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Abstract

We introduce the notion of an orthogonal completion of an inverse

monoid with zero. We show that the orthogonal completion of the poly-

cyclic monoid on n generators is isomorphic to the inverse monoid of right

ideal isomorphisms between the finitely generated right ideals of the free

monoid on n generators, and so we can make a direct connection with the

Thompson groups Vn,1.
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1 Introduction

The polycyclic monoids were introduced by Nivat and Perrot [7] as generalisa-
tions of the bicyclic monoid. They can be used to study context-free languages
[3, 4], they arise in the construction of the Cuntz C∗-algebras [8], and they
are implicit in the definition of amenability given in [2]. They are discussed in
detail in Chapter 9 of my book [5], and I outline their properties below. Prior
knowledge of these semigroups is not necessary to read this paper. In [1], Bir-
get described a connection between the Thompson group V and the polycyclic
monoid on two generators: he proved that the group is a subgroup of a quotient
algebra of the monoid. His calculations with the polycyclic monoids suggested
the results in this paper.

2 Orthogonal completions of inverse semigroups

Throughout this paper, we shall be dealing with inverse semigroups with zero.
We shall always require that homomorphisms between such semigroups map zero
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to zero. Multiplication in semigroups will usually be denoted by concatenation,
but occasionally I shall use · for clarity. Inverse semigroups come equipped with
their own order, called the natural partial order, and this will always be the
order used. We write d(s) = s−1s and r(s) = ss−1 for each element s in the
inverse semigroup S. The key definition for this paper is the following. A pair
of elements s, t ∈ S is said to be orthogonal if

s−1t = 0 = st−1.

Observe that s and t are orthogonal iff d(s)d(t) = 0 and r(s)r(t) = 0. A subset
of S is said to be orthogonal iff each pair of distinct elements in it is orthogonal.
We denote by s + t the join of orthogonal elements s and t if it exists. More
generally, we denote by

∑

A the join of the orthogonal subset A if it exists.
In these cases, we talk about orthogonal joins. The goal of this section is to
construct an ‘orthogonal completion’ D(S) of an inverse semigroup with zero S
(Theorem 2.5).

Lemma 2.1 Let A and B be orthogonal subsets containing zero of an inverse

semigroup with zero.

(i) AB is a orthogonal subset containing zero.

(ii) AA−1 = {aa−1: a ∈ A} and A−1A = {a−1a: a ∈ A}.

(iii) A = AA−1A and A−1 = A−1AA−1.

Proof (i) Let ab, cd ∈ AB be distinct elements where a, c ∈ A and b, d ∈ B.
Then (ab)−1cd = b−1a−1cd = 0 if a 6= c. If a = c, then b−1a−1ad ≤ b−1d. Now
b 6= d since ab and cd are distinct. Thus b−1d = 0. It follows that in both cases
(ab)−1cd = 0. A similar argument shows that ab(cd)−1 = 0.

(ii) Let ab−1 ∈ AA−1. If a 6= b then ab−1 = 0. Thus the non-zero elements
of AA−1 are of the form aa−1. A similar argument applies to the elements of
A−1A.

(iii) This follows from (ii).

Let D(S) denote the set of finite orthogonal subsets of the inverse semigroup
S that contain zero.

Lemma 2.2 With the above definition, D(S) is an inverse semigroup with zero.

If S is a monoid then D(S) is a monoid.

Proof By Lemma 2.1, D(S) is a semigroup under multiplication of subsets. We
now describe the idempotents. Suppose that A2 = A. Let a ∈ A be a non-zero
element. Then a = bc where b, c ∈ A are non-zero. Now b−1a = b−1bc. By
assumption, the righthand side is non-zero, but the lefthand side will be zero
unless b = a. A similar argument shows that c = a. Hence a = a2. It is now
clear that the idempotents in D(S) are the orthogonal subsets containing zero
consisting entirely of idempotents of S. It follows immediately that idempotents
commute. By Lemma 2.1, we can now deduce that D(S) is inverse.

2



In the monoid case, if 1 is the identity of S then {0, 1} is the identity of
D(S).

Lemma 2.3 In the inverse semigroup D(S) the following hold:

(i) If A,B ∈ D(S) then A ≤ B iff for each a ∈ A there exists b ∈ B such that

a ≤ b.

(ii) If A,B ∈ D(S) then A and B are orthogonal iff A ∪ B is an orthogonal

subset of S.

(iii) If A,B ∈ D(S) and A and B are orthogonal then A+B = A ∪B.

(iv) Multiplication distributes over finite orthogonal joins in D(S).

Proof Observe that mutiplication of subsets of a semigroup distributes over
union.

(i) Suppose first that for each a ∈ A there exists b ∈ B such that a ≤ b.
We prove that A = BA−1A. Let a ∈ A. Then there is a b ∈ B such that
a ≤ b. Thus a = ba−1a. Hence A ⊆ BA−1A. To prove the reverse inclusion,
let ba−1a ∈ BA−1A be non-zero. By assumption, there is b1 ∈ B such that
a ≤ b1. Hence ba−1a ≤ bb−1

1 b1. Now bb−1
1 b1 6= 0 and so b = b1. Hence a ≤ b

and so a = ba−1a. Thus BA−1A ⊆ A. We have therefore shown that A ≤ B.
Conversely, suppose that A ≤ B. Then A = BA−1A. Let a ∈ A be non-zero.
Then a = ba−1

1 a1 for some b ∈ B and a1 ∈ A. It is immediate that a ≤ b.
(ii) Suppose that A and B are orthogonal. Let a ∈ A and b ∈ B. Then

a−1b ∈ A−1B and so by assumption a−1b = 0. Similarly ab−1 = 0. Thus A∪B
is a orthogonal subset of S. The converse is clear.

(iii) In D(S), if A ⊆ B then A ≤ B by (i). It follows that A,B ≤ A ∪ B.
Let A,B ≤ C. We calculate C(A ∪ B)−1(A ∪ B). This reduces quickly to
C(A−1A ∪ B−1B), which is equal to A ∪ B. This shows that A ∪ B ≤ C,
proving the result.

(iv) Immediate by (iii), and our first stated observation.

An inverse semigroup with zero S will be said to be orthogonally complete if
it satisfies the following two axioms:

(DC1) S has joins of all finite orthogonal subsets.

(DC2) Multiplication distributes over finite orthogonal joins.

Example Let X be a set. The symmetric monoid on X, denoted I(X), is the
inverse semigroup of all partial bijections on X, where functional composition
is evaluated from right to left. If f and g are orthogonal in I(X) then f and
g have disjoint domains and disjoint ranges. It follows that their union f ∪ g
also belongs to I(X). It is easy to check that the symmetric inverse monoid is
orthogonally complete.

The proof of the following is straightforward.
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Lemma 2.4 Let S be orthogonally complete.

(i) If
∑n

i=1 ai exists, then
∑n

i=1 a
−1
i exists and

(
n
∑

i=1

ai)
−1 =

n
∑

i=1

a−1
i .

(ii) If
∑n

i=1 ai exists, then both
∑n

i=1 d(ai) and
∑n

i=1 r(ai) exist and

d(

n
∑

i=1

ai) =

n
∑

i=1

d(ai) and r(

n
∑

i=1

ai) =

n
∑

i=1

r(ai).

Homomorphisms between inverse semigroups with zero map finite orthogonal
subsets to finite orthogonal subsets. If orthogonal joins are preserved then we
say that the homomorphism is orthogonal join preserving. Define the function
ι: S → D(S) by s 7→ {0, s}. This is an injective homomorphism.

Theorem 2.5 Let S be an inverse semigroup with zero. Then D(S) is orthog-
onally complete. Let θ: S → T be a homomorphism to an orthogonally complete

inverse semigroup T . Then there is a unique orthogonal join preserving homo-

morphism φ: D(S)→ T such that φι = θ.

Proof Lemma 2.3 proves that D(S) is orthogonally complete. Define

φ:D(S)→ T

by φ(A) =
∑

θ(A). This is well-defined since if A is an orthogonal subset of S
then φ(A) is an orthogonal subset of T . This is a homomorphism using the fact
that T is orthogonally complete. The fact that φι = θ is straightforward. Let
φ′ be another homomorphism satisfying the properties. We show that φ′ = φ.
The key observation is that we can write finite orthogonal subsets in the form

{0, a1, . . . , an} =
n
∑

i=1

{0, ai}.

Thus

φ′({0, a1, . . . , an}) = φ′(
n
∑

i=1

{0, ai}) = θ(a1) + . . .+ θ(an) = φ({0, a1, . . . , an}).

The inverse monoid D(S) is called the orthogonal completion of S.

Remark What I have called the ‘orthogonal completion’ I should really refer
to as the ‘finitary orthogonal completion’. The results of this section can all
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be generalised in the obvious way to the construction of ‘infinitary’ orthogonal
completions.

Notation It is natural to write the elements of D(S) as formal sums
∑n

i=1 ai

of elements of S where ai 6= aj implies ai and aj are orthogonal. We require
that the sum operation is commutative and idempotent and that the left and
right distributivity laws hold. In addition, 0 + a = a = a + 0 for all elements
a ∈ S.

Problem Given an inverse semigroup presentation of S, find an inverse semi-
group presentation of D(S).

In the usual way, Theorem 2.5 yields a functor from the category of inverse
semigroups with zero and their homomorphisms to the category of orthogonally
complete inverse semigroups and their orthogonal join preserving homomor-
phisms. We denote the image of θ: S → T under D by D(θ): D(S)→ D(T ).

3 Orthogonal completions of polycyclic monoids

In this section, the orthogonal completion of the polycyclic monoid on n gen-
erators will be shown to be isomorphic to the inverse monoid of right ideal
isomorphisms between the finitely generated right ideals of the free monoid on
n generators (Theorem 3.6).

Put An = {a1, . . . , an}. A string in A∗
n, the free monoid generated by An,

will be called positive. The empty string is denoted ε. If u = vw are strings,
then v is called a prefix of u, and a proper prefix if w is not the empty string.
A pair of elements of A∗

n is said to be prefix-comparable if one is a prefix of the
other. If x and y are prefix-comparable we define

x ∧ y =

{

x if y is a prefix of x
y if x is a prefix of y

The polycyclic monoid Pn, where n ≥ 2, is defined as a monoid with zero by
the following presentation

Pn = 〈a1, . . . , an, a
−1
1 , . . . , a−1

n : a−1
i ai = 1and a−1

i aj = 0, i 6= j〉.

Intuitively, think of a1, . . . , an as partial bijections of a set X and a−1
1 , . . . , a−1

n

as their respective partial inverses. The first relation says that each partial
bijection ai has domain the whole of X and the second says that the ranges of
distinct ai are orthogonal. As a concrete example of P2, one can take as a1 and
a2 the two maps that shrink the Cantor set to its lefthand and righthand sides,
respectively.

Every non-zero element of Pn is of the form yx−1 where x, y ∈ A∗
n. Identify

the identity with εε−1. The product of two elements yx−1 and vu−1 is zero
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unless x and v are prefix-comparable. If they are prefix-comparable then

yx−1 · vu−1 =

{

yzu−1 if v = xz for some string z
y(uz)−1 if x = vz for some string z

The non-zero idempotents in Pn are the elements of the form xx−1, where x is
positive, and the natural partial order is given by yx−1 ≤ vu−1 iff (y, x) = (v, u)p
for some positive string p.

Lemma 3.1 Let xx−1 and yy−1 be non-zero idempotents. Then xx−1·yy−1 6= 0
if and only if either xx−1 ≤ yy−1 or yy−1 ≤ xx−1. When non-zero

xx−1 · yy−1 = (x ∧ y)(x ∧ y)−1.

Proof Suppose that xx−1 ·yy−1 6= 0. Then either x is a prefix of y or vice-versa.
Suppose the former. Then y = xz for some string z, and so yy−1 ≤ xx−1, as
required. The proof of the last assertion is straightforward.

An immediate corollary of the above lemma is the following property noted
by Birget [1].

Corollary 3.2 Let u and v be positive strings. Then u−1v = 0 iff u and v are

not prefix-comparable.

A prefix code in A∗
n is a non-empty subset C with the property that no

element of C is a proper prefix of any other element of C. A prefix code is
maximal if it is not contained in any other prefix code. The following result was
inspired by reading Birget [1].

Lemma 3.3 A subset

{y1x
−1
1 , . . . , ymx

−1
m }

of Pn is orthogonal iff {x1, . . . , xm} and {y1, . . . , ym} are both prefix codes.

Proof Observe first by Corollary 3.2 that {u1, . . . , um} is a prefix code iff

{u1u
−1
1 , . . . , umu

−1
m }

is an orthogonal subset of Pn. Next observe that d(yx−1) = xx−1 and d(yx−1) =
yy−1. The result is now clear.

A special case of the above lemma is worth stating separately.

Corollary 3.4 The subset {x1, . . . , xn} is a prefix code in A∗
n iff

{x1x
−1
1 , . . . , xnx

−1
n }

is an orthogonal subset of Pn.
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It follows that prefix codes will play an important role in our work.
We now recall some results on the structure of right ideals of free monoids

[1], [9]. Proofs can be found there; alternatively, they are easy to construct
directly. Let R ⊆ A∗

n be a right ideal. Put P = R \ RAn. Then it is easy
to check that P is precisely the set of elements of R with the property that no
proper prefix belongs to R. It follows that R = PA∗

n and that P is a prefix code.
It can be checked that there is exactly one prefix code P such that R = PA∗

n.
There is therefore a bijection between the set of right ideals of A∗

n and the set
of prefix codes in A∗

n. The finitely generated right ideals correspond to the
finite prefix codes. The intersection of any two finitely generated right ideals
is again a finitely generated right ideal (possibly empty): this follows from the
fact that the intersection of two principal right ideals of A∗

n is either empty or a
principal right ideal. A function α: R→ R′ is a right ideal isomorphism if it is
a bijective function such that α(rx) = α(r)x for all r ∈ R. If α: PA∗

n → P ′A∗
n

is a right ideal isomorphism where P and P ′ are prefix codes then α induces a
bijection from P to P ′. Furthermore, every bijection from P to P ′ induces a
right ideal isomorphism between the right ideals generated by the codes. There
is therefore a bijection between the set of right ideal isomorphisms between
finitely generated right ideals and the set of bijective functions between finite
prefix codes. Finally, if α: R → R′ is a right ideal isomorphism and S ⊆ R is
a right ideal then α(R) is a right ideal. It follows that the set of right ideal
isomorphisms between the finitely generated right ideals of A∗

n is an inverse
monoid. We denote this monoid by Rn.

Let Z and Z ′ be finite prefix codes. We shall now define a way of ‘combining’
them Z ◦ Z ′. If no element of Z is a prefix of an element of Z ′ or vice versa
then define Z ◦ Z ′ to be empty, else Z ◦ Z ′ is the set of all z ∧ z′ where z ∈ Z
and z′ ∈ Z ′.

Lemma 3.5 Let Z and Z ′ be prefix codes. Then Z ◦ Z ′ is either empty or a

prefix code, and ZA∗
n ∩ Z

′A∗
n = (Z ◦ Z ′)A∗

n.

Proof Assume that Z ◦ Z ′ is non-empty. Let u, v ∈ Z ◦ Z ′. Then u = z1 ∧ z
′
1

and v = z2 ∧ z
′
2 where z1, z2 ∈ Z and z′1, z

′
2 ∈ Z ′. Suppose that u is a prefix of

v; the case where v is a prefix of u is handled similarly. Thus v = uw. There
are four cases to consider.

1. u = z1 and v = z2. Then u = v since Z is a prefix code.

2. u = z′1 and v = z2. Then z
′
1 and z′2 are prefix-comparable and so are equal

since Z ′ is a prefix code. Thus z1 and z2 are and so z1 = z2 since Z is a
prefix code.

3. u = z′1 and v = z′2. Then z′1 and z′2 are prefix comparable and so are
equal since Z ′ is a prefix code. But then it is immediate that z1 = z′2, as
required.

4. u = z′1 and v = z′2. Then u = v since Z ′ is a prefix code.
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Thus Z ◦ Z ′ is either empty or a prefix code. The proof that

ZA∗
n ∩ Z

′A∗
n = (Z ◦ Z ′)A∗

n

is straightforward.

Theorem 3.6 The inverse monoid Rn is isomorphic to the orthogonal comple-

tion of the polycyclic monoid Pn.

Proof We set up some notation we shall need. If A is a non-zero idempotent of
D(Pn) then we denote the corresponding finite prefix code, guaranteed by Corol-
lary 3.4, by ZA. If A = {0} then ZA is the empty set. An arbitrary non-zero
element A of D(Pn) consists of zero and a non-empty set {y1x

−1
1 , . . . , ynx

−1
n }.

By Lemma 3.3, both Zd(A) = {x1, . . . , xn} and Zr(A) = {y1, . . . , yn} are (finite)
prefix codes.

We shall define an isomorphism Θ from D(Pn) to Rn. The zero {0} of D(Pn)
is mapped to the empty function in Rn. Let A be a non-zero element of D(Pn).
Then A = {y1x

−1
1 , . . . , ynx

−1
n } ∪ {0}. Define

θA: Zd(A)A
∗
n → Zr(A)A

∗
n

by
θA(xiu) = yiu.

This is a well-defined right ideal isomorphism. The function Θ is a bijection
since each finitely generated right ideals of a free monoid is generated by a
unique prefix code, and right ideal isomorphisms between finitely generated
right ideals are determined by their (bijective restrictions) to the corresponding
prefix codes.

By Lemma 3.5,
ZA∗

n ∩ Z
′A∗

n = (Z ◦ Z ′)A∗
n.

By Lemma 3.1, it follows that

ZA ◦ ZB = ZAB

for all idempotents A and B in D(S).
We are now ready to prove that Θ is a homomorphism. First, we show that

θAθB = 0 iff AB = {0}. It is enough to show that Zd(A) ◦ Zr(B) is empty
iff AB = {0}. But by our result above Zd(A) ◦ Zr(B) = Zd(A)r(B) and so the
result is clear. We now look at the case where AB is non-zero. We prove that
θAθB = θAB . It is straightforward to check that the domains of the two maps
agree: the prefix code that generates their common right ideal consists of ele-
ments of the form ujv where vjv = xi ∧ vj . We now show that θAθB and θAB

implement the same rule. Let ujv be in the domain code where vjv = xi ∧ vj .
Then (θAθB)(ujv) is equal to yi if xi∧vj = xi and is equal to yiw if xi∧vj = vj

so that v = ε and vj = xiw. To calculate θAB we calculate the elements of AB,
and this will yield the same map as above.
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4 The Thompson groups Vn,1

In this section, I shall show how the Thompson groups Vn,1 can be constructed
from D(Pn). We begin by summarising some results to be found in [1] and [9].
Following Birget, we define a right ideal of A∗

n to be essential if its intersection
with every other right ideal is non-empty. It can be proved that the essen-
tial right ideals are precisely those whose associated prefix codes are maximal.
In addition, amongst the right ideals the essential finitely generated ones are
precisely the cofinite ones.

An idempotent e in an inverse semigroup S is called essential if for each
non-zero idempotent f ∈ S the product ef is non-zero.

Lemma 4.1 The following are equivalent in D(Pn):

(i) A is an essential idempotent.

(ii) For each nonzero idempotent e ∈ Pn there is an idempotent f ∈ A such that

ef is non-zero.

(iii) ZA is a maximal prefix code.

Proof The equivalence of (i) and (ii) is immediate.
The equivalence of (ii) and (iii) follows from the following argument. The

set {x1, . . . , xn} is a maximal prefix code iff for each string y there exists an i
such that y and xi are prefix comparable. Thus by Lemma 3.1, the prefix code
corresponding to {x1x

−1
1 , . . . , xnx

−1
n } is maximal iff for each non-zero idempo-

tent yy−1 there is an i such that yy−1 · xix
−1
i 6= 0.

Lemma 4.2 Let S be an inverse monoid with zero. Let Se denote the set of

elements s such that both d(s) and r(s) are essential idempotents. Then Se is

an inverse submonoid of S.

Proof The identity belongs to S since the identity is an essential idempotent.
Let e and f be essential idempotents. Let k be any idempotent. Then ek is
non-zero because e is essential, and f(ek) is non-zero because f is essential.
Thus ef is essential. Let a and b be elements of Se. We prove that ab is an
element of Se. The idempotents d(a) and r(b) are essential and so e = d(a)r(b)
is essential. Observe that ab = (ae)(eb). We shall prove that d(eb) and r(ae)
are both essential. We prove that d(eb) is essential; the proof that r(ae) is
essential is similar. Let f be a non-zero idempotent. Suppose that b−1ebf = 0.
Then bb−1ebf = 0 and so edf = 0. Hence e · bfb−1 = 0. But e is an essential
idempotent and so bfb−1 = 0. Thus b−1bfb−1b = 0. Thus b−1bf = 0. But b−1b
is an essential idempotent and so f = 0, which is a contradiction. The fact that
Se is an inverse subsemigroup is now clear.

By Lemma 4.2, De(S) is an inverse monoid, and by Lemma 4.1, the essential
idempotents in D(Pn) are those whose associated prefix codes are maximal. It
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follows by Lemma 3.3, that the elements of De(Pn) are those in which the do-
mains and ranges correspond to maximal prefix codes. Under the isomorphism
of Theorem 3.6, non-zero idempotents of D(Pn) correspond to prefix codes, and
the essential idempotents correspond to the maximal prefix codes. We therefore
have the following.

Proposition 4.3 The inverse semigroup De(Pn) is isomorphic to the inverse

monoid of right ideal isomorphisms between the finitely generated essential right

ideals of the free monoid on n generators.

The minimum group congruence σ on an inverse semigroup is defined by aσb
iff there exists c ≤ a, b with respect to the natural partial order. For any inverse
semigroup S, it can be proved that S/σ is a group called the universal group of

S. An inverse monoid is said to be F -inverse if each σ-class contains a maximum
element. In this case, the group S/σ can also be described in the following way:
it is isomorphic to the set of maximal elements of S equipped with a product ◦
where a ◦ b is the unique maximal element lying above ab. The inverse monoid
Re

n is F -inverse; this is proved, though not with this terminology, in both [1]
and [9]. From Scott [9], the following is now immediate.

Theorem 4.4 The maximum group homomorphic image of De(Pn) is the Thomp-

son group Vn,1.
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[7] M. Nivat, J.-F. Perrot, Une généralisation du monöıde bicyclique, Comptes

Rendus de l’Académie des Sciences de Paris 271 (1970), 824-827.

10



[8] J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathe-
matics 793, Springer-Verlag, 1980.

[9] E. A. Scott, A construction which can be used to produce finitely presented
infinite simple groups, J. Alg. 90 (1984), 294–322.

11


