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Abstract

We construct what we call the strong orthogonal completion Cn of the

polycyclic monoid Pn on n generators. The inverse monoid Cn is congru-

ence free and its group of units is the Thompson group Vn,1. Copies of Cn

can be constructed from partitions of sets into n blocks each block having

the same cardinality as the underlying set.
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1 Introduction

The goal of this paper is to describe the precise algebraic connection between
the polycyclic inverse monoid Pn and the Thompson group Vn,1. The polycyclic
monoids were introduced by Nivat and Perrot [14] as generalisations of the
bicyclic monoid. They have numerous applications including to the study of
context-free languages [6, 7], the construction of the Cuntz C∗-algebras [15, 16],
and in the definition of amenability given in [5]. They are discussed in detail in
Chapter 9 of my book [8], and I outline their properties below. Prior knowledge
of these semigroups is not necessary to read this paper

In a previous paper [12], I showed how to construct the orthogonal comple-
tion Dn of the polycyclic monoid Pn. In this paper, I shall construct a quotient
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of this completion, called the strong completion Cn. The group of units of Cn

will turn out to be the Thompson group Vn,1. Birget [3] described one connec-
tion between the Thompson group V = V2,1 and the polycyclic monoid on two
generators: he proved that the group is a subgroup of a quotient algebra of the
monoid. Our approach owes a lot to Birget’s but is different. Birget works with
semigroup algebras and as a result he obtains a representation of the Thompson
group as a subgroup. A particular case of our result on V can be found in [1].

2 Orthogonal completions of inverse semigroups

In this section, I shall recall some results from [12].
Throughout this paper, we shall be dealing with inverse semigroups with

zero. We shall always require that homomorphisms between such semigroups
map zero to zero. Multiplication in semigroups will usually be denoted by con-
catenation, but occasionally I shall use · for clarity. Inverse semigroups come
equipped with their own order, called the natural partial order, and this will
always be the order used. We write d(s) = s−1s and r(s) = ss−1 for each
element s in the inverse semigroup S. A pair of elements s, t ∈ S is said to be
orthogonal if

s−1t = 0 = st−1.

Observe that s and t are orthogonal iff d(s)d(t) = 0 and r(s)r(t) = 0. A subset
of S is said to be orthogonal iff each pair of distinct elements in it is orthogonal.
We denote by s + t the join of orthogonal elements s and t if it exists. More
generally, we denote by

∑

A the join of the orthogonal subset A if it exists. In
these cases, we talk about orthogonal joins. Let D(S) denote the set of finite
orthogonal subsets of the inverse semigroup S that contain zero. Then D(S) is
an inverse semigroup under multiplication of subsets, and an inverse monoid if
S is an inverse monoid. An inverse semigroup with zero S will be said to be
orthogonally complete if it satisfies the following two axioms:

(DC1) S has all joins of finite orthogonal subsets.

(DC2) Multiplication distributes over finite orthogonal joins.

The semigroup D(S) is orthogonally complete as is the symmetric inverse monoid
I(X) on the set X.

Lemma 2.1 Let S be orthogonally complete.

(i) If
∑n

i=1
ai exists, then

∑n
i=1

a−1

i exists and

(
n

∑

i=1

ai)
−1 =

n
∑

i=1

a−1

i .

(ii) If
∑n

i=1
ai exists, then both

∑n
i=1

d(ai) and
∑n

i=1
r(ai) exist and

d(
n

∑

i=1

ai) =
n

∑

i=1

d(ai) and r(
n

∑

i=1

ai) =
n

∑

i=1

r(ai).
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Homomorphisms between inverse semigroups with zero map finite orthogonal
subsets to finite orthogonal subsets. If the orthogonal joins are preserved then we
say that the homomorphism is orthogonal join preserving. Define the function
ι: S → D(S) by s 7→ {0, s}. This is an injective homomorphism.

Theorem 2.2 Let S be an inverse semigroup with zero, and let θ: S → T be
a homomorphism to an orthogonally complete inverse semigroup T . Then there
is a unique orthogonal join preserving homomorphism φ: D(S) → T such that
φι = θ.

The inverse monoid D(S) is called the orthogonal completion of S.

Put An = {a1, . . . , an}. A string in A∗

n, the free monoid generated by An,
will be called positive. If u = vw are strings, then v is called a prefix of u, and a
proper prefix if w is not the empty string. A pair of elements of A∗

n is said to be
prefix-comparable if one is a prefix of the other. If x and y are prefix-comparable
we define

x ∧ y =

{

x if y is a prefix of x
y if x is a prefix of y

The polycyclic monoid Pn, where n ≥ 2, is defined as a monoid with zero by
the following presentation

Pn = 〈a1, . . . , an, a−1

1
, . . . , a−1

n : a−1

i ai = 1and a−1

i aj = 0, i 6= j〉.

Intuitively, think of a1, . . . , an as partial bijections of a set X and a−1

1
, . . . , a−1

n

as their respective partial inverses. The first relation says that each partial
bijection ai has domain the whole of X and the second says that the ranges of
distinct ai are disjoint. As a concrete example of P2, one can take as a1 and
a2 the two maps that shrink the Cantor set to its lefthand and righthand sides,
respectively. Every non-zero element of Pn is of the form yx−1 where x, y ∈ A∗

n,
and where we identify the identity with the element 1 = εε−1. The product of
two elements yx−1 and vu−1 is zero unless x and v are prefix-comparable. If
they are prefix-comparable then

yx−1 · vu−1 =

{

yzu−1 if v = xz for some string z
y(uz)−1 if x = vz for some string z

The non-zero idempotents in Pn are the elements of the form xx−1, where x is
positive, and the natural partial order is given by yx−1 ≤ vu−1 iff (y, x) = (v, u)p
for some positive string p. Observe that an element lying above a non-zero
idempotent in a polycyclic monoid is itself a non-zero idempotent. Inverse
semigroups with this property are said to be E∗-unitary.
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Lemma 2.3 Let xx−1 and yy−1 be non-zero idempotents. Then xx−1·yy−1 6= 0
if and only if either xx−1 ≤ yy−1 or yy−1 ≤ xx−1. When non-zero xx−1 · yy−1

is equal to (x ∧ y)(x ∧ y)−1.

Remark Suppose that in the polycyclic monoid

xy−1 ≤ uv−1, wz−1.

Then either uv−1 = wz−1, uv−1 ≤ wz−1 or uv−1 ≥ wz−1.

A prefix code in A∗

n is a non-empty subset C with the property that no
element of C is a proper prefix of any other element of C. A prefix code is max-
imal if it is not contained in any other prefix code. The following is essentially
Proposition II.4.7 of [2].

Lemma 2.4 Let C ⊆ A∗

n be a maximal prefix code such that C 6= {ε}. Then
there exists a string u such that ua1, . . . , uan ∈ C and

C ′ = C \ {ua1, . . . , uan} ∪ {u}

is a maximal prefix code.

The following result was inspired by [3] and is crucial to our work.

Lemma 2.5 A subset
{y1x

−1

1
, . . . , ymx−1

m }

of Pn is orthogonal iff {x1, . . . , xm} and {y1, . . . , ym} are both prefix codes.

If A = {x1x
−1

1
, . . . , xnx−1

n } ∪ {0} is an orthogonal subset of Pn, then ZA =
{x1, . . . , xn} is the associated prefix code.

Theorem 2.6 The orthogonal completion of the polycyclic monoid Pn is iso-
morphic to the inverse monoid Rn consisting of right ideal isomorphisms between
the finitely generated right ideals of the free monoid on n generators.

An idempotent e of S is called essential if for each non-zero idempotent
f ∈ S we have that ef 6= 0.

Lemma 2.7 The following are equivalent in D(Pn):

(i) A is an essential idempotent.

(ii) AB is non-zero for all non-zero idempotents B.
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(iii) ZA is a maximal prefix code.

Lemma 2.8 Let S be an inverse monoid with zero. Let Se denote the set of
elements s such that both d(s) and r(s) are essential idempotents. Then Se is
an inverse submonoid of S.

By Lemma 2.7, the essential idempotents in D(Pn) are those whose associ-
ated prefix codes are maximal. By Lemmas 2.5 and 2.7, the elements of De(Pn)
are those in which the domains and ranges correspond to maximal prefix codes.

Proposition 2.9 The inverse semigroup De(Pn) is isomorphic to the inverse
monoid of right ideal isomorphisms between the finitely generated essential right
ideals of the free monoid on n generators.

From Birget [3] and Scott [17] the following is now immediate.

Corollary 2.10 The maximum group homomorphic image of De(Pn) is the
Thompson group Vn,1.

Notation and a convention We write Dn = D(Pn). The elements of Dn are
finite orthogonal sets containing zero. Because the zero is always there, I shall
almost always ignore it in what follows. Except when I am specifically interested
in the zero element {0}, it will always be the non-zero elements which are of
interest.

To conclude this section, we shall examine in more detail the properties of
the set of idempotents of the inverse semigroup Dn. Unproved statements follow
from results in [12]. The set of idempotents of Dn is in bijective correspondence
with the set of finite prefix codes in A∗

n, and the set of essential idempotents
in Dn is in bijective correspondence with the set of finite maximal prefix codes
in A∗

n. The set of idempotents in Dn forms a semilattice with respect to the
natural partial order. There is therefore a corresponding semilattice structure
on the finite prefix codes. To describe it, we shall use the following. We say
that the string x is an extension of the string y if x = yz for some string z. We
define x∧ y to be the shortest extension of x and y if it is defined (which will be
the case only when x and y are prefix-comparable). Given two prefix codes X
and Y we define X ≤ Y iff each element of X is an extension of an element of
Y . For arbitrary prefix codes X and Y , the prefix code X ◦Y is either empty or
consists of the set of shortest extensions of all pairs of elements one from X and
one from Y . In the case X and Y are both maximal prefix codes then X ◦ Y is
always non-empty and a maximal prefix code; in this case, the maximal prefix
code is obtained by ‘overlaying’ the two codes and taking the result as their
meet. If E(Dn) is the semilattice of idempotents of Dn and PCn the semilattice
of finite prefix codes in A∗

n, then the function E 7→ ZE is an isomorphism of
semilattices.
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There are a number of unary operations which can also be defined on PCn

which then have algebraic correlates in E(Dn):

• Let E correspond to a (maximal) prefix code ZE . Conjugates of the
form y−1Ey also correspond to (maximal) prefix codes: the corresponding
(maximal) prefix code is y−1ZE where here y−1x means remove the prefix
y from x if y is a prefix of x and is undefined otherwise; in terms of trees,
y−1ZE is the portion of the (maximal) prefix code which starts at y and
so is itself a (maximal) prefix code.

• Conjugates of the form yEy−1 correspond to prefix codes: the correspond-
ing code is yZE ; in terms of trees we are attaching the prefix code ZE to
the ‘stalk y’.

Lemma 2.11

(i) Let E and F be idempotents in Dn such that ZE and ZF are maximal prefix
codes. Then ZEF is a maximal prefix code.

(ii) Let E be an idempotent such that ZE is a maximal prefix code. Then for
all A ∈ Dn, we have that EA = {0} iff A = {0}, and dually.

(iii) Let F = {xx−1: finite number of x’s} and Ex, where xx−1 ∈ F , be idem-
potents in Dn such that ZEx

and ZF are maximal prefix codes. Then

G =
⋃

xx−1∈F

xExx−1

is such that ZG is a maximal prefix code. This result can be described in
terms of trees: we take the tree corresponding to the maximal prefix code
ZF and glue to each leaf x the tree corresponding to the maximal prefix
code Ex. The tree we get clearly corresponds to a maximal prefix code.

(iv) Let F = {xx−1: finite number of x’s}, Ex, where xx−1 ∈ F , and

G =
⋃

xx−1∈F

xExx−1

be idempotents in Dn where ZG and ZEx
are maximal prefix codes. Then

F is a maximal prefix code. This result can be described in terms of trees:
we take the tree corresponding to a maximal prefix code and erase a subtree
tree which corresponds to a maximal prefix code. The tree we get clearly
corresponds to a maximal prefix code.

Proof The proofs of (i) and (ii) follow from Lemmas 2.7 and 2.8. The proof
of (i) follows from the fact that the product of two essential idempotents is an
essential idempotent. To prove (ii), let e be an essential idempotent and a an
arbitrary element. Then ea = 0 iff eaa−1 = 0, but this occurs iff aa−1 = 0,
because e is essential. This in turn occurs iff a = 0. The proof of (iii) can either
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be done directly from the definitions or it is essentially Proposition II.4.1(1)
of [2]. The proof of (iv) can either be done directly or is essentially Proposi-
tion II.4.1(3) of [2].

3 Strong orthogonal completions of polycyclic

monoids

To explain the motivation of this paper, I need to return to the definition of
Pn. The idempotents a1a

−1

1
, . . . , ana−1

n are pairwise orthogonal, and so their
orthogonal join is an idempotent in Dn. We would like to force this orthogo-
nal join to be the identity. To do this, I shall define a congruence ≡ on Dn

which will force this to happen in the most efficient way. The quotient monoid
Cn = Dn/ ≡ will still be orthogonally complete but the orthogonal join of (the
images of) the idempotents aia

−1

i will now be the identity. It will transpire
that the congruence ≡ restricted to De

n, will be the minimum group congru-
ence. Consequently, the group of units of Cn will then be the Thompson group
Vn,1 by Corollary 2.10. Most of this section will be taken up with defining the
congruence ≡ and determining its properties.

Let A,B ∈ Dn where A = {xiy
−1

i : 1 ≤ i ≤ p} and B = {ujv
−1

j : 1 ≤ j ≤ q}.
Define A � B iff we can write

A =

q
⋃

j=1

ujEjv
−1

j

where Ej is an idempotent in Dn and ZEj
is a maximal prefix code. I shall

write A �e B iff A = B \ {ujv
−1

j } ∪ uj{a1a
−1

1
, . . . , ana−1

n }v−1

j . I shall write
A �∗

e B if A = A1 �e A2 �e . . . �e An = B for some n.

Remarks

(i) If A � B then each element in A lies beneath an element of B, and each
non-zero element of B lies above a non-zero element of B.

(ii) Define Aj = ujEjv
−1

j . Then with slight abuse of notation, we have that

Aj � ujv
−1

j . The Aj are orthogonal.

Lemma 3.1

(i) If A � B then A ≤ B.

(ii) The relation � is a partial order Dn.

(iii) If A � B then A = {0} iff B = {0}.

(iv) If A � B then A is an idempotent iff B is an idempotent.
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(v) If A � B then A−1 � B−1.

(vi) Let A and B be non-zero. If A � B then AC = {0} iff BC = {0}, and
dually.

(vii) If A � B then AC � BC, and dually.

(viii) A � B iff A−1A � B−1B and A ≤ B.

(ix) Let A,B,C all be non-zero, and A,B � C. Then there exists a non-zero
D such that D � A,B.

(x) A � B iff A �∗

e B.

Proof (i) By Lemma 2.3(i) [12], A ≤ B if each element of A lies beneath an
element of B with respect to the natural partial order. The result is therefore
immediate from the definition.

(ii) Reflexivity follows from the fact that {ε} is a maximal prefix code. Anti-
symmetry follows from (i), above. We now prove transitivity. Let A = {xiy

−1

i },
B = {ujv

−1

j }, and C = {wkz−1

k } be such that A � B � C. We prove that

A � C. Let A =
∑

j ujEjv
−1

j where the ZEj
are maximal prefix codes, and let

B =
∑

k wkFkz−1

k where the ZFk
are maximal prefix codes. The element wkz−1

k

lies above the set of elements of A given by

wk(
⋃

rr−1∈Fk

rEjr
−1)z−1

k

for some j. The fact that the expression within the brackets is associated with
a maximal prefix code follows by Lemma 2.11. Thus A � C, as required.

(iii) This is immediate from the definition.
(iv) This follows by Remarks (i), the fact that idempotents in an inverse

semigroup form an order ideal, and the fact that Pn is E∗-unitary.
(v) Suppose that A � B. Then A =

∑n

j=1
ujEjv

−1

j . Taking inverse of both
sides gives the result.

(vi) This is immediate from the definition.
(vii) By (vi), we may assume that both products are non-zero. The result

follows by multiplying out and using Lemma 2.11 when necessary.
(viii) Suppose A � B. Then from (v) and (vii), we have that A−1A �

B−1B, and from (i), we have that A ≤ B. To prove the converse, suppose
that A−1A � B−1B and A ≤ B. Then A = BA−1A. By (vii), we have that
BA−1A � BB−1B, and so A � B, as required.

(ix) Let C = {xiy
−1

i }, A = {ujv
−1

j }, B = {wkz−1

k } where A,B � C.

Thus A = ∪ixiEiy
−1

i and B = ∪ixiFiy
−1

i where Ei and Fi are associated with
maximal prefix codes. Define D = ∪ixiEiFiy

−1

i . To show that D � A, choose
a typical element of A: namely, xipp−1y−1

i where pp−1 ∈ Ei. A subset of D is
xipp−1Fiy

−1

i , which can be rewritten as (xip)(p−1Fip)(yip)−1 where p−1Fip is
a maximal prefix code by Lemma 2.11. It follows that D � A, and a similar
argument shows that D � B.
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(x) One direction is immediate by the transitivity proved in (ii). We prove
that A � B implies A �∗

e B. Observe that it is enough to prove that A � uv−1

implies that A �∗

e uv−1. By Lemma 2.4, C 6= {ε} is a maximal prefix code
iff there exists u such that uAn ⊆ C and C ′ = C \ {ua1, . . . , uan} ∪ {u} is a
maximal prefix code. Observe that |C ′| < |C|. Let E be such that ZE = C,
and let E′ be such that ZE′ = C ′. Then E �e E′. By induction we get that
E �∗

e {0, 1}. It follows that ZE is a maximal prefix code iff E �∗

e {0, 1}. Ob-
serving that A′ �e B′ implies that uA′v−1 �e uB′v−1, the result follows.

Remark Lemma 3.1 shows that the partial order � refines the natural partial
order on Dn. At the same time it shares a number of important properties with
the natural partial order: namely, (v) and (viii).

A congruence ρ on an inverse semigroup S is said to be 0-restricted if the
only element of S which is ρ-related to zero is zero. It is said to be idempotent
pure if the only elements of S which are ρ-related to idempotents are themselves
idempotents.

Define ≡ on Dn as follows. We require {0} ≡ {0}, and if A and B are both
non-zero, then A ≡ B iff there exists a non-zero C such that C � A,B.

Proposition 3.2 With the above definition we have the following.

(i) The relation ≡ is a 0-restricted, idempotent pure congruence on Dn.

(ii) The congruence ≡ restricted to De
n is the minimum group congruence.

(iii) The congruence ≡ restricted to the image of Pn in Dn is equality.

(iv) The congruence ≡ is the smallest congruence on Dn in which all the es-
sential idempotents are identified.

(v) Let Ai ≡ Bi where the Ai (respectively the Bi) are orthogonal. Then
∑

Ai ≡
∑

Bi.

Proof (i) We show first that ≡ is an equivalence relation. Reflexivity: {0} ≡ {0}
by fiat; and A ≡ A for all non-zero A since � is a partial order by Lemma 3.1(ii).
Symmetry: this is immediate from the definition. Transitivity: this follows by
Lemma 3.1(ix). The fact that ≡ is a congruence follows from Lemma 3.1(vi) and
(vii). The fact that ≡ is 0-restricted follows from Lemma 3.1(iii). Idempotent
purity follows by Lemma 3.1(iv).

(ii) By Lemma 3.1(viii), it is enough to prove the claim for idempotents. We
prove that E ≤ F implies E � F when ZE and ZF are maximal prefix codes.
Because ZE is a maximal prefix code, it is easy to check that each element of F
lies above an element of E. Fix bb−1 ∈ F and let A be the set of all elements of
E that lie beneath bb−1. Each element of A is of the form bww−1b−1 for some
string w. Thus A = bGb−1 where G is an idempotent and ZG is a prefix code;
it remains to show that it is a maximal prefix code. Let xx−1 be any non-zero
idempotent. The string bx must be prefix comparable with a string bw ∈ ZE
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since ZE is a maximal prefix code and E ≤ F . Observe that w ∈ ZG. Thus
bw(bw)−1 · bx(bx)−1 6= 0 from which it follows that ww−1 · xx−1 6= 0. Thus G
is an essential idempotent and so ZG is a maximal prefix code.

(iii) Let xy−1 and uv−1 be such that xy−1 ≡ uv−1. There are therefore
idempotents E and F associated with maximal prefix codes such that xEy−1 =
uFv−1. Observe that xEx−1 = uFu−1 and yEy−1 = vFv−1. Now ZxEx−1 =
xZE and ZuFu−1 = uZF . Suppose u = xz. Then ZE = zZF . But ZE is
a maximal prefix code and so z is the empty string. There is a similar dual
argument. Thus u = x. Similarly v = y.

(iv) Let ' be any congruence on Dn which identifies the essential idempo-
tents. Let A ≡ B. Then there exists C � A,B. Thus we can write

C =
∑

xiEiy
−1

i =
∑

ujFjv
−1

j

where A = {xiy
−1

i } and B = {ujv
−1

j } and Ei and Fj correspond to maximal
prefix codes. By assumption, C ' A and C ' B and so A ' B, as required.

(v) This is immediate from the definition.

Proposition 3.3 The congruence ≡ is the unique congruence defined on Dn

which is 0-restricted, idempotent pure, and identifies all the essential idempo-
tents.

Proof Let ' be a 0-restricted idempotent pure congruence which identifies all
the essential idempotents. By Proposition 3.2(iv), we have that ≡ is contained
in '. We prove that the reverse inclusion holds.

We show first that it is enough to prove the result for idempotents. Suppose
that for E and F idempotents, we have that E ' F implies E ≡ F . We
prove that ' is contained in ≡. Let A ' B. Then A−1A ' A−1B. Now ' is
idempotent pure and so since A−1A is an idempotent, we have that A−1B is
an idempotent. Without loss of generality we can assume that it is non-zero.
By assumption, A−1A ≡ A−1B. But then A ≡ AA−1B. Now AA−1 ' BB−1

implies AA−1 ≡ BB−1. Thus AA−1B ≡ B. It follows that A ≡ B. Thus the
theorem will be proved if we can prove it for idempotents.

Next we prove a slightly more general result. Let S be an inverse monoid
with zero. Let ' be a 0-restricted, idempotent pure congruence that identifies
all the essential idempotents. Then a ' 1 iff a is an essential idempotent. There
is only one direction to prove. Suppose a ' 1. Then a is an idempotent because
' is idempotent pure. Let f be any non-zero idempotent. Then fa ' f . Now
' is 0-restricted and so fa is non-zero. It follows that a is an essential idem-
potent. Thus ' identifies with the identity element all and only the essential
idempotents.

Now we return to the particular case we are interested in. We look first at
a special case. Let E = {uiu

−1

i : 1 ≤ i ≤ p} be a non-zero idempotent. Suppose
that E ' xx−1. Then for each i we have that uiu

−1

i ' uiu
−1

i xx−1. Because
' is 0-restricted, we have that uiu

−1

i xx−1 6= 0. Thus by Lemma 2.3, we have

10



for each i that either uiu
−1

i ≤ xx−1 or xx−1 ≤ uiu
−1

i . Now x−1Ex ' 1, and
so F = x−1Ex is an essential idempotent by our general result above. Thus
ZF is a maximal prefix code. If xx−1 ≤ uiu

−1

i for some i, then because ' is
0-restricted, it follows that E contains exactly one (non-zero) element: uiu

−1

i .
But then F contains only one element and, since it is associated with a maximal
prefix code, that element must be the identity. It follows that x = ui and so
E ≡ xx−1. Thus we may assume that uiu

−1

i ≤ xx−1 for all i. Thus E = xFx−1

where F is associated with a maximal prefix code. It follows that E � xx−1

and so E ≡ xx−1.
Now let E = {uiu

−1

i : 1 ≤ i ≤ p} ' F = {xjx
−1

j : 1 ≤ j ≤ q}. Then

Exjx
−1

j ' xjx
−1

j . Thus Exjx
−1

j � xjx
−1

j for all j by the preceding result. Put

D = {uiu
−1

i xjx
−1

j : 1 ≤ i ≤ p, 1 ≤ j ≤ q}. The fact that ' is 0-restricted
implies that D is not zero. By symmetry and Proposition 3.2(v), we have that
D � E,F . Thus E ≡ F .

Lemma 3.4 Let S be an orthogonally complete inverse semigroup, and let ≡
be a 0-restricted congruence on S such that if s1 ≡ t1 and s2 ≡ t2 and s1 and
s2 are orthogonal, and t1 and t2 are orthogonal then s1 + s2 ≡ t1 + t2. Then
S/ ≡ is orthogonally complete.

Proof Denote the ≡-class containing s by [s]. By induction, we can prove that
if si ≡ ti for 1 ≤ i ≤ p and the si are orthogonal and the ti are orthogonal then
∑

si ≡
∑

ti.
Let [si] be a finite orthogonal subset of S/ ≡. Because the congruence is 0-

restricted, the set si is orthogonal and so s =
∑

si exists in S. Clearly [si] ≤ [s].
Suppose that [si] ≤ [t] for all i. Then [si] = [td(si)] and so si ≡ td(si). It is easy
to check that the td(si) are orthogonal and so, by assumption,

∑

si ≡
∑

td(si).
By Lemma 2.1, we know that d(

∑

si) =
∑

d(si). Thus
∑

td(si) = t
∑

d(si) =
td(s). Hence [s] ≤ [t]. It follows that

∑

[si] exists. We have proved that S/ ≡
has orthogonal joins. In fact, we have shown that [

∑

si] =
∑

[si].
The fact that multiplication distributes over finite orthogonal joins follows

from the existence of orthogonal joins and distributivity in S, and our result
above.

Put Cn = D(Pn)/ ≡. By Proposition 3.2 and Lemma 3.4, Cn is orthogonally
complete and contains an isomorphic copy of Pn and every element of Cn is
the join of a finite orthogonal subset of Pn and all essential idempotents are
identified.

More generally, let S be an inverse monoid with zero containing Pn as an
inverse submonoid such that S is orthogonally complete, every element of S is
the join of a finite orthogonal subset of Pn, and such that

∑

i aia
−1

i = 1. Then
S is called a strong orthogonal completion of Pn.

Theorem 3.5 Any two strong orthogonal completions of Pn are isomorphic.
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Proof Let S be a strong orthogonal completion of Pn. Let A,B ∈ D(Pn). We
begin by proving in four steps that

∑

A =
∑

B in S iff A ≡ B in Dn.

1. Let A = {yix
−1

i : 1 ≤ i ≤ m} be an orthogonal subset of Pn. Then
∑

A = 1
iff the elements of A are idempotents and {xi: 1 ≤ i ≤ m} is a maximal prefix
code.
Suppose first that

∑

A = 1. Since each element of A lies beneath 1 in the
natural partial order, it follows that each element of A is an idempotent. Thus
yi = xi for each 1 ≤ i ≤ m. By Lemma 2.5, since A is an orthogonal set, it
follows that {xi: 1 ≤ i ≤ m} is a prefix code. We prove that it is a maximal
prefix code. Suppose not. Then there is a string y such that

{xi: 1 ≤ i ≤ m} ∪ {y}

is a prefix code. Thus yy−1 · xix
−1

i = 0 for 1 ≤ i ≤ m. But from distributivity
in S we get that

yy−1 = yy−11 =
m

∑

i=1

yy−1 · xix
−1

i ,

but this implies that not all yy−1 · xix
−1

i can be zero. We therefore get a
contradiction. It follows that A is a maximal prefix code, as claimed.

Conversely, suppose that A = {xix
−1

i : 1 ≤ i ≤ m} is such that the xi form
a maximal prefix code. We prove that

∑

A = 1. Put C = {xi: 1 ≤ i ≤ m}. If
C = {ε} then the result is trivially true. By Lemma 2.4, there is a string u such
that uai ∈ C and C ′ = C \ {uai: 1 ≤ i ≤ m} ∪ {u} is a maximal prefix code.
Observe that |C ′| < |C|. Put A′ = {vv−1: v ∈ C ′}. Thus |A′| < |A|. Then it is
easy to check that

∑

A =
∑

A′ using our assumptions about S. This process
can be iterated with A′ replacing A above. The process will terminate when A′

contains only the empty string at which point we will get that the union is the
identity, as claimed.

2. Let A = {uiui: 1 ≤ i ≤ m} be an orthogonal set of idempotents of Pn. Then
xx−1 =

∑

A iff A � xx−1.
Suppose first that A � xx−1. Then there is an element E of D(Pn) such that
ZE is a maximal prefix code and A = xEx−1. But then

∑

A =
∑

xEx−1 =
x(

∑

E)x−1 = xx−1, using (1).
Conversely suppose that

xx−1 =

m
∑

i=1

uiu
−1

i .

Then uiu
−1

i ≤ xx for each i. Hence ui = xwi for some unique string wi. Thus

xx−1 =
m

∑

i=1

xwiw
−1

i x−1.

12



Now multiply on the left by x−1 and on the right by x and use the distributivity
law to get

1 =

m
∑

i=1

wiw
−1

i .

Hence by (1), we have that {wi: 1 ≤ i ≤ m} is a maximal prefix code.

3. Let A = {xiy
−1

i : 1 ≤ i ≤ m} be an orthogonal subset of Pn. Then uv−1 =
∑

xiy
−1

i iff A � uv−1.
From A � uv−1 and (1), we easily deduce that

∑

A = uv−1. Conversely, sup-
pose that

∑

A = uv−1. Then vv−1 =
∑

yiy
−1

i . Thus by (2) there is a maximal
prefix code ZE such that {yiy

−1

i } = vEv−1. Elementary inverse semigroup the-
ory gives {xiy

−1

i } = uEv−1 and so A � uv−1.

4. Let A = {xiy
−1

i } and B = {ujv
−1

j }. Then
∑

A =
∑

B iff A ≡ B.
The proof that A ≡ B implies

∑

A =
∑

B is straightforward and uses (1). We
prove the converse. Suppose that

∑

A =
∑

B. Then
∑

A =
∑

B · A−1A. Put
C = B · A−1A. For each i, we have that xiy

−1

i =
∑

j ujv
−1

j · yiy
−1

i . Thus by

(3), we have that C � A. For each j, we have that ujv
−1

j =
∑

i ujv
−1

j · yiy
−1

i .
Thus by (3), we have that C � B. Hence A ≡ B, as required.

We can now prove that S is isomorphic to Cn. Each element s ∈ S can be
written s =

∑

A for some finite orthogonal subset of Pn. Map s to [A ∪ {0}],
the ≡-equivalence class; this is unambiguous because s =

∑

B implies that
A ≡ B. In this way we get a surjective function from S to Cn which is injective
by what we have proved above. It is straightforward to check that we have a
homomorphism and so an isomorphism.

We have proved that the polycyclic monoid Pn possesses a unique strong
orthogonal completion Cn. The next lemma will lead to a simple way of calcu-
lating in Cn.

Lemma 3.6 If A � B,C then there exists D such that B,C � D.

Proof Let A = {xiy
−1

i }, B = {ujv
−1

j } and C = {wkz−1

k }. Then A � B implies

that A = ∪jujEjv
−1

j where the Ej correspond to maximal prefix codes, and

A � C implies that A = ∪kwkFkz−1

k where the Fk correspond to maximal
prefix codes.

Observe that by Lemma 3.1 (v) and (vii), we have that A−1A � B−1C
and AA−1 � BC−1. By Lemma 3.1(iv), it follows that B−1C and BC−1 are
idempotents. Define

D = max{ujv
−1

j , wkz−1

k } ∪ {0},

where ‘max’ means ‘pick the maximal elements of’. Using our observation, and
the Remark following Lemma 2.3, we deduce that D is a finite orthogonal subset
of Pn.
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I shall prove that B � D; a similar argument proves that C � D. To do
this, it will be enough to prove the following. Let wkz−1

k ∈ C. Let Bk denote
all the elements of B that lie beneath wkz−1

k . I shall prove that Bk = wkGkz−1

k ,
where Gk corresponds to a maximal prefix code. We have that

Fk = ∪jw
−1

k ujEjv
−1

j zk.

Now w−1

k uj = 0 unless wk and uj are prefix-comparable, and v−1

j zk = 0 unless

zk and vj are prefix comparable. If both are non-zero, then (wkz−1

k )−1ujv
−1

j and

wkz−1

k (ujv
−1

j )−1 are both non-zero idempotents. It follows that the elements

are comparable — but wkz−1

k is maximal. Thus the terms are only non-zero
when ujv

−1

j ≤ wkz−1

k . Let (uj , vj) = (wk, zk)pj . Then Gk = {pjp
−1

j } and

Fk = ∪jpjEjp
−1

j . The fact that Gk is associated with a maximal prefix code
now follows from Lemma 2.11.

Calculations in Cn can be carried out in the following way. If A � B and
A 6= B then |B| < |A|. It follows that an increasing sequence A1 � A2 � A3 . . .
must stabilise in a finite number of steps. I shall call �-maximal elements ir-
reducible. Thus for each A there is an irreducible element B such that A � B.
By Lemma 3.6, this irreducible element is unique. It follows that A ≡ B iff
A′ = B′, where A ≡ A′ and B ≡ B′, and A′ and B′ are irreducible. Elements
of Cn can be written as formal finite sums

∑m

i=1
xiy

−1

i when xiy
−1

i 6= xjy
−1

j

implies that the elements are orthogonal. We require that the sum is commu-
tative and idempotent and that left and right distributivity laws hold, and that
0 + xy−1 = xy−1 = xy−1 + 0 for all xy−1 ∈ Pn. In addition, we require that
∑n

i=1
aia

−1

i ≡ 1. To determine whether two elements are ≡-equivalent we carry
out reductions using �e. Thus the sorts of calculations that Birget carries out,
for example on page 602 of [3], can also be carried out in this formalism but
extended to the whole of Cn.

4 Algebraic properties of Cn

In this section, I shall examine the semigroup-theoretic properties of the inverse
monoid Cn.

In [12], we proved that the orthogonal completion of the polycyclic monoid
on n generators, Dn, was isomorphic to the inverse monoid Rn of right ideal
isomorphisms between the finitely generated right ideals of the free monoid on
n generators. In this section, we shall prove an analogous result for the strong
orthogonal completion Cn.

Let A = An = {a1, . . . , an} and denote by Aω the set of all (right) infinite
strings over A. If X is a subset of A∗ then XAω consists of all those infinite
strings that have a finite prefix from X. I shall call such sets right ideals of
Aω. I shall say that they are finitely generated if X is finite. A bijection
f : XAω → Y Aω between finitely generated right ideals is called a right ideal
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isomorphism if X and Y are finite prefix codes and there is a bijection f1: X → Y
such that

f(xw) = f1(x)w

for all x ∈ X and w ∈ Aω. We denote by Sn the set of all right ideal isomor-
phisms between finitely generated right ideals of Aω together with the empty
function.

Remark Let X and Y be two finite prefix codes and let f1 be a bijection from
X to Y . Define f from XAω to Y Aω by f(xw) = f1(x)w. Then f is a well-
defined right ideal isomorphism.

Lemma 4.1 The set Sn satisfies the following conditions:

(i) Sn is a groupoid under the restricted product.

(ii) If f ∈ Sn, where f : XAω → Y Aω and X ′Aω ⊆ XAω, then f restricted to
X ′Aω also belongs to Sn.

(iii) The set of finitely generated right ideals is closed under intersection.

We deduce that Sn is an inverse monoid.

Proof (i) Let f : XAω → Y Aω be an element of Sn. We show that f−1 is an
element of Sn. Define g: Y Aω → XAω by g(yw) = f−1

1
(y)w. This is a well-

defined element of Sn and it is easy to check that it is the inverse of f . Let
g: Y Aω → ZAω be an element of Sn. Then it is easy to check that gf is also
an element of Sn.

(ii) We show first that we may assume without loss of generality that each
element of X ′ has as a prefix an element of X. From X ′Aω ⊆ XAω we deduce
that each element of X ′ is comparable with an element of X. Let x′ ∈ X ′. Then
either x′ is a prefix of some element of X, or some element of X is a prefix of x′.
Suppose that there is no element x ∈ X which is a prefix of x′. Then there are
elements of X of which x′ is a proper prefix. Let Z be the set of all strings such
that x′Z ⊆ X. Then Z is a prefix code; we claim that Z is a maximal prefix
code. Suppose not. Then there exists a string u such that u is not comparable
with any element of Z. Thus x′u cannot be comparable with any element of
x′Z. Now x′uw ∈ XAω for any infinite string w. Thus x′u is comparable with
some element x ∈ X. By assumption, x cannot be a prefix of x′. Suppose that
x is a prefix of x′u. Then u = u′u′′ where x = x′u′. Thus u′ ∈ Z and u′ is a
prefix of u, which is a contradiction. Suppose that x′u is a prefix of x. Then
x = x′uv for some v. Thus uv ∈ Z and u is a prefix of uv, a contradiction. We
have therefore proved that Z is a maximal prefix code.

Put X ′′ = X ′ \ {x′} ∪ x′Z. For all maximal prefix codes Z, we have that
ZAω = Aω. Thus X ′Aω = X ′′Aω. The element x′ has been removed, and
replaced by elements all of which live in X. Observe that X ′′ is also a prefix
code. Continuing in this way, we can assume that each element of X ′ is either
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in X or has an element of X as a prefix (which is unique because X is a prefix
code).

Under our assumption, let x′ ∈ X ′. Then x′ = xu for a unique x ∈ X and
string u ∈ A∗. Let Y ′ consist of the elements f1(x)u. It is a prefix code, because
X and Y are prefix codes. It is immediate that the image of X ′Aω under f is
contained in Y ′Aω and that it is in fact equal to Y ′Aω. The function g1 from
X ′ to Y ′ that takes x′ = xu to f1(x)u is injective and so surjective. Thus the
function g: X ′Aω → Y ′Aω defined by g(x′w) = g1(x

′)w is the restriction of f
to X ′Aω.

(iii) Observe that xAω∩yAω is either empty or one is contained in the other.
From this the result follows.

The final claim follows from the theory of inductive groupoids [8], but can
also be seen directly from the observation that

fg = (f |E)(g−1|E)−1,

where the product on the righthand side is a groupoid product, and where E is
the intersection of the domain of f and the image of g.

Theorem 4.2 The inverse monoids Cn and Sn are isomorphic.

Proof Recall the definition of Rn from Theorem 2.6. Define a function θ: Rn →
Sn which maps f : XA∗ → Y A∗ to f̄ : XAω → Y Aω where f̄1 = f restricted
to X, and maps the empty function to the empty function. This is a surjec-
tive function which is easily seen to be a homomorphism. By construction it is
0-restricted, idempotent pure and identifies all essential idempotents. Thus by
Proposition 3.3, the kernel of θ is ≡ and so Cn is isomorphic to Sn, as required.

Remark An alternative proof of the above theorem follows from Theorem 3.5:
the inverse monoid Sn is easily seen to be a strong orthogonal completion of Pn.

Lemma 4.3 Let X and Y be finite prefix codes. Then a necessary and sufficient
condition for XAω = Y Aω is that for all finite strings z we have that z is not
prefix-comparable with any element of X iff z is not prefix-comparable with any
element of Y .

Proof Suppose first that XAω = Y Aω. Let z be a finite string that is not
prefix-comparable with any element of X. Suppose that z is prefix-comparable
with some element y of Y . Then zu = yv for some finite strings u and v.
There are now two possibilities: either z = yq or y = zq for some finite string q.
Suppose the former. Then for all infinite strings w we have that zw = yqw. Thus
zAω ⊆ Y Aω and so zAω ⊆ XAω, which implies that z is prefix-comparable with
some element of X which is a contradiction. Thus we must have that y = zq.
But then yAω = zqAω ⊆ XAω and so z is comparable with an element of X,
which is a contradiction. It follows that z is not prefix-comparable with any
element of Y . The converse is proved similarly.
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Suppose now that for all finite strings z we have that z is not prefix-
comparable with any element of X iff z is not prefix-comparable with any ele-
ment of Y . We shall prove that XAω = Y Aω. In fact, we shall prove that if
for all finite strings z we have that z is not prefix-comparable with any element
of X ⇒ z is not prefix-comparable with any element of Y then Y Aω ⊆ XAω.
Let y ∈ Y . Suppose that y is not prefix-comparable with any element of X.
Then it cannot be prefix-comparable with any element of Y : a contradiction.
Thus y is prefix-comparable with some element x ∈ X. Hence yu = xv for some
finite strings u and v. It follows that y = xp or x = yp for some finite string
p. Suppose the former. Then yAω = xpAω ⊆ xAω ⊆ XAω (which is heading in
the right direction). Suppose the latter: x = yp where p is not the empty string.
Let Z be the set of all finite strings such that yZ ⊆ X. By assumption, Z is
non-empty. Since X is a prefix code, so is Z. We prove that Z is a maximal
prefix code. Suppose not. Then there exists a string d such that d is not prefix-
comparable with any element of Z. Thus yd is not prefix-comparable with any
element of X. By our hypothesis, it follows that yd is not prefix-comparable
with any element of Y : a contradiction. Hence Z is a maximal prefix code. But
yAω = yZAω ⊆ XAω. We have proved that for all y, we have that yAω ⊆ XAω.
Thus Y Aω ⊆ XAω, as required.

We say that the set of idempotents of an inverse semigroup S is 0-disjunctive
if for all non-zero idempotents e and f where e 6= f there is an idempotent g
such that either eg 6= 0 and fg = 0 or eg = 0 and fg 6= 0.

Lemma 4.4 The set of idempotents of the inverse semigroup Cn is 0-disjunctive.

Proof We use the isomorphic copy Sn. Idempotents in Sn are identity func-
tions on subsets of the form XAω. Suppose that XAω 6= Y Aω. Then by
Lemma 4.3, there is a finite string z such that z is not prefix-comparable with
any element of X but is prefix-comparable with some elements of Y or z is not
prefix-comparable with any element of Y but is prefix-comparable with some
elements of X. Suppose the former. Then zAω ∩XAω = ∅, but zAω ∩Y Aω 6= ∅.
The result now follows.

Fundamental inverse semigroups are discussed in Section 5.2 of [8]. Our
proof below uses the result that an inverse semigroup is fundamental iff the only
centralisers of the idempotents are themselves idempotents; see Proposition 5.2.5
of [8].

Lemma 4.5 The inverse monoid Cn is fundamental.

Proof We shall prove that Sn is fundamental. Let f : XAω → Y Aω be an ele-
ment of Sn which is not an idempotent. Thus there exists an element xw ∈ XAω

such that f(xw) 6= xw. Since f(xw) = f1(x)w we have that f1(x) 6= x. We
may therefore find a z ∈ A∗ such that either (1) x ∈ zA∗ and f1(x) /∈ zA∗ or
(2)x /∈ zA∗ and f1(x) ∈ zA∗. Let i be the identity function defined on zAω.
This is an element of Sn. If (1) holds then if is defined but fi is empty, whereas

17



if (2) holds then if is empty and fi is defined. In both cases, if 6= fi. Hence
the only centralisers of the idempotents are idempotents, from which it follows
that Sn is fundamental.

Remark The above argument is a special case of a more general way of char-
acterising fundamental inverse semigroups in topological terms due to Wagner;
see Proposition 5.2.10 of [8].

Lemma 4.6 The inverse monoid Cn is 0-simple

Proof Observe that for any finite prefix code X and finite string z, we have
that X and zX are both prefix codes having the same cardinality. Next observe
that if Y is any prefix code and y ∈ Y then yXAω ⊆ Y Aω. Thus the identity on
XAω is isomorphic to the identity on yXAω which is contained in Y Aω. Thus
Cn is 0-simple by Proposition 3.1.10 of [8].

Lemma 4.7 The inverse monoid Cn has n D-classes.

Proof If Z ⊆ A∗

n is a maximal prefix code, then |Z| ≡ 1 (mod n − 1). Further-
more, for every s ≡ 1 (mod n−1) there is a finite maximal prefix code such that
s = |Z|. Let Z be a finite maximal prefix code with s elements, and let r be
such that 1 ≤ r ≤ n − 2, then Xr,s = {a1, . . . , ar} ∪ anZ is a prefix code with
s + r elements.

Let X be any finite prefix code containing t elements. If t ≡ 1 (mod n − 1)
then there is a finite maximal prefix code Z with t elements. There is there-
fore a right ideal isomorphism from XAω to ZAω = Aω. If on the other hand
t ≡ r′ (mod n − 1) where 2 ≤ r′ ≤ n − 1, then there is a finite prefix code
X ′ = Xr′−1,s having t = s+(r′−1) elements, for some s ≡ 1 (mod n−1). Thus
there is a right ideal isomorphism from XAω to X ′Aω = {a1, . . . , ar′−1, an}A

ω.
The distinct partial identities defined on the following sets Aω, {a1, an}A

ω, . . .,
{a1, . . . , an−2, an}A

ω therefore form a transversal of the non-zero D-classes.

By Lemmas 4.4, 4.5, 4.6, 4.7 and [13], we have proved the following.

Theorem 4.8 The inverse monoid Cn is congruence-free. In addition, C2 is
0-bisimple, whereas for n ≥ 3, Cn is 0-simple, but not 0-bisimple.

5 Representations

The goal of this section is to show how a class of representations of Pn can be
used to construct isomorphic copies of Cn. We shall be interested in homo-
morphisms from Pn to I(X), where X is a non-empty set, which are monoid
homomorphisms and map the zero of Pn to the zero of I(X). Such a homomor-
phism θ is an injection because Pn is congruence-free, and the image under θ is
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non-trivial because the zero and the identity are mapped to distinct elements.
We call θ a representation of Pn in I(X). We say that a representation is strong
iff

1X =
n

∑

i=1

θ(aia
−1

i ).

Proposition 5.1 With each strong representation θ: Pn → I(X) we can asso-
ciate a strong orthogonal completion Cθ

n of Pn.

Proof The image P ′

n of θ is an inverse submonoid of I(X) isomorphic to Pn.
Let Cθ

n be the disjoint union of the finite orthogonal subsets of P ′

n. It is easy
to check that this is an inverse submonoid of I(X) and because θ is a strong
representation it is a strong orthogonal completion of P ′

n.

We now show how to construct strong representations of Pn. Let X be
a set. The notation tn

1
X means the disjoint union of n copies of the set X.

Specifically, define
tn

1
X = ∪n

i=1
X × {i}.

There are injective functions κi: X → tn
1
X given by x 7→ (x, i).

Proposition 5.2 Let X be a non-empty set.

(i) Let f1, . . . , fn be n injective functions from X to itself whose images are
disjoint. Map ai to fi and extend this in the obvious way to a map
θ: Pn → I(X). Then θ is a representation of Pn and every representation
is obtained in this way.

(ii) The strong representations correspond to the case where the images of the
fi defined in (i) form a partition of X.

(iii) Let X =
⋃n

i=1
Xi be a partition of X into n disjoint non-empty subsets

each having the same cardinality as X. For each choice fi: X → Xi of bi-
jections, we get a strong representation of Pn. Every strong representation
of Pn arises in this way.

(iv) Every bijection from tn
1
X to X determines and is determined by n injective

functions f1, . . . , fn from X to itself whose images form a partition of X.

Proof (i) Suppose we are given the functions fi satisfying the stated properties.
Define θ to map ai to fi. Then there is a unique extension of θ to a monoid
homomorphism from the free monoid A∗

n to I(X). We now extend θ to Pn by
mapping xy−1 to θ(x)θ(y)−1. The fact that θ is a homomorphism follows from
the assumptions placed on the functions fi. Conversely, given a representation
θ: Pn → I(X), and defining fi = θ(ai), we get functions satisfying the stated
conditions and they clearly determine θ.

(ii) This is immediate.
(iii) This is just a reformulation of (ii).
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(iv) Let f : tn
1
X → X be a bijection. Define fi: X → X by fi = fκi. These

are injections. The images of the fi are disjoint and their union is X. Now let
fi be n injections from X to X whose images are disjoint and their union is X.
Define f : tn

1
X → X by f(x, i) = fi(x). It is easy to check that f is a bijection.

These two processes are clearly mutually inverse.

We may summarise by saying that given an equivalence relation with n
equivalence classes on a set X with the property that each equivalence class has
the same cardinality as X then we can construct a strong representation of Pn

in I(X).

Example 5.3 We explore the above result in the case of V = V2,1. Let I =
[0, 1]. Define

p−1: [0,
1

2
] → [0, 1] by x 7→ 2x

and

q−1: [
1

2
, 1] → [0, 1] by x 7→ 2x − 1.

This is almost, but not quite, a strong representation of P2, when we map a1 to
p and a2 to q. We shall now construct from this a genuine strong representation.
A dyadic rational in I is a rational number that can be written in the form a

2b

for some natural numbers a and b. Let I ′ be the unit interval with the dyadic
rationals removed. The maps p and q and their inverses map dyadic rationals
to dyadic rationals. We may therefore define

p′−1: [0,
1

2
]′ → [0, 1]′ by x 7→ 2x

and

q′−1: [
1

2
, 1]′ → [0, 1]′ by x 7→ 2x − 1

where the primes on the intervals mean that dyadic rationals have been removed.
It follows that we get a strong representation of P2 on I ′.

Consider the following two elements of the strong orthogonal completion of
P2 constructed from the above strong representation

α′ = p′2p′−1 + p′q′(q′p′)−1 + q′q′−2

and
β′ = p′p′−1 + q′p′2(q′p′)−1 + q′p′q′(q′2p′)−1 + q′2q′−3.

The maps α′ and β′ are bijections defined on I ′. Define now functions A and B
on I as follows (computed from the representations of α′ and β′ above):

A(x) =







x
2

for 0 ≤ x ≤ 1

2

x − 1

4
for 1

2
≤ x ≤ 3

4

2x − 1 for 3

4
≤ x ≤ 1

20



and

B(x) =















x for 0 ≤ x ≤ 1

2
x
2

+ 1

4
for 1

2
≤ x ≤ 3

4

x − 1

8
for 3

4
≤ x ≤ 7

8

2x − 1 for 7

8
≤ x ≤ 1

It can be checked that A restricted to I ′ is α′, and B restricted to I ′ is β′.
In fact, α′ and β′ generate the subgroup F of the Thompson group V , and

the maps A and B of I are one of the common ways of defining this subgroup
[4]. We can see that they arise naturally from a specific and simple strong rep-
resentation of P2.

Acknowledgements I am grateful to the referee for spotting a couple of errors
and a lacuna in a proof in the first version of this paper.
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