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1 Introduction

These notes are merely a slight reformulation of Ben Steinberg’s preprint ‘Build-
ing inverse semigroups from group actions’. Ben’s ‘abstract geometric represen-
tations’ are essentially my ‘mosaics’. The main differences are that my definition
does not use zeros and so my operations are partial in general, and I use the
reformulation of abstract geometric representations in terms of the relation ‘is
an element of’.

The aim of these notes is to provide a general enough framework for talking
about inverse semigroups which are constructed in a manner analogous to tiling
semigroups. In particular, we prove that the class of inverse semigroups con-
structible from mosaics is the same as the class of strongly E*-unitary inverse
semigroups.

2 Definitions and results

Here is some not entirely satisfactory terminology. A presemigroup is a set S
equipped with a partial binary operation o such that I(z oy) o z < z o (y 0 2);
if either product is defined then so is the other and they are equal. If we adjoin
a zero to a presemigroup we get a semigroup and every presemigroup arises in
this way. Thus presemigroups are just a device for handling semigroups with
zero without the need for a zero. This terminology can be used in a number of
places below. Definitions for semigroups can be carried over to presemigroups
in the obvious way.

Definition A triple (B, P, @) is called a mosaic if the following conditions hold:
B is a set called the set of tiles, P is a set called the set of patterns, and G is a
group. The group G acts partially on both B and P, in addition it acts freely
on B. There is a binary relation ¢ C B x P. If aex then we say ‘a is an
element of z’ and ‘z contains a’. If a € B and z,y € P and aex,y we say that
the patterns x and y are adjacent. The set P is equipped with a partial binary
operation o. The following axioms (M1)—(M9) have to be satisfied:

(M1) For each z € P, 3z oz and z o z = z.



(M2) J(zoy)oz < Jzo(yoz);if either exists then so does the other and they
are equal.

(M3) Jz oy < Ty o x; if either exists so does the other and they are equal.

If o is globally defined then (P,o) is just a semilattice. If o is partially
defined then the adjunction of a 0 gives us a semilattice with zero. Conversely,
if we remove the zero from a semilattice with zero then the resulting structure
satisfies the above axioms. Thus (P, o) is a presemilattice.

(M4) For each z € P there exists a € B such that aex.
(M5) If aex and Jz oy then aexoy; if bey and Ix oy then bexoy

Warning we do not insist that a pattern is determined by the tiles it con-
tains. So we should visualise a pattern as ‘floating above’ (in a sort of Platonic
heaven) the set of tiles which it contains.

(M6) If aex and g - z then dg-a and g-aeg - z.

(M7) Let z and y be adjacent. If 3z oy and g-z and 3g-y and I(g-x) o (g-y)
then 3g - (zoy) and g- (zoy) = (g9-2) o (9-y)-

(M8) Let z and y be adjacent. If 3z oy and exists g - (z o y) then g - z and
dg-y.

(M9) Let z and y be adjacent. If 3z oy and g - (z o y) then I(g-z) o (g - v)
and g-(zoy) =(g-z)o(g-y)-

Definition A multiplicative graph is defined as follows. Let (S, S,) be a pair of
sets equipped with functions 0y, 0;: S — S,. This is just a way of describing
a directed graph. Let S be equipped with a partial binary operation such that
the following axioms hold:

(MG1) If 3z o y then do(z) = 01 (y).
(MG2) If 3z oy then Gy(z oy) = Op(y) and 91 (x o y) = I (y).
(MG3) Jz o (yoz) & (zoy)oz; if either exists they are equal.

Thus a multiplicative graph is a presemigroup equipped with the structure of
a directed graph with some interaction between these two structures. If axiom
(MG1) is replaced by an ‘if and only if’ we have the definition of a semigroupoid
(category without identities). We define an inverse multiplicative graph in the
obvious way.

Definition We define what we mean by a group acting freely and partially on
an (inverse) multiplicative graph. Let S be a multiplicative graph whose partial
product we denote by concatenation. Let G be a group which acts partially on
both S, and S, and freely on S,. In addition the following axioms should be
satisfied:



(A1) If 3g - x then Jg - Jo(x) and g - O1(x) and Gp(g9 - x) = g - Oo(x) and
Oi(g-x) =g-0u(x).

(A2) If 3zy and g -z and g -y and I(g-x)(g - y) then Jg - (xy) and g- (zy) =
(g-7)(g-y)-

(A3) If g - (zy) then Jg -z and g - y.

(A4) If 3g - (wy) then I(g-z)(9-y) and g- (zy) = (9-2)(9-¥)-

Remark The above definition simplifies a little when the multiplicative graph
is a semigroupoid, because in that case dzy < do(x) = 01 (y).

(A2) Suppose Fzy, Ig-x and g-y. Then Jo(g-z) = g-0o(x) and 01(g-y) = g-01(y)
by (A1) and 8o (z) = 01 (y) since Izy. Hence dp(g-z) = 01(g-y) and so (g-z)(g9-y)
exists. We can therefore replace (A2) by the following axiom:

(A2)x If 3zy and g - z and g - y then Jg - (xy) and g - (zy) = (9-x)(g - y)-

A similar argument enables us to combine (A3) and (A4) into the following
single axiom:

(A3/4)x If Jzy and Jg - (zy) then g -z and g -y and g - (zy) = (g -x)(g - v).

It follows that in the case of semigroupoids we have essentially the same
axioms as in Kellendonk/Lawson except there a category is involved instead of
a semigroupoid.

Proposition 1 Let S be a multiplicative graph equipped with a free partial ac-
tion by a group G. Define ~ on S by x ~ y iff there exists g € G such that
g-x =1y. Then ~ is an equivalence relation. Let S/G = {[z]: x € S} be the set
of equivalence classes. Define the following operation on S/G:

[2]ly] = [(g - 2)(h - y)]

if there exist g,h € G such that (g-z)(h -y) is defined in S. Then with respect
to this operation, S/G is a presemigroup.

The map from S to S/G defined by x — [x] is a surjective idempotent pure
morphism.

If the multiplicative graph is inverse then so too is S/G.

Proof The relation ~ is an equivalence relation using the same argument as in
Kellendonk/Lawson.

We show first that the partial product is well-defined. Let z,y € S and sup-
pose that there are elements g, h, k,l € G such that the following two products
make sense

(g-)(h-y) and (k- z)(l-y)-



We have to prove that
(g-2)(h-y) ~ (k-2)(-y).

Because S is a multiplicative graph we have that

Oo(g-2) =01 (h-y) and Oy(k - x) = 01 (1 - y).
Thus by axiom (A1), we have that

g-(x)=h-01(y) and k- Oo(z) =1 - 01(y).-
Thus from the properties of partial actions we obtain

(h='g) - do(x) = (I"'k) - Bo ().
By assumption, G acts freely on S, and so
h=tg =17k

Put
m==kg ! =1n"t.

Then
m-(g-z)=k-zandm- (h-y) =

We therefore have 3(g - z)(h-y), Im - (g-z) = k-2, Im - (h-) =1 -y, and
A(h-z)(l - y). Thus by axiom (A2), I3m - ((g-z)(h-y)) and

m-((g-2)(h-y)) = (k-2){-y),

as required.

Next we show that S/G is a presemigroup. Suppose that ([z][y])[z] is defined.
Then there exist g, h € G such that (g-z)(h-y) exists. Thus [z][y] = [(g-z)(h-y)].
Thus there exist k,l € G such that k- ((g-z)(h-y)) exists and [ - z exists. Thus

()l = [k (g - =)(h- )]l 2]
By axioms (A3) and (A4) we have
E-((g-2)(h-9) = (k- (g-0)(k - (h-1)) = (k) - D) (kD) - ).
Hence
([2]lwDlz] = ((kg) - x)((kh) - y) (I - 2)-
But this implies that [z]([y][2]) is defined because [y][z] = [(kh) -¥)(l - 2)] and so
[2)([w][z]) = [(kg) - z)((kR) - y)(I - 2)].

We can likewise prove that the existence of [z]([y][z]) implies the existence of

([=][y]) =]



Consider now the function 7 given by x — [z]. If zy is defined in C then
[z][y] is defined in S/G and [z][y] = [zy]. Thus 7 is a surjective morphism.
Suppose that [z] is an idempotent. Then [z][z] is defined and is equal to [z].
Thus there exist g,h € G such that (g - z)(h - x) is defined and a k € G such
that x = k- ((¢9-z)(h-x)). By axiom (A4) and properties of partial actions, we
have that k- ((g- z)(h - z)) = ((kg) - z)((kh) - ). Thus =z = ((kg) - z)((kh) - ).
By axiom (MG2), we have that 9y(z) = dy((kh) - z) and by axiom (A1) we have
that 9o(z) = (kh) - p(z). But G acts freely on S, and so kh = 1. Similarly
kg = 1. Tt follows that x = zx and so is idempotent.

Suppose now that S is inverse. By adjoining zeros and extending 7 in the
obvious way we have that (S/G)° is a homomorphic image of S°. But S inverse
implies S°. Thus S/G is an inverse presemigroup. n

Proposition 2 Let M = (B, P,G) be a mosaic. Put
S(M) ={(a,z,b) € BXx P x B: a,bez}
and S(M), = B and define 8y(a,z,b) = b and 01 (a,z,b) = a. Define
(a,2,b)(b,y,¢) = (a,z 0y, ¢)

if 3x oy. Then S(M) is an inverse multiplicative graph.

Let g € G. Define g- (a,z,b) =(g9-a,9-x,g-b) if Ag- x. The partial action
of G on Sy = B is just the given partial action of G on B. Then this defines a
free partial group action of G on the multiplicative graph S.

Proof It is straightforward to check that the axioms (M1)-(M5) imply that
S(M) is an inverse multiplicative graph.

The definition of the partial action is correct by axiom (M6). It remains to
check that axioms (A1)—(A4) hold. Axiom (A1) follows from axiom (A1) and
the definitions of dy and 9; in S(M). Axioms (A2), (A3) and (A4) follow from
respectively (M7), (M8) and (M9). |

Proposition 3 Let M = (B, P,G) be a mosaic and let S(M) be the associated
multiplicative graph. Then S(M) is a semigroupoid if and only if when patterns
z and y are adjacent then Iz o y.

Proof Suppose that M satisfies the condition: z and y adjacent implies 3z o y.
Then in S(M) the fact that 9y (a, z,b) = 01 (b,y, c) implies z and y are adjacent
and so Jx o y. Hence the product (a, z,b)(b,y,c) is defined.

Suppose that S(M) is a semigroupoid. Let z and y be adjacent patterns.
Let bex,y. Then (b,z,b) and (b,y,b) are well-defined elements of S(M) and
since S(M) is a semigroupoid the product (b, z,b)(b, y,b) is defined. Thus Iz oy
as required. [ |

Let M = (B,P,G) be a mosaic. The element (a,z,b) € S(M) is an
idempotent if and only if a = b, since by axiom (M1) we always have that



Jz oz =z. If (a,z,a) and (a,y,a) are two idempotents then I(a, z,a)(a,y,a)
iff 3(a,y,a)(a,x,a) by axiom (M3); if either exists then so does the other and
their products are equal. It is now clear that the set of all elements in S(M)
which begin and end at the same place forms a presemilattice.

Say that two elements x and y in a multiplicative graph are parallel iff
Oo(z) = 0o(y) and 81(x) = 81(y). The set of all elements z in a multiplicative
graph such that 9y(z) = 01(x) = e where e € S, is fixed is called a local
presemigroup at e. If each local presemigroup is a local presemilattice we say
that the multiplicative graph S is locally idempotent.

Let S be a locally idempotent multiplicative graph. Let G act on S partially
and freely. Let [z] < [y] in S/G where [z] is an idempotent. We may assume
that z is idempotent by our result earlier. We have that [z] = [z][y] and so
there exist elements g, h € G such that (g-z)(h-y). Thus [z][y] = [(g-z)(h-y)].
Also there exists k € G such that z = k- ((g-z)(h-y)). By axiom (A4), we have
that = = ((kg) - z)((kh) - y).

Now z an idempotent implies that (kg)-z is an idempotent (using (MG2) and
(M1) and (A2)). Thus in the inverse presemigroup S we have that z < (kh) - y.
It follows that z and (kh)-y must be parallel and therefore by assumption (kh)-y
is an idempotent. Thus y is an idempotent. Hence [y] is an idempotent.

The above two propositions, combined with the argument above, provide a
way of constructing an E*-unitary inverse presemigroup from each mosaic.

The question now is: precisely which E*-unitary inverse presemigroups can
be constructed from mosaics? My first result generalises slightly some ideas of
Ben Steinberg.

Proposition 4 Every strongly E*-unitary inverse presemigroup can be con-
structed from a mosaic

Proof Our proof generalises an idea due to Steinberg. Let S be strongly E*-
unitary. Let 8: S — G be an inverse presemigroup equipped with an idempotent
pure grading 6. By the theory developed in a paper by Lawson, such a presemi-
group can be constructed in the following way.

A McAlister x-triple (G,Y, X) consists of a group G, a poset X, a subset
Y C X which is an order ideal and presemilattice such that G acts on X by
order automorphisms and G -Y = X. Let (G,X,Y) be a McAlister x-triple.
Put

P*=P*(G,X,)Y)={(z,9) €Y xG: g -z €Y}

We define a partial product as follows: (z,g)(y, h) is defined iff  and g -y have
a lower bound in X, in which case, (z,9)(y,h) = (x A g-y,gh). The function
P(G,X,Y) — G defined by (y,g) — g is the natural grading associated with
P(G,X,Y). It is idempotent pure. Semigroups of the form P(G,X,Y) are
called P-semigroups. It can be shown that §: S — G is isomorphic to a P-
semigroup equipped with its natural grading.

We show first that from every McAlister x-triple (G, X,Y") we can construct
a mosaic. Let G be the group, B = G and P = X. The group G acts on
itself (globally) by left multiplication and this action is free. The action of G



on X is by order automorphisms. The partial operation on X is just z Ay if it
exists. We define gez iff g7z € Y. We show that we have a mosaic. Axioms
(M1)-(M3) are immediate. Axiom (M4) holds because GY = X. Axiom (MS5)
holds because Y is an order ideal of X and the action of G on X is by order
automorphisms. Axiom (M6) is straightforward.

Axiom (M7): let z and y be adjacent, and suppose that both z A y and
gz A gy exists. I prove that g(x Ay) = gz Agy. Now z Ay < z,y and so
g(zAy) < gzAgy. On the other hand gzAgy < gz, gy and so g~ (gzAgy) < =,y
giving g1 (gz A gy) <z Ay and so gz A gy < g(x A y). Hence result.

Axiom (M7) needs no proof.

Axiom (M8): let z and y be adjacent and suppose x A y exists. I prove
gz A gy exists and that g(x A y) = gz A gy. This is straightforward.

From this mosaic, we can construct an inverse presemigroup S’ = S(M)/G.
We show that this is isomorphic to P(G,X,Y). The elements of S’ have the
form [a, z,b] where a,b € G and z € X such that a='z,b~'z € Y. Observe that
[a,z,b] = [1,a'z,a '] where (a='b) '(a~'z) = b 'z €Y. anda 'z € Y.
Thus the element [a,z,b] is of the form [1,y,g] where y € Y and g 'z € Y.
There is clearly a unique element of this form in [a,z,b]. Define a: S’ — P by
a[l,y,9] = (y,9). This is evidently a bijection.

Suppose [1,y, ¢][1, 2, h] is defined. Then there are group elements a,b € G
such that ag = bl and ay Abz is defined. Thus [1,y, ¢][1, 2, h] = [a,ay Abz,bh] =
[1,y A gz,gh]. This implies that 7 is a morphism. In the other direction, if
(y,9)(2z,h) is defined in P then [1,y,g][1, 2, h] is defined in S’. It is now clear
that a is an isomorphism. ]

The following lemma is due to Ben Steinberg.

Lemma 5 Let (G, B, P) be a mosaic. Let S' = S(M)/G be the corresponding
inverse presemigroup. Let ¢: B — G be an injective function such that if a € B
and if g - a exists then ¢(g-a) = g- ¢(a). Then S' is strongly E*-unitary.

Proof Define ®: S — G by ®([a,z,b]) = ¢(a)"1¢(b). This function is well-
defined by our assumption on ¢. Idempotent purity follows from the injectivity
of ¢. It is easy to check that ® is a morphism. |

The following result is due to John Fountain.

Proposition 6 The inverse semigroup constructed from a mosaic is strongly
E* -unitary.

Proof The group G acts partially and freely on the set B. Thus B is partitioned
by this partial action. Let {b;: i € I'} be a set of representatives of this partition.
For each a € B there exists a unique (because the group acts freely) element
g € G such that g - a = b; for some unique b;. Let H be the free group on I.
Let S’ = S(M)/G be the inverse presemigroup associated with the mosaic M.
Define §: S’ — G x H as follows: 6[a,z,b] = (k; 'ka,ij~') where a = k; - b; and
b = ko-b;. We show first that 6 is well-defined. Suppose that [a,,b] = [a', 2, V].



Then there exists g € G such that g-a =a', g-x =2’ and g-b = b'. Now
a=~Fs -biandsog-a=g- (ki -bi) = (gki)-b;. Thus a' = (gky) - b;. Similarly,
b = (gk2) - b;. It’s now easy to check that [a’,2’, '] = 0[a, z, b].

Next we show that 8 is a morphism. Without loss of generality, suppose
that [a,z,b][b,y, c] is defined. Suppose that a = ki - b;, b = ka - bj, ¢ = ks - by.
Then 6[a,z,b] = ki ke,ij %, and 8[b,y,c] = (ky k3,51 !). But 8[a,z oy, c] =
(k; ks,il~") and so 6 is a morphism.

Finally, we show that 6 is idempotent pure. Suppose that 6[a,z,b] = (1,1),
where @ = k1 - b; and b = ko - b;/ Then ky = ky and ¢ = j and so a = b, as
required. [ ]

Combining the two results above we arrive at the following.

Theorem 7 The class of inverse semigroups which can be constructed from

mosaics is coextensive with the class of strongly E*-unitary inverse semigroups.
|

We can express the above theorem in more abstract terms which avoids the
need to use mosaics.

Theorem 8 Let G be a group acting partially and freely on inverse multiplica-
tive graph S which is also locally idempotent. Then S/G is strongly E*-unitary
and every strongly E*-unitary semigroup is obtained in this way.

Proof We have already proved that every strongly E*-unitary inverse semigroup
can be constructed from a multiplicative inverse graph of the required type
actually constructed from a mosaic.

It remains to prove that S/G is strongly E*-unitary. To do this we simply
adapt Fountain’s argument above. The group G acts partially and freely on S,,.
Thus G induces an equivalence relation on S,. Let {e;: i € I} be a complete
set of representatives of these classes. Let H be the free group on I. Define
0: S/G — G x H as follows: let [z] € S/G. Let e = 0g(x) and f = 01(z). There
exist unique group elements g; and g2 such that e = g; -e; and f = go- f;. Define
6[z] = (95 91,45 '). Suppose that [z] = [2']. Then there exists g € G such that
g-z=2a'. But y(g9-z) = g-0(z) = do(2') and O1(g - x) = g - 01 (z) = 01 (a').
Thus g-e = 0(z') and g - f = O1(z"). Therefore (gg1) - o(z') = e; and
(992) - 01(2') = ej. Hence 0[z'] = ((992)7")(9g1),4j~" which is just 0[z] as
required. Suppose that [z][y] is defined. Then without loss of generality we can
assume zy is defined.

]

We now turn to new material. The following definition was motivated by a
paper of Zhu, which in turn was motivated by a definition due to Penrose used
in studying aperiodic tilings.

Definition Let G be a group acting freely and partially on the inverse semi-
groupoid S. Define a relation £ on the inverse semigroupoid S/G as follows:



[x] € [y] iff there exists ¢’ € [z] and y' € [y] such that Gy(2z') = Oo(y') and
O1(z") = 01(y') and for each g € G we have that 3g- 2’ < g - ¢'.

Lemma 9 Let G be a group acting partially on the set X. If Ja-y and I(ga) -y
then 3g - (a - y).

Proof 3(ga)~'((ga) -y) and equals y. Since Ja-y we have that Ja-((ga) ~*((ga)-
y)) and equals a -y. But a- ((ga)~!((ga) - v)) also equals g~* - ((ga) - ). Thus
Jg- (g7 - ((g9a) - y)) consequently 3g - (a - y), as required. [

Proposition 10 Let S be a locally commutative inverse semigroupoid on which
G acts freely and partially. Then the relation £ is an idempotent pure congru-
ence on S/G.

Proof It is clear that £ is reflexive and symmetric. We prove that it is transi-
tive. Let = be the relation defined on S by: z = y iff z and y are parallel and
dg-z 9y

Let [z] € [y] and [y] £ [2]- Then there exist g, h, k,l € G such that g- = h-y
and k-y = [-z. We shall prove that [z] £ [2].

From g- = h-y we have that from 3h~! - (h - z) that Ih~! - (g- ). Thus
A(h~1g) - . Similarly, 3k~! - (I - z) and so (k1) - 2.

From axiom (A1), it is easy to check that (h~'g)-z and (k~!l)-z are parallel.

We prove that (h=1g) -z = (k7I) - z. Suppose that 3((h~'g) - ). Then
Ja-(h~!-(g-z)). Thus I(ah™1)-(g-z). But g- = h -y and so I(ah™1)-(h-y),
which gives Ja-y. Clearly Ja-(k~!-(k-y)) and so (ak~!)-(k-y). But k-y = I-2
and so (ak™!) - (I -2). Thus I(a(k~1)]) -z and (k~11) - z. Tt follows from the
lemma, that a- ((k~1l)-2), as required. The reverse direction is proved similarly.

It is now clear that [z] £ 2], as required.

Suppose that [z] £ [y] and [u] £ [v] and that [z][u] and [y][v] are both defined.
We prove that [z][u] € [y][v]. Let [z][u] = [(a-z)(b-u)]. In addition, let g,h € G
be such that g-z = h-y and m,n € G such that m-u = n-v.

It is easy to check that a -z is parallel to (ag~'h) -y and that b-u is parallel
to (bm~'n) - v. In particular,

[c]lv] = [((ag™"R) - ), (bm™'n) - v)].

Suppose that Jw - ((a - 2)(b - u)). Then Jw - (a - z) and Jw - (b - u). Thus
Jw-(a-(g7-(g9-7))) and so Iwag™?) - (g-x). Thus I(wag?) - (hy), and so
I(wagth)-y. But from I(ag 'h)-y and I(wag 1h)-y we have by Lemma that
Fw - ((ag~'h) - y).

We may similarly show that Jw - (bm~1n) - v.

From 3w - ((ag~'h) - y) and Jw - (bm~'n) - v we have that Jw - (((ag~th) -
y)((bm™'n) - v)).

The above argument works backwards. Hence result.

It remains to prove that £ is idempotent pure. Suppose that [z] € [y] where
[y] is an idempotent. Then we can without loss of generaility assume that y is



an idempotent. But then for some 2’ € [z] and y' € [y] we have that o' = y'.
Now y' is an idempotent and 2’ and y' are parallel. If S is locally commutative
then 2’ is an idempotent and so z is an idempotent, as required. u
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