 1 \leq i \leq p\right\}$ be a non-zero idempotent. Suppose that $E \simeq x x^{-1}$. Then for each i we have that $u_{i} u_{i}^{-1} \simeq u_{i} u_{i}^{-1} x x^{-1}$. Because \simeq is 0 -restricted, we have that $u_{i} u_{i}^{-1} x x^{-1} \neq 0$. Thus by Lemma 2.3, we have
for each i that either $u_{i} u_{i}^{-1} \leq x x^{-1}$ or $x x^{-1} \leq u_{i} u_{i}^{-1}$. Now $x^{-1} E x \simeq 1$, and so $F=x^{-1} E x$ is an essential idempotent by our general result above. Thus Z_{F} is a maximal prefix code. If $x x^{-1} \leq u_{i} u_{i}^{-1}$ for some i, then because \simeq is 0 -restricted, it follows that E contains exactly one (non-zero) element: $u_{i} u_{i}^{-1}$. But then F contains only one element and, since it is associated with a maximal prefix code, that element must be the identity. It follows that $x=u_{i}$ and so $E \equiv x x^{-1}$. Thus we may assume that $u_{i} u_{i}^{-1} \leq x x^{-1}$ for all i. Thus $E=x F x^{-1}$ where F is associated with a maximal prefix code. It follows that $E \preceq x x^{-1}$ and so $E \equiv x x^{-1}$.

Now let $E=\left\{u_{i} u_{i}^{-1}: 1 \leq i \leq p\right\} \simeq F=\left\{x_{j} x_{j}^{-1}: 1 \leq j \leq q\right\}$. Then $E x_{j} x_{j}^{-1} \simeq x_{j} x_{j}^{-1}$. Thus $E x_{j} x_{j}^{-1} \preceq x_{j} x_{j}^{-1}$ for all j by the preceding result. Put $D=\left\{u_{i} u_{i}^{-1} x_{j} x_{j}^{-1}: 1 \leq i \leq p, 1 \leq j \leq q\right\}$. The fact that \simeq is 0 -restricted implies that D is not zero. By symmetry and Proposition 3.2(v), we have that $D \preceq E, F$. Thus $E \equiv F$.

Lemma 3.4 Let S be an orthogonally complete inverse semigroup, and let \equiv be a 0 -restricted congruence on S such that if $s_{1} \equiv t_{1}$ and $s_{2} \equiv t_{2}$ and s_{1} and s_{2} are orthogonal, and t_{1} and t_{2} are orthogonal then $s_{1}+s_{2} \equiv t_{1}+t_{2}$. Then S / \equiv is orthogonally complete.

Proof Denote the \equiv-class containing s by $[s]$. By induction, we can prove that if $s_{i} \equiv t_{i}$ for $1 \leq i \leq p$ and the s_{i} are orthogonal and the t_{i} are orthogonal then $\sum s_{i} \equiv \sum t_{i}$.

Let $\left[s_{i}\right]$ be a finite orthogonal subset of S / \equiv. Because the congruence is $0-$ restricted, the set s_{i} is orthogonal and so $s=\sum s_{i}$ exists in S. Clearly $\left[s_{i}\right] \leq[s]$. Suppose that $\left[s_{i}\right] \leq[t]$ for all i. Then $\left[s_{i}\right]=\left[t \mathbf{d}\left(s_{i}\right)\right]$ and so $s_{i} \equiv t \mathbf{d}\left(s_{i}\right)$. It is easy to check that the $t \mathbf{d}\left(s_{i}\right)$ are orthogonal and so, by assumption, $\sum s_{i} \equiv \sum t \mathbf{d}\left(s_{i}\right)$. By Lemma 2.1, we know that $\mathbf{d}\left(\sum s_{i}\right)=\sum \mathbf{d}\left(s_{i}\right)$. Thus $\sum t \mathbf{d}\left(s_{i}\right)=t \sum \mathbf{d}\left(s_{i}\right)=$ $t \mathbf{d}(s)$. Hence $[s] \leq[t]$. It follows that $\sum\left[s_{i}\right]$ exists. We have proved that S / \equiv has orthogonal joins. In fact, we have shown that $\left[\sum s_{i}\right]=\sum\left[s_{i}\right]$.

The fact that multiplication distributes over finite orthogonal joins follows from the existence of orthogonal joins and distributivity in S, and our result above.

Put $C_{n}=D\left(P_{n}\right) / \equiv$. By Proposition 3.2 and Lemma 3.4, C_{n} is orthogonally complete and contains an isomorphic copy of P_{n} and every element of C_{n} is the join of a finite orthogonal subset of P_{n} and all essential idempotents are identified.

More generally, let S be an inverse monoid with zero containing P_{n} as an inverse submonoid such that S is orthogonally complete, every element of S is the join of a finite orthogonal subset of P_{n}, and such that $\sum_{i} a_{i} a_{i}^{-1}=1$. Then S is called a strong orthogonal completion of P_{n}.

Theorem 3.5 Any two strong orthogonal completions of P_{n} are isomorphic.

Proof Let S be a strong orthogonal completion of P_{n}. Let $A, B \in D\left(P_{n}\right)$. We begin by proving in four steps that $\sum A=\sum B$ in S iff $A \equiv B$ in D_{n}.

1. Let $A=\left\{y_{i} x_{i}^{-1}: 1 \leq i \leq m\right\}$ be an orthogonal subset of P_{n}. Then $\sum A=1$ iff the elements of A are idempotents and $\left\{x_{i}: 1 \leq i \leq m\right\}$ is a maximal prefix code.
Suppose first that $\sum A=1$. Since each element of A lies beneath 1 in the natural partial order, it follows that each element of A is an idempotent. Thus $y_{i}=x_{i}$ for each $1 \leq i \leq m$. By Lemma 2.5 , since A is an orthogonal set, it follows that $\left\{x_{i}: 1 \leq i \leq m\right\}$ is a prefix code. We prove that it is a maximal prefix code. Suppose not. Then there is a string y such that

$$
\left\{x_{i}: 1 \leq i \leq m\right\} \cup\{y\}
$$

is a prefix code. Thus $y y^{-1} \cdot x_{i} x_{i}^{-1}=0$ for $1 \leq i \leq m$. But from distributivity in S we get that

$$
y y^{-1}=y y^{-1} 1=\sum_{i=1}^{m} y y^{-1} \cdot x_{i} x_{i}^{-1}
$$

but this implies that not all $y y^{-1} \cdot x_{i} x_{i}^{-1}$ can be zero. We therefore get a contradiction. It follows that A is a maximal prefix code, as claimed.

Conversely, suppose that $A=\left\{x_{i} x_{i}^{-1}: 1 \leq i \leq m\right\}$ is such that the x_{i} form a maximal prefix code. We prove that $\sum A=1$. Put $C=\left\{x_{i}: 1 \leq i \leq m\right\}$. If $C=\{\varepsilon\}$ then the result is trivially true. By Lemma 2.4, there is a string u such that $u a_{i} \in C$ and $C^{\prime}=C \backslash\left\{u a_{i}: 1 \leq i \leq m\right\} \cup\{u\}$ is a maximal prefix code. Observe that $\left|C^{\prime}\right|<|C|$. Put $A^{\prime}=\left\{v v^{-1}: v \in C^{\prime}\right\}$. Thus $\left|A^{\prime}\right|<|A|$. Then it is easy to check that $\sum A=\sum A^{\prime}$ using our assumptions about S. This process can be iterated with A^{\prime} replacing A above. The process will terminate when A^{\prime} contains only the empty string at which point we will get that the union is the identity, as claimed.
2. Let $A=\left\{u_{i} u_{i}: 1 \leq i \leq m\right\}$ be an orthogonal set of idempotents of P_{n}. Then $x x^{-1}=\sum A$ iff $A \preceq x x^{-1}$.
Suppose first that $A \preceq x x^{-1}$. Then there is an element E of $D\left(P_{n}\right)$ such that Z_{E} is a maximal prefix code and $A=x E x^{-1}$. But then $\sum A=\sum x E x^{-1}=$ $x\left(\sum E\right) x^{-1}=x x^{-1}$, using (1).

Conversely suppose that

$$
x x^{-1}=\sum_{i=1}^{m} u_{i} u_{i}^{-1} .
$$

Then $u_{i} u_{i}^{-1} \leq x x$ for each i. Hence $u_{i}=x w_{i}$ for some unique string w_{i}. Thus

$$
x x^{-1}=\sum_{i=1}^{m} x w_{i} w_{i}^{-1} x^{-1}
$$

Now multiply on the left by x^{-1} and on the right by x and use the distributivity law to get

$$
1=\sum_{i=1}^{m} w_{i} w_{i}^{-1}
$$

Hence by (1), we have that $\left\{w_{i}: 1 \leq i \leq m\right\}$ is a maximal prefix code.
3. Let $A=\left\{x_{i} y_{i}^{-1}: 1 \leq i \leq m\right\}$ be an orthogonal subset of P_{n}. Then $u v^{-1}=$ $\sum x_{i} y_{i}^{-1}$ iff $A \preceq u v^{-1}$.
From $A \preceq u v^{-1}$ and (1), we easily deduce that $\sum A=u v^{-1}$. Conversely, suppose that $\sum A=u v^{-1}$. Then $v v^{-1}=\sum y_{i} y_{i}^{-1}$. Thus by (2) there is a maximal prefix code Z_{E} such that $\left\{y_{i} y_{i}^{-1}\right\}=v E v^{-1}$. Elementary inverse semigroup theory gives $\left\{x_{i} y_{i}^{-1}\right\}=u E v^{-1}$ and so $A \preceq u v^{-1}$.
4. Let $A=\left\{x_{i} y_{i}^{-1}\right\}$ and $B=\left\{u_{j} v_{j}^{-1}\right\}$. Then $\sum A=\sum B$ iff $A \equiv B$.

The proof that $A \equiv B$ implies $\sum A=\sum B$ is straightforward and uses (1). We prove the converse. Suppose that $\sum A=\sum B$. Then $\sum A=\sum B \cdot A^{-1} A$. Put $C=B \cdot A^{-1} A$. For each i, we have that $x_{i} y_{i}^{-1}=\sum_{j} u_{j} v_{j}^{-1} \cdot y_{i} y_{i}^{-1}$. Thus by (3), we have that $C \preceq A$. For each j, we have that $u_{j} v_{j}^{-1}=\sum_{i} u_{j} v_{j}^{-1} \cdot y_{i} y_{i}^{-1}$. Thus by (3), we have that $C \preceq B$. Hence $A \equiv B$, as required.

We can now prove that S is isomorphic to C_{n}. Each element $s \in S$ can be written $s=\sum A$ for some finite orthogonal subset of P_{n}. Map s to $[A \cup\{0\}]$, the \equiv-equivalence class; this is unambiguous because $s=\sum B$ implies that $A \equiv B$. In this way we get a surjective function from S to C_{n} which is injective by what we have proved above. It is straightforward to check that we have a homomorphism and so an isomorphism.

We have proved that the polycyclic monoid P_{n} possesses a unique strong orthogonal completion C_{n}. The next lemma will lead to a simple way of calculating in C_{n}.

Lemma 3.6 If $A \preceq B, C$ then there exists D such that $B, C \preceq D$.
Proof Let $A=\left\{x_{i} y_{i}^{-1}\right\}, B=\left\{u_{j} v_{j}^{-1}\right\}$ and $C=\left\{w_{k} z_{k}^{-1}\right\}$. Then $A \preceq B$ implies that $A=\cup_{j} u_{j} E_{j} v_{j}^{-1}$ where the E_{j} correspond to maximal prefix codes, and $A \preceq C$ implies that $A=\cup_{k} w_{k} F_{k} z_{k}^{-1}$ where the F_{k} correspond to maximal prefix codes.

Observe that by Lemma 3.1 (v) and (vii), we have that $A^{-1} A \preceq B^{-1} C$ and $A A^{-1} \preceq B C^{-1}$. By Lemma 3.1(iv), it follows that $B^{-1} C$ and $B C^{-1}$ are idempotents. Define

$$
D=\max \left\{u_{j} v_{j}^{-1}, w_{k} z_{k}^{-1}\right\} \cup\{0\}
$$

where 'max' means 'pick the maximal elements of'. Using our observation, and the Remark following Lemma 2.3, we deduce that D is a finite orthogonal subset of P_{n}.

I shall prove that $B \preceq D$; a similar argument proves that $C \preceq D$. To do this, it will be enough to prove the following. Let $w_{k} z_{k}^{-1} \in C$. Let B_{k} denote all the elements of B that lie beneath $w_{k} z_{k}^{-1}$. I shall prove that $B_{k}=w_{k} G_{k} z_{k}^{-1}$, where G_{k} corresponds to a maximal prefix code. We have that

$$
F_{k}=\cup_{j} w_{k}^{-1} u_{j} E_{j} v_{j}^{-1} z_{k}
$$

Now $w_{k}^{-1} u_{j}=0$ unless w_{k} and u_{j} are prefix-comparable, and $v_{j}^{-1} z_{k}=0$ unless z_{k} and v_{j} are prefix comparable. If both are non-zero, then $\left(w_{k} z_{k}^{-1}\right)^{-1} u_{j} v_{j}^{-1}$ and $w_{k} z_{k}^{-1}\left(u_{j} v_{j}^{-1}\right)^{-1}$ are both non-zero idempotents. It follows that the elements are comparable - but $w_{k} z_{k}^{-1}$ is maximal. Thus the terms are only non-zero when $u_{j} v_{j}^{-1} \leq w_{k} z_{k}^{-1}$. Let $\left(u_{j}, v_{j}\right)=\left(w_{k}, z_{k}\right) p_{j}$. Then $G_{k}=\left\{p_{j} p_{j}^{-1}\right\}$ and $F_{k}=\cup_{j} p_{j} E_{j} p_{j}^{-1}$. The fact that G_{k} is associated with a maximal prefix code now follows from Lemma 2.11.

Calculations in C_{n} can be carried out in the following way. If $A \preceq B$ and $A \neq B$ then $|B|<|A|$. It follows that an increasing sequence $A_{1} \preceq A_{2} \preceq A_{3} \ldots$ must stabilise in a finite number of steps. I shall call \preceq-maximal elements $i r$ reducible. Thus for each A there is an irreducible element B such that $A \preceq B$. By Lemma 3.6, this irreducible element is unique. It follows that $A \equiv \bar{B}$ iff $A^{\prime}=B^{\prime}$, where $A \equiv A^{\prime}$ and $B \equiv B^{\prime}$, and A^{\prime} and B^{\prime} are irreducible. Elements of C_{n} can be written as formal finite sums $\sum_{i=1}^{m} x_{i} y_{i}^{-1}$ when $x_{i} y_{i}^{-1} \neq x_{j} y_{j}^{-1}$ implies that the elements are orthogonal. We require that the sum is commutative and idempotent and that left and right distributivity laws hold, and that $0+x y^{-1}=x y^{-1}=x y^{-1}+0$ for all $x y^{-1} \in P_{n}$. In addition, we require that $\sum_{i=1}^{n} a_{i} a_{i}^{-1} \equiv 1$. To determine whether two elements are \equiv-equivalent we carry out reductions using \preceq_{e}. Thus the sorts of calculations that Birget carries out, for example on page 602 of [3], can also be carried out in this formalism but extended to the whole of C_{n}.

4 Algebraic properties of C_{n}

In this section, I shall examine the semigroup-theoretic properties of the inverse monoid C_{n}.

In [12], we proved that the orthogonal completion of the polycyclic monoid on n generators, D_{n}, was isomorphic to the inverse monoid R_{n} of right ideal isomorphisms between the finitely generated right ideals of the free monoid on n generators. In this section, we shall prove an analogous result for the strong orthogonal completion C_{n}.

Let $A=A_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ and denote by A^{ω} the set of all (right) infinite strings over A. If X is a subset of A^{*} then $X A^{\omega}$ consists of all those infinite strings that have a finite prefix from X. I shall call such sets right ideals of A^{ω}. I shall say that they are finitely generated if X is finite. A bijection $f: X A^{\omega} \rightarrow Y A^{\omega}$ between finitely generated right ideals is called a right ideal
isomorphism if X and Y are finite prefix codes and there is a bijection $f_{1}: X \rightarrow Y$ such that

$$
f(x w)=f_{1}(x) w
$$

for all $x \in X$ and $w \in A^{\omega}$. We denote by S_{n} the set of all right ideal isomorphisms between finitely generated right ideals of A^{ω} together with the empty function.

Remark Let X and Y be two finite prefix codes and let f_{1} be a bijection from X to Y. Define f from $X A^{\omega}$ to $Y A^{\omega}$ by $f(x w)=f_{1}(x) w$. Then f is a welldefined right ideal isomorphism.

Lemma 4.1 The set S_{n} satisfies the following conditions:
(i) S_{n} is a groupoid under the restricted product.
(ii) If $f \in S_{n}$, where $f: X A^{\omega} \rightarrow Y A^{\omega}$ and $X^{\prime} A^{\omega} \subseteq X A^{\omega}$, then f restricted to $X^{\prime} A^{\omega}$ also belongs to S_{n}.
(iii) The set of finitely generated right ideals is closed under intersection.

We deduce that S_{n} is an inverse monoid.
Proof (i) Let $f: X A^{\omega} \rightarrow Y A^{\omega}$ be an element of S_{n}. We show that f^{-1} is an element of S_{n}. Define $g: Y A^{\omega} \rightarrow X A^{\omega}$ by $g(y w)=f_{1}^{-1}(y) w$. This is a welldefined element of S_{n} and it is easy to check that it is the inverse of f. Let $g: Y A^{\omega} \rightarrow Z A^{\omega}$ be an element of S_{n}. Then it is easy to check that $g f$ is also an element of S_{n}.
(ii) We show first that we may assume without loss of generality that each element of X^{\prime} has as a prefix an element of X. From $X^{\prime} A^{\omega} \subseteq X A^{\omega}$ we deduce that each element of X^{\prime} is comparable with an element of X. Let $x^{\prime} \in X^{\prime}$. Then either x^{\prime} is a prefix of some element of X, or some element of X is a prefix of x^{\prime}. Suppose that there is no element $x \in X$ which is a prefix of x^{\prime}. Then there are elements of X of which x^{\prime} is a proper prefix. Let Z be the set of all strings such that $x^{\prime} Z \subseteq X$. Then Z is a prefix code; we claim that Z is a maximal prefix code. Suppose not. Then there exists a string u such that u is not comparable with any element of Z. Thus $x^{\prime} u$ cannot be comparable with any element of $x^{\prime} Z$. Now $x^{\prime} u w \in X A^{\omega}$ for any infinite string w. Thus $x^{\prime} u$ is comparable with some element $x \in X$. By assumption, x cannot be a prefix of x^{\prime}. Suppose that x is a prefix of $x^{\prime} u$. Then $u=u^{\prime} u^{\prime \prime}$ where $x=x^{\prime} u^{\prime}$. Thus $u^{\prime} \in Z$ and u^{\prime} is a prefix of u, which is a contradiction. Suppose that $x^{\prime} u$ is a prefix of x. Then $x=x^{\prime} u v$ for some v. Thus $u v \in Z$ and u is a prefix of $u v$, a contradiction. We have therefore proved that Z is a maximal prefix code.

Put $X^{\prime \prime}=X^{\prime} \backslash\left\{x^{\prime}\right\} \cup x^{\prime} Z$. For all maximal prefix codes Z, we have that $Z A^{\omega}=A^{\omega}$. Thus $X^{\prime} A^{\omega}=X^{\prime \prime} A^{\omega}$. The element x^{\prime} has been removed, and replaced by elements all of which live in X. Observe that $X^{\prime \prime}$ is also a prefix code. Continuing in this way, we can assume that each element of X^{\prime} is either
in X or has an element of X as a prefix (which is unique because X is a prefix code).

Under our assumption, let $x^{\prime} \in X^{\prime}$. Then $x^{\prime}=x u$ for a unique $x \in X$ and string $u \in A^{*}$. Let Y^{\prime} consist of the elements $f_{1}(x) u$. It is a prefix code, because X and Y are prefix codes. It is immediate that the image of $X^{\prime} A^{\omega}$ under f is contained in $Y^{\prime} A^{\omega}$ and that it is in fact equal to $Y^{\prime} A^{\omega}$. The function g_{1} from X^{\prime} to Y^{\prime} that takes $x^{\prime}=x u$ to $f_{1}(x) u$ is injective and so surjective. Thus the function $g: X^{\prime} A^{\omega} \rightarrow Y^{\prime} A^{\omega}$ defined by $g\left(x^{\prime} w\right)=g_{1}\left(x^{\prime}\right) w$ is the restriction of f to $X^{\prime} A^{\omega}$.
(iii) Observe that $x A^{\omega} \cap y A^{\omega}$ is either empty or one is contained in the other. From this the result follows.

The final claim follows from the theory of inductive groupoids [8], but can also be seen directly from the observation that

$$
f g=(f \mid E)\left(g^{-1} \mid E\right)^{-1}
$$

where the product on the righthand side is a groupoid product, and where E is the intersection of the domain of f and the image of g.

Theorem 4.2 The inverse monoids C_{n} and S_{n} are isomorphic.
Proof Recall the definition of R_{n} from Theorem 2.6. Define a function $\theta: R_{n} \rightarrow$ S_{n} which maps $f: X A^{*} \rightarrow Y A^{*}$ to $\bar{f}: X A^{\omega} \rightarrow Y A^{\omega}$ where $\bar{f}_{1}=f$ restricted to X, and maps the empty function to the empty function. This is a surjective function which is easily seen to be a homomorphism. By construction it is 0 -restricted, idempotent pure and identifies all essential idempotents. Thus by Proposition 3.3, the kernel of θ is \equiv and so C_{n} is isomorphic to S_{n}, as required.

Remark An alternative proof of the above theorem follows from Theorem 3.5: the inverse monoid S_{n} is easily seen to be a strong orthogonal completion of P_{n}.

Lemma 4.3 Let X and Y be finite prefix codes. Then a necessary and sufficient condition for $X A^{\omega}=Y A^{\omega}$ is that for all finite strings z we have that z is not prefix-comparable with any element of X iff z is not prefix-comparable with any element of Y.

Proof Suppose first that $X A^{\omega}=Y A^{\omega}$. Let z be a finite string that is not prefix-comparable with any element of X. Suppose that z is prefix-comparable with some element y of Y. Then $z u=y v$ for some finite strings u and v. There are now two possibilities: either $z=y q$ or $y=z q$ for some finite string q. Suppose the former. Then for all infinite strings w we have that $z w=y q w$. Thus $z A^{\omega} \subseteq Y A^{\omega}$ and so $z A^{\omega} \subseteq X A^{\omega}$, which implies that z is prefix-comparable with some element of X which is a contradiction. Thus we must have that $y=z q$. But then $y A^{\omega}=z q A^{\omega} \subseteq X A^{\omega}$ and so z is comparable with an element of X, which is a contradiction. It follows that z is not prefix-comparable with any element of Y. The converse is proved similarly.

Suppose now that for all finite strings z we have that z is not prefixcomparable with any element of X iff z is not prefix-comparable with any element of Y. We shall prove that $X A^{\omega}=Y A^{\omega}$. In fact, we shall prove that if for all finite strings z we have that z is not prefix-comparable with any element of $X \Rightarrow z$ is not prefix-comparable with any element of Y then $Y A^{\omega} \subseteq X A^{\omega}$. Let $y \in Y$. Suppose that y is not prefix-comparable with any element of X. Then it cannot be prefix-comparable with any element of Y : a contradiction. Thus y is prefix-comparable with some element $x \in X$. Hence $y u=x v$ for some finite strings u and v. It follows that $y=x p$ or $x=y p$ for some finite string p. Suppose the former. Then $y A^{\omega}=x p A^{\omega} \subseteq x A^{\omega} \subseteq X A^{\omega}$ (which is heading in the right direction). Suppose the latter: $x=y p$ where p is not the empty string. Let Z be the set of all finite strings such that $y Z \subseteq X$. By assumption, Z is non-empty. Since X is a prefix code, so is Z. We prove that Z is a maximal prefix code. Suppose not. Then there exists a string d such that d is not prefixcomparable with any element of Z. Thus $y d$ is not prefix-comparable with any element of X. By our hypothesis, it follows that $y d$ is not prefix-comparable with any element of Y : a contradiction. Hence Z is a maximal prefix code. But $y A^{\omega}=y Z A^{\omega} \subseteq X A^{\omega}$. We have proved that for all y, we have that $y A^{\omega} \subseteq X A^{\omega}$. Thus $Y A^{\omega} \subseteq X A^{\omega}$, as required.

We say that the set of idempotents of an inverse semigroup S is 0 -disjunctive if for all non-zero idempotents e and f where $e \neq f$ there is an idempotent g such that either $e g \neq 0$ and $f g=0$ or $e g=0$ and $f g \neq 0$.

Lemma 4.4 The set of idempotents of the inverse semigroup C_{n} is 0-disjunctive.
Proof We use the isomorphic copy S_{n}. Idempotents in S_{n} are identity functions on subsets of the form $X A^{\omega}$. Suppose that $X A^{\omega} \neq Y A^{\omega}$. Then by Lemma 4.3, there is a finite string z such that z is not prefix-comparable with any element of X but is prefix-comparable with some elements of Y or z is not prefix-comparable with any element of Y but is prefix-comparable with some elements of X. Suppose the former. Then $z A^{\omega} \cap X A^{\omega}=\emptyset$, but $z A^{\omega} \cap Y A^{\omega} \neq \emptyset$. The result now follows.

Fundamental inverse semigroups are discussed in Section 5.2 of [8]. Our proof below uses the result that an inverse semigroup is fundamental iff the only centralisers of the idempotents are themselves idempotents; see Proposition 5.2.5 of [8].

Lemma 4.5 The inverse monoid C_{n} is fundamental.
Proof We shall prove that S_{n} is fundamental. Let $f: X A^{\omega} \rightarrow Y A^{\omega}$ be an element of S_{n} which is not an idempotent. Thus there exists an element $x w \in X A^{\omega}$ such that $f(x w) \neq x w$. Since $f(x w)=f_{1}(x) w$ we have that $f_{1}(x) \neq x$. We may therefore find a $z \in A^{*}$ such that either (1) $x \in z A^{*}$ and $f_{1}(x) \notin z A^{*}$ or (2) $x \notin z A^{*}$ and $f_{1}(x) \in z A^{*}$. Let i be the identity function defined on $z A^{\omega}$. This is an element of S_{n}. If (1) holds then $i f$ is defined but $f i$ is empty, whereas
if (2) holds then $i f$ is empty and $f i$ is defined. In both cases, $i f \neq f i$. Hence the only centralisers of the idempotents are idempotents, from which it follows that S_{n} is fundamental.

Remark The above argument is a special case of a more general way of characterising fundamental inverse semigroups in topological terms due to Wagner; see Proposition 5.2.10 of [8].

Lemma 4.6 The inverse monoid C_{n} is 0-simple
Proof Observe that for any finite prefix code X and finite string z, we have that X and $z X$ are both prefix codes having the same cardinality. Next observe that if Y is any prefix code and $y \in Y$ then $y X A^{\omega} \subseteq Y A^{\omega}$. Thus the identity on $X A^{\omega}$ is isomorphic to the identity on $y X A^{\omega}$ which is contained in $Y A^{\omega}$. Thus C_{n} is 0 -simple by Proposition 3.1.10 of [8].

Lemma 4.7 The inverse monoid C_{n} has $n \mathcal{D}$-classes.
Proof If $Z \subseteq A_{n}^{*}$ is a maximal prefix code, then $|Z| \equiv 1(\bmod n-1)$. Furthermore, for every $s \equiv 1(\bmod n-1)$ there is a finite maximal prefix code such that $s=|Z|$. Let Z be a finite maximal prefix code with s elements, and let r be such that $1 \leq r \leq n-2$, then $X_{r, s}=\left\{a_{1}, \ldots, a_{r}\right\} \cup a_{n} Z$ is a prefix code with $s+r$ elements.

Let X be any finite prefix code containing t elements. If $t \equiv 1(\bmod n-1)$ then there is a finite maximal prefix code Z with t elements. There is therefore a right ideal isomorphism from $X A^{\omega}$ to $Z A^{\omega}=A^{\omega}$. If on the other hand $t \equiv r^{\prime}(\bmod n-1)$ where $2 \leq r^{\prime} \leq n-1$, then there is a finite prefix code $X^{\prime}=X_{r^{\prime}-1, s}$ having $t=s+\left(r^{\prime}-1\right)$ elements, for some $s \equiv 1(\bmod n-1)$. Thus there is a right ideal isomorphism from $X A^{\omega}$ to $X^{\prime} A^{\omega}=\left\{a_{1}, \ldots, a_{r^{\prime}-1}, a_{n}\right\} A^{\omega}$. The distinct partial identities defined on the following sets $A^{\omega},\left\{a_{1}, a_{n}\right\} A^{\omega}, \ldots$, $\left\{a_{1}, \ldots, a_{n-2}, a_{n}\right\} A^{\omega}$ therefore form a transversal of the non-zero \mathcal{D}-classes.

By Lemmas 4.4, 4.5, 4.6, 4.7 and [13], we have proved the following.
Theorem 4.8 The inverse monoid C_{n} is congruence-free. In addition, C_{2} is 0 -bisimple, whereas for $n \geq 3, C_{n}$ is 0 -simple, but not 0-bisimple.

5 Representations

The goal of this section is to show how a class of representations of P_{n} can be used to construct isomorphic copies of C_{n}. We shall be interested in homomorphisms from P_{n} to $I(X)$, where X is a non-empty set, which are monoid homomorphisms and map the zero of P_{n} to the zero of $I(X)$. Such a homomorphism θ is an injection because P_{n} is congruence-free, and the image under θ is
non-trivial because the zero and the identity are mapped to distinct elements. We call θ a representation of P_{n} in $I(X)$. We say that a representation is strong iff

$$
1_{X}=\sum_{i=1}^{n} \theta\left(a_{i} a_{i}^{-1}\right)
$$

Proposition 5.1 With each strong representation $\theta: P_{n} \rightarrow I(X)$ we can associate a strong orthogonal completion C_{n}^{θ} of P_{n}.

Proof The image P_{n}^{\prime} of θ is an inverse submonoid of $I(X)$ isomorphic to P_{n}. Let C_{n}^{θ} be the disjoint union of the finite orthogonal subsets of P_{n}^{\prime}. It is easy to check that this is an inverse submonoid of $I(X)$ and because θ is a strong representation it is a strong orthogonal completion of P_{n}^{\prime}.

We now show how to construct strong representations of P_{n}. Let X be a set. The notation $\sqcup_{1}^{n} X$ means the disjoint union of n copies of the set X. Specifically, define

$$
\sqcup_{1}^{n} X=\cup_{i=1}^{n} X \times\{i\}
$$

There are injective functions $\kappa_{i}: X \rightarrow \sqcup_{1}^{n} X$ given by $x \mapsto(x, i)$.
Proposition 5.2 Let X be a non-empty set.
(i) Let f_{1}, \ldots, f_{n} be n injective functions from X to itself whose images are disjoint. Map a_{i} to f_{i} and extend this in the obvious way to a map $\theta: P_{n} \rightarrow I(X)$. Then θ is a representation of P_{n} and every representation is obtained in this way.
(ii) The strong representations correspond to the case where the images of the f_{i} defined in (i) form a partition of X.
(iii) Let $X=\bigcup_{i=1}^{n} X_{i}$ be a partition of X into n disjoint non-empty subsets each having the same cardinality as X. For each choice $f_{i}: X \rightarrow X_{i}$ of bijections, we get a strong representation of P_{n}. Every strong representation of P_{n} arises in this way.
(iv) Every bijection from $\sqcup_{1}^{n} X$ to X determines and is determined by n injective functions f_{1}, \ldots, f_{n} from X to itself whose images form a partition of X.

Proof (i) Suppose we are given the functions f_{i} satisfying the stated properties. Define θ to map a_{i} to f_{i}. Then there is a unique extension of θ to a monoid homomorphism from the free monoid A_{n}^{*} to $I(X)$. We now extend θ to P_{n} by mapping $x y^{-1}$ to $\theta(x) \theta(y)^{-1}$. The fact that θ is a homomorphism follows from the assumptions placed on the functions f_{i}. Conversely, given a representation $\theta: P_{n} \rightarrow I(X)$, and defining $f_{i}=\theta\left(a_{i}\right)$, we get functions satisfying the stated conditions and they clearly determine θ.
(ii) This is immediate.
(iii) This is just a reformulation of (ii).
(iv) Let $f: \sqcup_{1}^{n} X \rightarrow X$ be a bijection. Define $f_{i}: X \rightarrow X$ by $f_{i}=f \kappa_{i}$. These are injections. The images of the f_{i} are disjoint and their union is X. Now let f_{i} be n injections from X to X whose images are disjoint and their union is X. Define $f: \sqcup_{1}^{n} X \rightarrow X$ by $f(x, i)=f_{i}(x)$. It is easy to check that f is a bijection. These two processes are clearly mutually inverse.

We may summarise by saying that given an equivalence relation with n equivalence classes on a set X with the property that each equivalence class has the same cardinality as X then we can construct a strong representation of P_{n} in $I(X)$.

Example 5.3 We explore the above result in the case of $V=V_{2,1}$. Let $I=$ $[0,1]$. Define

$$
p^{-1}:\left[0, \frac{1}{2}\right] \rightarrow[0,1] \text { by } x \mapsto 2 x
$$

and

$$
q^{-1}:\left[\frac{1}{2}, 1\right] \rightarrow[0,1] \text { by } x \mapsto 2 x-1
$$

This is almost, but not quite, a strong representation of P_{2}, when we map a_{1} to p and a_{2} to q. We shall now construct from this a genuine strong representation. A dyadic rational in I is a rational number that can be written in the form $\frac{a}{2^{b}}$ for some natural numbers a and b. Let I^{\prime} be the unit interval with the dyadic rationals removed. The maps p and q and their inverses map dyadic rationals to dyadic rationals. We may therefore define

$$
p^{\prime-1}:\left[0, \frac{1}{2}\right]^{\prime} \rightarrow[0,1]^{\prime} \text { by } x \mapsto 2 x
$$

and

$$
q^{\prime-1}:\left[\frac{1}{2}, 1\right]^{\prime} \rightarrow[0,1]^{\prime} \text { by } x \mapsto 2 x-1
$$

where the primes on the intervals mean that dyadic rationals have been removed. It follows that we get a strong representation of P_{2} on I^{\prime}.

Consider the following two elements of the strong orthogonal completion of P_{2} constructed from the above strong representation

$$
\alpha^{\prime}=p^{\prime 2} p^{\prime-1}+p^{\prime} q^{\prime}\left(q^{\prime} p^{\prime}\right)^{-1}+q^{\prime} q^{\prime-2}
$$

and

$$
\beta^{\prime}=p^{\prime} p^{\prime-1}+q^{\prime} p^{2}\left(q^{\prime} p^{\prime}\right)^{-1}+q^{\prime} p^{\prime} q^{\prime}\left(q^{2} p^{\prime}\right)^{-1}+q^{2} q^{\prime-3}
$$

The maps α^{\prime} and β^{\prime} are bijections defined on I^{\prime}. Define now functions A and B on I as follows (computed from the representations of α^{\prime} and β^{\prime} above):

$$
A(x)= \begin{cases}\frac{x}{2} & \text { for } 0 \leq x \leq \frac{1}{2} \\ x-\frac{1}{4} & \text { for } \frac{1}{2} \leq x \leq \frac{3}{4} \\ 2 x-1 & \text { for } \frac{3}{4} \leq x \leq 1\end{cases}
$$

and

$$
B(x)= \begin{cases}x & \text { for } 0 \leq x \leq \frac{1}{2} \\ \frac{x}{2}+\frac{1}{4} & \text { for } \frac{1}{2} \leq x \leq \frac{3}{4} \\ x-\frac{1}{8} & \text { for } \frac{3}{4} \leq x \leq \frac{7}{8} \\ 2 x-1 & \text { for } \frac{7}{8} \leq x \leq 1\end{cases}
$$

It can be checked that A restricted to I^{\prime} is α^{\prime}, and B restricted to I^{\prime} is β^{\prime}.
In fact, α^{\prime} and β^{\prime} generate the subgroup F of the Thompson group V, and the maps A and B of I are one of the common ways of defining this subgroup [4]. We can see that they arise naturally from a specific and simple strong representation of P_{2}.

Acknowledgements I am grateful to the referee for spotting a couple of errors and a lacuna in a proof in the first version of this paper.

References

[1] L. Bartholdi, R. Grigorchuk, V. Nekrashevych, From fractal groups to fractal sets, Fractals in Graz (eds P. Grabner, W. Woess) Trends in Mathematics, Birkhäuser Verlag, 2003, 25-118.
[2] J. Berstel, D. Perrin, Theory of codes, Academic Press, 1985.
[3] J.-C. Birget, The groups of Richard Thompson and complexity, Inter. J. Alg. and Comput. 14 (2004), 569-626.
[4] J. W. Cannon, W. J. Floyd, W. R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. (2) 42 (1996), 215-256.
[5] T. Ceccherini-Silberstein, R. Grigorchuk, P. de la Harpe, Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, Tr. Mat. Inst. Steklova 224 (1999), 68-111.
[6] S. Eilenberg, Automata, languages and machines volume A, Academic Press, New York, 1974.
[7] R. H. Gilman, Formal languages and infinite groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996), 27-51.
[8] M. V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, 1998.
[9] M. V. Lawson, Constructing inverse semigroups from category actions, J. Pure and Applied Alg. 137 (1999), 57-101.
[10] M. V. Lawson, A correspondence between balanced varieties and inverse monoids, Inter. J. Alg. and Comput. 16 (2006), 887-924.
[11] M. V. Lawson, A class of subgroups of the Thompson group V, accepted by Semigroup Forum.
[12] M. V. Lawson, Orthogonal completions of the polycyclic monoids, accepted by Communications in Algebra.
[13] W. D. Munn, Congruence-free inverse semigroups, Quart. J. Math. Oxford (2) 25 (1974), 463-484.
[14] M. Nivat, J.-F. Perrot, Une généralisation du monoïde bicyclique, Comptes Rendus de l'Académie des Sciences de Paris 271 (1970), 824-827.
[15] A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Birkhäuser, 1999.
[16] J. Renault, A groupoid approach to C^{*}-algebras, Lecture Notes in Mathematics 793, Springer-Verlag, 1980.
[17] E. A. Scott, A construction which can be used to produce finitely presented infinite simple groups, J. Alg. 90 (1984), 294-322.

