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Abstract

For a fixed inverse semigroup S, there are two natural categories of
left actions of S: the category Fact of unitary actions of S on sets X

meaning actions where SX = X, and the category Étale of étale actions
meaning those unitary actions equipped with a function p : X → E(S), to
the set of idempotents of S, such that p(x)x = x and p(sx) = ses∗, where
s∗ denotes the inverse of s. The category Étale can be regarded as the
classifying topos of S. There is a forgetful functor U from Étale to Fact

that forgets étale structure and simply remembers the action. Associated
with these two types of actions are appropriate notions of Morita equiv-
alence which we term Morita equivalence and strong Morita equivalence,
respectively. We prove three main results: first, strong Morita equiva-
lence is the same as Morita equivalence; second, the forgetful functor U

has a right adjoint R, and the category of Eilenberg-Moore algebras of the
monad M = RU is equivalent to the category of presheaves on the Cauchy
completion C(S) of S; third, we show that equivalence bimodules, which
witness strong Morita equivalence, can be viewed as abstract atlases, thus
connecting with the pioneering work of V. V. Wagner on the theory of
inverse semigroups and Anders Kock’s more recent work on pregroupoids.

2000 Mathematics Subject Classification: 20M18, 18B25, 18B40.

1 Introduction

The following definition is due to Steinberg [27]. A Morita context consists
of a set X which is an (S, T )-bimodule equipped with surjective functions
〈−,−〉 : X × X // S and [−,−] : X × X // T such that the following ax-
ioms hold, where x, y, z ∈ X and s ∈ S and t ∈ T :

(MC1) 〈sx, y〉 = s〈x, y〉.

(MC2) 〈y, x〉 = 〈x, y〉∗.

(MC3) 〈x, x〉x = x.

(MC4) [x, yt] = [x, y]t.
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(MC5) [x, y] = [y, x]∗.

(MC6) x[x, x] = x.

(MC7) 〈x, y〉z = x[y, z].

One calls this data an equivalence bimodule for S and T . The inverse semigroups
S and T are said to be strongly Morita equivalent if they possess an equivalence
bimodule. In this paper, the inverse of an element s in an inverse semigroup is
denoted s∗. In addition, we refer to a set on which an inverse semigroup acts
as a module rather than the more usual term act.

Inverse semigroups have come to play an important role in the theory of
topological groupoids and C∗-algebras. From this perspective, the above defi-
nition has important consequences: if S and T are strongly Morita equivalent
then their associated étale groupoids, in the sense of [24], are Morita equiva-
lent, and their universal and reduced C∗-algebras are strongly Morita equivalent
[27]. These results make it important to obtain as much information as pos-
sible about strong Morita equivalence of inverse semigroups. The goal of this
paper is to prove a number of different characterisations of this notion. Inverse
semigroups inhabit at least three different worlds: the world of semigroup the-
ory [13], the world of ordered groupoids [13], and the world of topos theory
[4, 5, 17].1 Accordingly, our characterisations of strong Morita equivalence will
come from these three worlds. Before stating the main theorem of this paper,
we shall provide some of the key definitions needed to understand it.

A semigroup S is regular if for each s ∈ S there exists t ∈ S such that s = sts
and t = tst. The element t is called an inverse of S. The set of inverses of s is
denoted by V (s). An important result about the behaviour of inverses in regular
semigroups is the following: if a′ ∈ V (a) and b′ ∈ V (b) then b′ha′ ∈ V (ab) for
some h ∈ S. See Theorem 2.5.4 of [6]. If each element of a regular semigroup
has a unique inverse, then the semigroup is said to be inverse. Let S be a
subsemigroup of the semigroup T . Then T is said to be an enlargement of S
if S = STS and T = TST . If R is an enlargement of subsemigroups S and T
we say that R is a joint enlargement of S and T . If R is a regular semigroups
we say that it is a regular joint enlargement. For undefined terms from inverse
semigroup theory see [13].

Categories will be used both as structures on a par with monoids as well as
the more usual categories of structures. It will be clear from the context which of
these is meant. In addition to small categories, we shall also use semigroupoids
which are categories without identities, but with objects. (Thus, a semigroup
is a semigroupoid with one object.) Definitions from semigroup theory can be
extended in an obvious way to semigroupoids. Our next definition is a version
of the definition of a bipartite category given in [7] sharpened up in the light
of the notion of ‘bridge’ discussed in [25]. Let C be a category. We say that
C = [A,B] is bipartite (with left part A and right part B) if it satisfies the
following conditions:

1A pioneer paper in bridging these worlds was Loganathan’s [18].
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(B1) C has full disjoint subcategories A and B such that C0 = A0 ∪B0.

(B2) For each identity e ∈ A0 there exists an isomorphism x with domain e and
codomain in B0; for each identity f ∈ B0 there exists an isomorphism y
with domain f and codomain in A0.

The category C is a disjoint union of four kinds of arrows: those in A; those
in B; those starting in A0 and ending in B0; and those starting in B0 and ending
in A0. Observe that if A and B are both strongly connected, then so too is C.
The crucial result [25] is that categories A and B are equivalent if and only if
they form the left and right parts of a bipartite category [A,B]

If S is an inverse semigroup, then

C(S) = {(e, s, f) ∈ E(S)× S × E(S) : esf = s}

is a category called the Cauchy completion of S.
If S is an inverse semigroup, then

L(S) = {(e, s) ∈ E(S)× S : se = s}

is a left cancellative category associated with S. Its composition is given by
(e, s)(f, t) = (e, st), provided s∗s = f .

An inverse semigroup S can also be regarded as an inductive groupoid G(S).
Inductive groupoids are special kinds of ordered groupoids. This approach to
inverse semigroups is described in [13]. The theory can be extended to inverse
semigroupoids and so with every inverse semigroupoid there is an underlying
ordered groupoid. Let S and T be inverse semigroups with associated inductive
groupoids G(S) and G(T ). A bipartite ordered groupoid enlargement of G(S)
and G(T ) is an ordered groupoid [G(S), G(T )] such that the set of identities of
[G(S), G(T )] is the disjoint union of the set of identities of G(S) and G(T ) and
for each e ∈ G(S)0 there exists an arrow x such that d(x) = e and r(x) ∈ G(T )0
and dually.

In [28, 29, 30], Talwar introduced a notion of Morita equivalence for a class
of semigroups that includes inverse semigroups. Let S be an inverse semigroup.
A left S-module X is said to be unitary if SX = X. The category S-Fact is
the category of unitary left S-acts of the inverse semigroup S.2 The inverse
semigroups S and T are Morita equivalent if the categories S-Fact and T -Fact
are equivalent.

If S is an inverse semigroup then E(S) denotes its semilattice of idempotents.
The inverse semigroup S acts on E(S) on the left when we define s·e = ses∗. We
call this the Munn module. A left S-module X paired with an S-homomorphism

X
p // E(S) to the Munn module, such that p(x) · x = x, is what we call an

étale left S-module [5]. We denote the category of étale left S-modules by Étale.

2The definition of this category is actually more complicated than this, but reduces to this
one in the case of inverse semigroups. See [28] for details.
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Étale can be taken as the definition of the classifying topos of S, denoted B(S).3

Étale (or B(S)) is equivalent to the category PSh(L(S)) of presheaves on L(S),
a result essentially due to Loganathan [18] and used in [4, 5, 17]. (How Fact
and Étale are related is studied further in §2.3.)

In this paper, we shall often refer simply to modules, always assumed unitary,
and étale modules. An étale module is specified by giving the map p : X // E(S).
Morphisms between étale modules must preserve the corresponding maps. The
relationship between these two kinds of inverse semigroup action is discussed in
more detail in Section 2.3.

We are now ready to state the main theorem of this paper.

Theorem 1.1 Let S and T be inverse semigroups. Then the following are
equivalent.

(i) S and T are strongly Morita equivalent.

(ii) The classifying toposes of S and T are equivalent.

(iii) The inductive groupoids S and T have an ordered groupoid joint enlarge-
ment, which can be chosen to be bipartite.

(iv) The categories C(S) and C(T ) are equivalent

(v) S and T have a regular semigroup joint enlargement.

(vi) S and T are Morita equivalent.

Condition (v) raises a question: is it true that two inverse semigroups which
are Morita equivalent have a joint inverse enlargement? We suspect this is not
true, although we do not have a counterexample. In the light of Proposition 5.9
[27], however, we make the following conjecture. Let S be an inverse semigroup.
We say that S is directed if for each pair of idempotents e, f ∈ S there is an
idempotent i such that e, f ≤ i. This is equivalent to the condition that each
subset of the form eSf is a subset of some local submonoid iSi. Semigroups
with this property are studied in [22, 23]. We conjecture that if S and T are
both directed then they are Morita equivalent if and only if they have an inverse
semigroup joint enlargement.

Acknowledgements The authors are grateful to Grigori Zhitomirski for pro-
viding copies of Wagner’s papers and for discussing the material in Section 3.

3The term ‘classifying topos’ and its B notation more generally refer to the topos associated
with an étale, or even localic, groupoid [19]. An ordered groupoid is étale in this sense. It is
not difficult to see that the definition B(S) = B(G(S)) ultimately amounts to the category
of étale left S-modules.
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2 Proofs

In Section 2.1, we prove the equivalence of (i), (ii), (iii) and (iv) of Theorem 1.1
using methods mainly from topos theory and ordered groupoids. Some of our
results are proved for ordered groupoids more general than inductive. Combined
with results from [13] on the role played by ordered groupoids within inverse
semigroup theory, such as in the P -theorem, this suggests that a Morita theory
of certain kinds of ordered groupoids would be worth developing. In Section 2.2,
we prove the equivalence of (i), (iii), (iv), (v) and (vi) using mainly methods of
semigroup theory. Section 2.3 is different. It addresses the question raised by
our work on the relationship between unitary actions of an inverse semigroup
and étale actions and is a mixture of semigroup and category theory.

2.1 Ordered groupoids and toposes

We begin with some categorical preliminaries. One approach to Morita theory
for categories involves what are called essential points of a topos [3], whereas
another uses what are called profunctors or bimodules [25]. It is the second
approach we shall use in common with Section 2.2.

Let C and D be (small) categories. PSh(C) denotes the category of presheaves
on C. A profunctor C // D is by definition a functor

C // PSh(D) .

A profunctor U : C // D may be equivalently given as a colimit preserving
functor

U : PSh(C) // PSh(D) . (1)

Categories, profunctors, and natural transformations form a bicategory. For
any C, the identity profunctor C // C is Yoneda C // PSh(C). It is conve-
nient to denote a profunctor C // D, the actual functor C // PSh(D), and the
corresponding colimit-preserving functor (1) by one and the same symbol.

We say that a profunctor has a right adjoint if it has a right adjoint in the
usual bicategorical sense. It follows that a profunctor C // D has a right adjoint
if and only if the corresponding colimit-preserving functor (1) has a colimit-
preserving right adjoint (it always has a right-adjoint, but the right adjoint may
not preserve colimits). The proof we give of the following probably well-known
fact about profunctors is basically the same as the proof of the analogous fact
about essential points [3], Prop. 4.2.

Lemma 2.1 Suppose that a profunctor U : C // D has a right adjoint. Then
for every object c of C, U(c) is a retract of a representable in PSh(D). Moreover,
if idempotents split in D, then every U(c) is isomorphic to a representable.

Proof. We may cover U(c)

∐

A

d // // U(c) (2)
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by its elements: A is the set of pairs (d, x), where d
x // U(c) is an element

of U(c). The covering map is canonical: at an object c′, it sends a pair

(c′
α // d, d

x // U(c)) to the composite xα. Let V : PSh(D) // PSh(C) de-
note the right adjoint of U . Apply V to (2), using that V preserves colimits,
hence coproducts and epimorphisms.

∐

A

V (d) // // V U(c) (3)

Evaluate the natural transformation (3) at c:
∐

A

V (d)(c) // // V U(c)(c) .

The set V U(c)(c) is isomorphic to the set PSh(D)(U(c), U(c)). Since the map

above is onto, there is an element d
x // U(c) of A and a morphism ξ : c // V (d),

equivalently one ξ̂ : U(c) // d, making the following diagram commute.

U(c) d
ξ̂ //U(c)

U(c)

1 ""EE
EE

EE
EE

d

U(c)

x

��
d

ξ̂ //

d′
y // d′

d
��

d′
y

//

z

d′
1

""EE
EE

EE
EE

EE

This says that U(c) is a retract of a representable. Notice that ξ̂x is an idempo-

tent of D, so that if idempotents split in D , then we may split ξ̂x in D (depicted
zy in the diagram). Then U(c) is isomorphic to a representable since a little

diagram chasing shows that yξ̂ is an isomorphism with inverse xz. 2

Proposition 2.2 A presheaf is connected and projective iff it is a retract of
a representable. If idempotents split in the small category, then a presheaf is
projective and connected iff it is isomorphic to a representable.

Proof. Let P be a presheaf on a small category D. We may cover P
∐

A

d // // P

by its elements. If P is projective then this epimorphism must split, and if P

is connected, then the splitting must factor through a unique section d
s // P .

It follows that P is a retract of the representable d. If idempotents split in D,
then as in Prop. 2.1 it follows that P is isomorphic to a representable.

The converse is easily seen to hold, first for represenable presheaves, and
then for retracts of representables. 2

A functor is a weak equivalence if it is full, faithful, and essentially surjective
on objects. For example, an inverse subsemigroup S ⊆ T is an enlargement
if and only if its corresponding functor L(S) // L(T ) is a weak equivalence
(Lemma 2.6). An equivalence profunctor is a profunctor that is an equivalence
in the bicategory of profunctors.
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Proposition 2.3 Suppose that idempotents split in both C and D. Then an
equivalence profunctor is equivalently given by a ‘Morita context’

C

U

F ��?
??

??
?C DD

U

G����
��

��

by which we mean a pair of weak equivalences (we may even assume that U =
[C,D]).

Proof. An equivalence profunctor between C and D is given by an equivalence
of presheaf categories:

U : PSh(C) ≃ PSh(D) .

Let U denote the full subcategory of PSh(D) on the representables d and objects
U(c). The functor F is Yoneda for C followed by U . The functor G is Yoneda for
D. F andG are full and faithful. To see that F is essentially surjective on objects
let V denote the pseudo-inverse of U . Then V ⊣ U ⊣ V , and of course both
functors preserve colimits. For any d, V (d) is isomorphic to a representable c
(Lemma 2.1). Then d ∼= UV (d) ∼= U(c), showing that F is essentially surjective
on objects. In the same way, G is essentially surjective on objects. In fact, we
have U = [C,D].

On the other hand, given a Morita context, then we have equivalence functors

PSh(C) ≃ PSh(U) ≃ PSh(D) ,

which gives an equivalence profunctor between C and D. 2

Proof of the equivalence of (i) and (ii).

Let S and T be inverse semigroups, and assume that the toposes B(S) and
B(T ) are equivalent. We use Proposition 2.3. In this case, C = L(S) and
D = L(T ) are left cancellative categories, so the identities are their only (split)
idempotents. By Proposition 2.3, there is an equivalence U : B(S) ≃ B(T ) if
and only if there is a Morita context

L(S)

U
P ��?

??
??

L(S) L(T )L(T )

U
Q����

��
�

where U is the (left-cancellative) category whose objects are the idempotents of
S and T (disjoint collection). U = [L(S), L(T )] has three kinds of morphisms:

(i) those of L(S),

(ii) those of L(T ), and

(iii) the connecting ones between d ∈ E(S) and e ∈ E(T ), which are understood
as natural transformations between presheaves U(d) and e in B(T ).
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We may reorganize this data into a Morita context. Let X denote the set of
connecting isomorphisms from an idempotent of T to an idempotent of S; that
is, the morphisms of type (iii) above, but only the isomorphisms and only in
the direction from T to S.

The action by S is composition on the right, which we write as a left action.

Let e
x // d be an element of X: this is an isomorphism x : e ∼= U(d) in B(T ).

Let s ∈ S. If s∗s = d, then sx is the composite isomorphism e ∼= U(d) ∼= U(ss∗).
This defines a partial action by S, which we can make total with the help of the
following lemma.

Lemma 2.4 Let U : B(G) ≃ B(H) be an equivalence of classifying toposes
of ordered groupoids G and H. Let b ≤ d in G0 and x : e ∼= U(d) be an
isomorphism of B(H). Then there is a unique idempotent a ≤ e in H0, and a
unique isomorphism bx : a ∼= U(b) such that

e U(d)
x //

a

e
��

a U(b)
bx // U(b)

U(d)
��

is a pullback in B(H).

Proof. By Lemma 2.1, there is c ∈ H0 and an isomorphism y : c ∼= U(b).
Consider the composite

c ∼= U(b) // U(d) ∼= e

in B(H), where the last isomorphism is x−1. By Yoneda, this comes from a

unique morphism c
t // e in L(H). Let a = r(t) ≤ e, and bx = yt−1.

Such an a is unique because a subobject (which is an isomorphism class
of monomorphisms) of a representable e corresponds uniquely to a downclosed
subset of elements of H0 under e, and a principal one corresponds uniquely to
an element of H0 under e. If a and a′ both make the square a pullback, then
they are in the same isomorphism class of monomorphisms into e, hence they
represent the same subobject, hence a = a′. The isomorphism bx is also unique
because U(b) // U(d) ∼= e is a monomorphism. 2

Returning to inverse semigroups, we see how to make the action total: let
b = ds∗s ≤ d, and let sx = sd · bx.

The inner product 〈 , 〉 : X ×X // S is defined as follows. If two isomor-
phisms x : e ∼= U(d) and y : e ∼= U(c) have the same domain, then 〈x, y〉 = yx−1.
This is an isomorphism of B(T ) between U(d) and U(c), but that amounts to
an isomorphism of L(S), which in turn is precisely an element of S. In general,
the inner product of x : f ∼= U(d) and y : e ∼= U(c) is defined by using variations
of Lemma 2.4.

U(d) f
x−1

//

U(a)

U(d)
��

U(a) ef// ef

f
��

e U(c)
y //

ef

e
��

ef U(b)// U(b)

U(c)
��
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These “variations” can be established in the same way as in Lemma 2.4, or they
can be deduced from Lemma 2.4 by transposing under the pseudo-inverse V .
For example, the right-hand square above can be obtained by applying Lemma
2.4 (with V instead of U) to the transpose of y−1, as in the following diagram.

c V (e)
dy−1

//

b

c
��

b V (ef)// V (ef)

V (e)
��

The right action by T and the inner product [ , ] : X ×X // T are entirely
analogous. The axioms of a Morita context for semigroups are easily verified.
For example, for any x : f ∼= U(d), the rule 〈x, x〉x = x is the fact that the
composite xx−1x is equal to x (in U):

f ∼= U(d) ∼= f ∼= U(d) ; 〈x, x〉x = xx−1x = x .

We have therefore proved that (ii) implies (i).
The fact that (i) implies (ii), was proved by Steinberg [27]. However, it is

of interest to see how to build a Morita context in the category sense from a
Morita context X in the semigroup sense.

L(S)

U
P ��?

??
??

L(S) L(T )L(T )

U
Q����

��
�

By definition, the objects of the bipartite category U = [L(S), L(T )] are dis-
jointly the objects of L(S) and L(T ), which are the idempotents of S and of T .
A morphism of U is either:

(i) one of L(S),

(ii) one of L(T ),

(iii) one of the form (x, d) ∈ X ×E(S), such that 〈x, x〉 ≤ d, where the domain
of this morphism is [x, x] ∈ E(T ), and its codomain is d, or

(iv) one of the form (x, e) ∈ X × E(T ), such that [x, x] ≤ e, where the domain
of this morphism is 〈x, x〉 ∈ E(S), and its codomain is e.

We compose the various kinds of morphisms in U by using the inner products
and actions in X by S and T . For example, by definition

s∗s d
s //s∗s

e
s∗x ��?

??
??

? d

e

x

��

commutes in U, where s ∈ S, d ∈ E(S), x ∈ X, d = 〈x, x〉, s = ds, e ∈ E(T )
and [x, x] ≤ e. In other words, we define (x, e)(s, d) = (s∗x, e). The pair
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(s∗x, e) is indeed a legitimate morphism of U because the idempotent product
[x, x][s∗x, s∗x] is equal to

[x, 〈x, s∗x〉s∗x] = [x, 〈x, x〉ss∗x] = [x, dss∗x] = [x, ss∗x] = [s∗x, s∗x] .

Therefore, [s∗x, s∗x] ≤ [x, x] ≤ e. The domain of (s∗x, e) is

〈s∗x, s∗x〉 = s∗〈x, x〉s = s∗ds = s∗s ,

which is the domain of (s, d) as it should be. For another example,

〈x, x〉 [y, y]
x //〈x, x〉

e
〈y,x〉 ##GGGGGG

[y, y]

e

y
��

commutes, where [x, x] ≤ [y, y]. The domain of the composite 〈y, x〉 is

〈y, x〉∗〈y, x〉 = 〈x, y〉〈y, x〉 = 〈x[y, y], x〉 = 〈x, x〉 ,

since x = x[x, x] = x[x, x][y, y] = x[y, y]. It follows that U is a category, that
U = [L(S), L(T )], and that the obvious functors P,Q are weak equivalences.

Corollary 2.5 The category U constructed from a Morita context X is left
cancellative.

Proof. This is true because U is weakly equivalent to a left cancellative cate-
gory. However, the following calculations give more information. For example,
if

s∗s d
s //s∗s

e
y ��?

??
??

? d

e

x

��

commutes in U, where d = 〈x, x〉 and [x, x] ≤ e, then y = s∗x (by definition)
and

s = ds = 〈x, x〉s = 〈x, s∗x〉 = 〈x, y〉 .

Thus, s is uniquely determined by x and y. The other possibility, but keeping
(x, e), is

[y, y] d
y //[y, y]

e
t=[x,y] ##GGGGGG

d

e

x

��

where 〈y, y〉 ≤ d. Then y is determined by x and t since

y = 〈y, y〉y = 〈x, x〉〈y, y〉y = 〈x, x〉y = x[x, y] = xt .

It follows that (x, e) is a monomorphism. 2
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Proof of the equivalence of (ii) and (iii).

An ordered functor θ : G // H is said to be a local isomorphism if it satisfies
the following two conditions.

(LI1) θ is full, faithful and essentially surjective.

(LI2) θ0 : G0
// H0 is a discrete fibration (in the same sense that the domain

map of an ordered groupoid is one).

An enlargement is a local isomorphism.

Lemma 2.6 An ordered functor θ : G // H is a local isomorphism if and only
if L(θ) : L(G) // L(H) is a weak equivalence (in the category sense).

Proof. Clearly L(θ) is essentially surjective if θ is. L(θ) is full: let θ(d)
t // θ(e)

be a morphism of L(H). Consider the unique lifting c ≤ e of r(t) ≤ θ(e), so

that θ(c) = r(t). Since θ is full there is d
s // e (in G) such that θ(s) = t. Thus,

L(θ)(s) = t. L(θ) is faithful: suppose that L(θ)(s) = L(θ)(t), where s, t : d // e
in L(G). Let c = θ(r(s)) = θ(r(t)). The two inequalities r(s) ≤ e and r(t) ≤ e
both lie above c ≤ θ(e), so they must be equal by the uniqueness of liftings
along θ0. Thus, if θ is faithful, then s = t.

For the converse, if L(θ) is a weak equivalence, then we see easily that θ is
full, faithful, and essentially surjective. Condition (LI2) can be seen to hold as
follows. We have a commuting square of toposes

B(G) B(H)//

PSh(G0)

B(G)
��

PSh(G0) PSh(H0)// PSh(H0)

B(H)
��

where the bottom horizontal is an equivalence (associated with the weak equiv-
alence L(θ)). Since the verticals are étale, so is the other horizontal. Therefore,
G0

// H0 is a discrete fibration. 2

Theorem 2.7 The following are equivalent for ordered groupoids G and H:

(i) the classifying toposes of G and H are equivalent;

(ii) G and H have a joint bipartite enlargement [G,H];

(iii) there is an ordered groupoid K and local isomorphisms G // K oo H.

Proof. 1 +3 2 Given an equivalence U : B(G) ≃ B(H), consider the groupoid
K such thatK0 = G0+H0 andK1 = G1+H1+Y , where Y is set of isomorphisms
of B(H) between objects U(d) and e. K1 is partially ordered: for i : U(d) ∼= e

11



and j : U(a) ∼= b, we declare i ≤ j when d ≤ a in G0 and e ≤ b in H0 and the
square of natural transformations

U(a) b
j //

U(d)

U(a)
��

U(d) e
i // e

b
��

commutes in B(H). The definition of ≤ for isomorphisms in the other direction
is similar. By Lemma 2.4, the domain map K1

// K0 is a discrete fibration.
2 +3 3 holds because an enlargement is a local isomorphism. 3 +3 1 holds

because given such local isomorphisms, then B(G) and B(H) are equivalent by
Lemma 2.6 since the geometric morphism associated with a weak equivalence
of categories is an equivalence. 2

Having proved the equivalence of (i), (ii) and (iii), we ought to be able to
obtain from a given Morita context X between inverse semigroups S and T a
common ordered groupoid enlargement of G(S) and G(T ) directly. We do this
in Proposition 2.21, (4), where it is denoted G(S, T ;X). This can also be done
using the Schützenberger object

S(e) =

{

{s ∈ S | s∗s = e}+ {x ∈ X | 〈x, x〉 = e} , e ∈ E(S)
{t ∈ T | t∗t = e}+ {x ∈ X | [x, x] = e} , e ∈ E(T )

in the étendue PSh(U), where U denotes the left cancellative category built from
X (as in Cor. 2.5).

Lemma 2.8 S is a torsion-free generator of the étendue PSh(U).

Proof. The category of elements of S is a preorder since U is left cancella-
tive (Cor. 2.5). Therefore, S is torsion-free. S has global support so it is a
generator. 2

Let S0
// U denote the discrete fibration corresponding to the presheaf S. S0 is

the category of elements of S, whose objects are ‘elements’ e
u // S. By Lemma

2.8, S0 is a preorder, and the category pullback

S0 U//

S1

S0

��

S1 S0
// S0

U

��

defines a preordered groupoid (S0,S1). It follows that the ordered groupoid
G(S, T ;X) is order-isomorphic to the posetal collapse of (S0,S1): the object-
poset of G(S, T ;X) equals the posetal collapse of S0, which may be identified
with the map

S0
// // E(S) + E(T )
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such that an element

e
u // S 7→







uu∗ u ∈ S or u ∈ T
〈u, u〉 u ∈ X and e = [u, u]
[u, u] u ∈ X and e = 〈u, u〉

.

Likewise, the morphism-poset of G(S, T ;X) equals the posetal collapse of S1.
Moreover, the underlying groupoid of G(S, T ;X), where we ignore its order
structure, equals the isomorphism subcategory of U.

Proof of the equivalence of (ii) and (iv).

An ordered groupoid G is said to be principally inductive if for each identity
e the poset e↓ = {f ∈ G0 : f ≤ e} is a meet semilattice under the induced order
[11]. It is worth noting that if G is an ordered groupoid, then it is principally
inductive precisely when the left cancellative category L(G) has pullbacks. It
is routine to verify that ordered groupoid enlargements of principally inductive
groupoids are also principally inductive.

Principally inductive groupoids have a Cauchy completion, which we denoted
C(S) in the inverse case. Let G be such a groupoid. Define

C(G) = {(e, x, f) ∈ G0 ×G×G0 : d(x) ≤ f, r(x) ≤ e}

and define a partial binary operation by (e, x, f)(f, y, i) = (e, x⊗ y, i). Observe
that x ⊗ y is defined because d(x), r(y) ≤ f and the fact that G is assumed
to be principally inductive. Furthermore C(G) is always an inverse category.
However, it is not always strongly connected as in the inverse case.

Lemma 2.9 Let G and H be principally inductive. An ordered functor θ :
G // H is a local isomorphism if and only if C(θ) : C(G) // C(H) is a weak
equivalence.

Proof. The forward implication is similar to the proof of Lemma 2.6. On the
other hand, if C(θ) is a weak equivalence, then so is L(θ) so we may use Lemma
2.6. 2

Proposition 2.10 Assume (AC). Let G and H be principally inductive ordered
groupoids. Then the categories C(G) and C(H) are equivalent if and only if
B(G) ≃ B(H).

Proof. If C(G) ≃ C(H), then L(G) ≃ L(H) since L(G) equals the subcat-
egory of C(G) consisting of those morphisms with retracts. Hence, B(G) ≃
B(H). Conversely, an equivalence of classifying toposes gives weak equivalences
L(G) // U oo L(H), and hence (by AC) an equivalence L(G) ≃ L(H). There-
fore, C(G) ≃ C(H) because C(G) is canonically equivalent to Span(L(G)),
where the Span of a category with pullbacks is given by the same objects, but
whose morphisms are spans · oo · // · in the given category. (This aspect is
further explained following Prop. 2.23.) 2
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2.2 Inverse semigroups

We shall prove first that (v) is equivalent to strong Morita equivalence.
We begin with some preliminaries taken from [16] where proofs of all un-

proved statements can be found. A category C = (C0, C1) is said to be strongly
connected if for each pair of identities e and f there is an arrow from e to f . All
categories in this part will be strongly connected. Let C be a strongly connected
category. A consolidation for C is a function p : C0×C0

// C1, p(e, f) = pe,f ,
where pe,f is an arrow from f to e and pe,e = e. Given a category C equipped
with a consolidation p we can define a binary operation ◦ on C by x◦y = xpe,fy
where x has domain e and y has codomain f . It is easily checked that this con-
verts C into a semigroup, denoted C

p. If we omit ◦, then we mean the category
product. A category C is said to be regular if for each morphism a there exists
another one b such that a = aba.

Lemma 2.11 Let C be a strongly connected regular category, and let p be a
consolidation on C. Then C

p is regular.

A consolidation r of a bipartite category C = [A,B] induces consolidations
on the full subcategories A and B. Thus A

r and B
r are subsemigroups of C

r.

Lemma 2.12 Let C = [A,B] be a bipartite category and let r be a consolidation
defined on C. Then C

r is an enlargement of both A
r and B

r.

Lemma 2.13 Let C = [A,B] be a bipartite category. If A and B are both
regular, then we can assume that C is also regular.

Let C = [A,B] be a bipartite category, let p be a consolidation on A, and q
a consolidation on B. We define a consolidation r on C as a whole as follows.
Choose an identity i0 ∈ A0 and an isomorphism ξ with domain i0 and codomain
j0 ∈ B0. Define the consolidation r on C as follows:

re,f =















pe,f if e, f ∈ A0

qe,f if e, f ∈ B0

qe,j0ξpi0,f if e ∈ B0, f ∈ A0

pe,i0ξ
−1qj0,f if e ∈ A0, f ∈ B0 .

In other words, r agrees with p and q on A and B respectively, and then uses
ξ to do the simplest possible thing to define it on the whole of C using the
isomorphism ξ. We say that r is a natural extension of p and q to C.

Proposition 2.14 We assume the above setup. Let π1 be a congruence on A
p,

and let π2 be a congruence on B
q. Let π be the congruence on C

q generated by
π1 ∪ π2.

1. π ∩ (Ap × A
p) = π1 if the following three conditions hold:

(i) (a, a′) ∈ π1
+3 (ξ−1 ◦ a, ξ−1 ◦ a′) ∈ π1.
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(ii) (a, a′) ∈ π1
+3 (a ◦ ξ, a′ ◦ ξ) ∈ π1.

(iii) (b, b′) ∈ π2
+3 (α ◦ b ◦ β, α ◦ b′ ◦ β) ∈ π1 for all isomorphisms α and

β where α has domain in B0 and codomain in A0 and β has domain
in A0 and codomain in B0.

2. π ∩ (Bq × B
q) = π2 if the following three conditions hold:

(i) (b, b′) ∈ π2
+3 (ξ ◦ b, ξ ◦ b′) ∈ π2

(ii) (b, b′) ∈ π2
+3 (b ◦ ξ−1, b′ ◦ ξ−1) ∈ π2.

(iii) (a, a′) ∈ π1
+3 (α ◦ a ◦ β, α ◦ a′β) ∈ π2 for all isomorphisms α and β

where α maps A0 to B0 and β maps B0 to A0.

Proposition 2.15 Let S and T be inverse semigroups. Then the following are
equivalent:

(i) S and T are strongly Morita equivalent;

(ii) The categories C(S) and C(T ) are equivalent;

(iii) There is a regular semigroup which is a joint enlargement of S and T .

Proof. We have already proved that (i) +3 (ii).

(ii) +3 (iii). Let C(S) and C(T ) be equivalent categories. By [25], we can find
a bipartite category C = [C(S), C(T )]. Both C(S) and C(T ) are regular, so we
can assume that C is regular by Lemma 2.13. Moreover, both C(S) and C(T )
are strongly connected, so C is strongly connected. We now make the following
definitions.

• The identities of C(S) are of the form (e, e, e) where e is an idempotent
of S. We abbreviate (e, e, e) by e. On C(S) we define the consolidation

pe,f = (e, ef, f). The function π♮
1 : C(S)p // S given by (e, s, f) 7→ s is a

surjective homomorphism.

• The identities of C(T ) are of the form (i, i, i) where i is an idempotent
of T . We abbreviate (i, i, i) by i. On C(T ) we define the consolidation

qi,j = (i, ij, j). The function π♮
2 : C(T )q // T given by (i, t, j) 7→ t is a

surjective homomorphism.

Let e0 be any identity in C(S). Since C is bipartite, there is an isomorphism
ξ ∈ C with domain e0 and codomain f0 for some identity in C(T ). Let r be a
natural extension of p and q to C defined using this ξ.

We now verify that the conditions of Proposition 2.14 (1) hold; that those
of (2) also hold follows by symmetry.

Condition (i). Let (e, s, f)π1 (e′, s, f ′). Then simple calculations show that
ξ−1 ◦ (e, s, f) = (e0, e0s, f) and ξ−1 ◦ (e′, s, f ′) = (e0, e0s, f

′). Hence ξ−1 ◦
(e, s, f)π1 ξ

−1 ◦ (e′, s, f ′).
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Condition (ii). Let (e, s, f)π1 (e′, s, f ′). Then simple calculations show
that (e, s, f) ◦ ξ = (e, se0, e0) and (e′, s, f ′) ◦ ξ = (e, se0, e0). Hence (e, s, f) ◦
ξ π1 (e′, s, f ′) ◦ ξ.

Condition (iii). Let (i, t, j)π2 (i′, t, j′). Let f
α // e and e′

β // f ′ be isomor-
phisms in C. Then simple calculations show that α◦ (i, t, j)◦β = α(f, ftf ′, f ′)β
and α ◦ (i′, t, j′) ◦ β = α(f, ftf ′, f ′)β. Thus these two elements are actually
equal and so clearly π1-related.

By Lemma 2.11, the semigroup C
r is regular, and by Lemma 2.12 it is an

enlargement of both C(S)p and C(T )q. Thus R = C
r/π is a regular semigroup

that contains (isomorphic copies of) S and T as regular subsemigroups. But en-
largements are preserved under homomorphisms by Proposition 2.9 of [7]. Thus
R is an enlargement of both S and T , as required.

(iii) +3 (i). Let the regular semigroup R be a joint enlargement of inverse sub-
semigroups S and T . Let x ∈ SRT . Then x = srt. Let s∗ be the unique inverse
of s in S and let t∗ be the unique inverse of t in T . Then x has an inverse of
the form t∗r′s∗ ∈ TRS where r′ ∈ R is some element. Put

X = {(x, x′) : x ∈ SRT and x′ ∈ V (x) ∩ TRS}.

Observe that
xx′ ∈ (SRT )(TRS) = S(RTTR)S ⊆ S

and
x′x ∈ (TRS)(SRT ) = T (RSSR)T ⊆ T.

Thus we may define a left action of S on X by s(x, x′) = (sx, x′s∗) and a
right action of T on X by (x, x′)t = (xt, t∗x′). Thus X is an (S, T )-bimodule.
Define 〈(x, x′), (y, y′)〉 = xy′ and [(x, x′), (y, y′)] = x′y. We need to show that
these maps are surjections. We prove that the first is surjective; the proof
that the second is surjective follows by symmetry. Let s ∈ S. Then s = bta′

where aa′ = s∗s and bb′ = ss∗ and a ∈ V (a) and b ∈ V (b). That this is
possible is proved in [12]. Let t ∈ V (t) such that t′t = a′a and tt′ = b′b. Then
(b, b′), (at′, ta′) ∈ X and 〈(b, b′), (at′, ta′)〉 = bta′ = s, as required. It is now
routine to verify that axioms (MC1)–(MC7) hold and that we have therefore
defined a Morita context. 2

Our proof of Theorem 1.1 is concluded by the following result which connects
strong Morita equivalence to Morita equivalence.

Proposition 2.16 Let S and T be inverse semigroups. Then S and T are
Morita equivalent if and only if they are strongly Morita equivalent.

Proof. Let S and T be strongly Morita. Then by Theorem 1.1 there is a regular
semigroup R which is an enlargement of both S and T . Thus from [16, 12, 14],
S is Morita equivalent to each of S and T and so S and T are Morita equivalent
to each other.
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We prove the converse directly.4 Let S be an inverse semigroup and let S-
Fact be its category of unitary left S-actions. We write left S-homomorphisms
on the right of their arguments. This category has arbitrary coproducts: dis-
joint unions of unitary left S-modules are unitary left S-modules. It can be
proved, using essentially the same argument as that in [1], that in this category
epimorphisms are precisely the surjections. The left S-modules Se where e is
an idempotent are clearly unitary and it can be directly verified that they are
indecomposable projectives. By the same argument as in Proposition II.14.3
[21], coproducts of projectives are projectives. Let X be an arbitrary unitary
left S-act and let x ∈ X. Since SX = X, by assumption, there exists s ∈ S
and y ∈ X such that sy = x. But then ss∗x = ss∗sy = sy = x. Thus for each
x ∈ X, there exists an idempotent ex ∈ S such that exx = x. Form the coprod-
uct

∐

x∈X Sex. This is projective and unitary and there is an obvious surjection
from it onto X. It follows that the category S-Fact has enough projectives.
By the same argument as in Proposition II.14.2 of [21], every surjection onto
a projective is a retraction. Let X be an arbitrary indecomposable projective.
Then there is a surjection π :

∐

x∈X Sex
// X given by π(sex) = sx. By the

above, this map is a retraction and so there is an injective left S-homomorphism
σ : X // ∐

x∈X Sex such that σπ is the identity on X. Now Xσ is a submodule
of

∐

x∈X Sex and indecomposable thus it must be contained inside Sey for some
y. It follows that σ : X // Sey defines an injective left S-homomorphism. But
using the fact that σπ = 1X we find that X = (Sey)π. Now Sey is a cyclic left
S-module and soX is a cyclic left S-module. We may therefore assume thatX is
a projective cyclic left S-module where X = Sx for some x ∈ X. Now X is uni-
tary and so there is an idempotent e ∈ S such that ex = x. Define ϕ : Se // X
by (s)ϕ = sx. Then ϕ is a surjection. But Sx is projective and so there exists
a map ψ : X // Se such that ψϕ = 1P . We therefore have an injective map
ψ : X = Sx // Se. Put f = (x)ψ. Then f = (x)ψ = (ex)ψ = e(x)ψ = ef , and
since x ∈ Sf we have that fe = f . Observe that f2 = fefe = fe = f and so f
is an idempotent and f ≤ e. It follows that ψ induces an isomorphism between
X = Sx and Se, as required.

We have proved that each indecomposable projective in the category S-
Fact is isomorphic to one of the form Se where e is an idempotent. The full
subcategory of S-Fact whose objects are the left S-modules of the form Se as e
varies over the idempotents is isomorphic to the category C(S) and equivalent to
the full subcategory of S-Fact whose objects are all indecomposable projectives.
It follows that if S is Morita equivalent to T then C(S) is equivalent to C(T ). 2

Although the two definitions of Morita equivalence turn out to be the same,
there are great advantages to working with strong Morita equivalence and equiv-
alence bimodules as defined in [27] when working with inverse semigroups.

4This result is in principle derivable from [28, 29]. However, Neklyudova [22] points out
that Talwar’s argument uses monoid results which are not directly applicable in the case of
semigroups with local units. For this reason, we reproved his results carefully in [16]. The
argument given there simplifies in the case of inverse semigroups and so it makes sense to give
the proof in the inverse case directly.
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To conclude, we describe an application of strong Morita equivalence to the
theory of E-unitary inverse semigroups. With each E-unitary inverse semigroup
S we can associate a triple (G,X, Y ), called a McAlister triple, where G is a
group, X a poset, and Y a subposet of X which is a semilattice for the induced
order [13]. This triple is required to satisfy certain conditions, one of which is
that G acts on X by order automorphisms. If (G,X) and (G′,X ′) each consist
of a group acting by order automorphisms on a poset, then we say they are
equivalent if G and G′ are isomorphic, X and X ′ are order-isomorphic, and the
actions under these isomorphisms are the same.

Proposition 2.17 Let S and T be E-unitary inverse semigroups with associ-
ated McAlister triples (G,X, Y ) and (G′,X ′, Y ′). Then S and T are Morita
equivalent if and only if (G,X) is equivalent to (G′,X ′).

Proof. Let S and T be such that (G,X) is equivalent to (G′,X ′). Then af-
ter making appropriate identifications, we have from the classical theory of
E-unitary inverse semigroups [13] that the ordered groupoid G⋉X, being the
Grothendieck or semidirect product construction, is a common enlargement of
the inductive groupoids G(S) and G(T ).

Conversely, suppose that S and T are strongly Morita equivalent. Then the
toposes B(S) and B(T ) are equivalent. The topos explanation of the P -theorem
is simply an interpretation of X, Y , and G in topos terms: X comes from the
(connected) universal covering morphism of the classifying topos and so must
be the same for S and T , and G is the fundamental group of the classifying
topos and so again necessarily the same for S and T . An explicit description of
an equivalence of (G,X) and (G′,X ′) derived directly from and in terms of a
given Morita context ought to be readily available, but we leave this excercise
for the reader. 2

Let us say that an inverse semigroup S is locally E-unitary if the local
submonoid eSe is E-unitary for every idempotent e. An E-unitary inverse
semigroup is locally E-unitary.

Lemma 2.18 S is locally E-unitary if and only if L(S) is right-cancellative.

Proof. Suppose that L(S) is right-cancellative. Let s = ese and suppose that

d ≤ s, where d is an idempotent. Then the diagram d ≤ s∗s
s,s∗s// e in L(S)

commutes. Therefore, s = s∗s so that s is an idempotent.

Conversely, suppose that S is locally E-unitary. Suppose that d
t // e

s,r // f
commutes in L(S). Then rs∗ ∈ fSf . Also rtt∗s∗ = rt(st)∗ = st(st)∗ is idempo-
tent, and we have rtt∗s∗ ≤ rs∗. Therefore, rs∗ = b is an idempotent by locally
E-unitary. Hence, r = rr∗r = re = rs∗s = bs, so that r ≤ s. Similarly, s ≤ r so
that s = r. 2

We take the opportunity to improve [5], Cor. 4.3.
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Corollary 2.19 B(S) is locally decidable (as it is called) if and only if S is
locally E-unitary.

Proof. This follows from Lemma 2.18 and the well-known fact that the topos
of presheaves on a small category is locally decidable if and only if the category
is right-cancellative [5]. 2

Corollary 2.20 If two inverse semigroups are strongly Morita equivalent and
one of them is locally E-unitary, then so is the other one.

We conclude this section by giving a direct proof of the equivalence of (i)
and (iii) of Theorem 1.1 by different means.

Proposition 2.21 Two inverse semigroups are strongly Morita equivalent if
and only if their associated inductive groupoids have a bipartite ordered groupoid
enlargement.

Proof. Let (S, T,X, 〈−,−〉, [−,−]) be an equivalence bimodule. Put I = {1, 2},
and regard I × I as a groupoid in the usual way, S′ = {1} × S × {1} and
T ′ = {2} × T × {2} and

R = R(S, T ;X) = S′ ∪ T ′ ∪ ({1} ×X × {2}) ∪ ({2} ×X × {1})

We shall define a partial binary operation on R. The product of (i, α, j) and
(k, β, l) will be defined if and only if j = k in which case the product will be of
the form (i, γ, l). Specifically, we define products as follows

• (1, s, 1)(1, s′, 1) = (1, ss′, 1).

• (2, t, 2)(2, t′, 2) = (2, tt′, 2).

• (1, s, 1)(1, x, 2) = (1, sx, 2).

• (1, x, 2)(2, t, 2) = (1, xt, 2).

• (2, t, 2)(2, x, 1) = (2, xt∗, 1).

• (2, x, 1)(1, s, 1) = (2, s∗x, 1).

• (2, x, 1)(1, y, 2) = (2, [x, y], 2).

• (1, x, 2)(2, y, 1) = (1, 〈x, y〉, 1).

This operation is associative whenever it is defined. To prove this, one essentially
checks all possible cases of triples of elements, however the restrictions on what
elements can be multiplied reduces the number of cases that need to be checked.
Within this list of possibilities, associativity of multiplication in the inverse
semigroups S and T combined with the ‘associativity’ of left, right and bimodule
actions reduces the number of cases still further. One then uses the definition
of an equivalence bimodule, and particularly Proposition 2.3 of [27], to check all
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the remaining cases. Thus R is a semigroupoid. Observe that (1, x, 2)(2, x, 1) =
(1, 〈x, x〉, 1) and that (2, x, 1)(1, x, 2) = (2, [x, x], 2). Thus

(1, x, 2)(2, x, 1)(1, x, 2) = (1, 〈x, x〉x, 2) = (1, x, 2)

by (MC3). Similarly

(2, x, 1)(1, x, 2)(2, x, 1) = (2, [x, x], 2)(2, x, 1) = (2, x[x, x], 1) = (2, x, 1)

by (MC6). Thus R is a regular semigroupoid. But the only idempotents in R
are those coming from S′ and T ′ and so the idempotents commute whenever
the products of two idempotents is defined. It follows that R is an inverse
semigroupoid. Clearly S′ = S′RS′ and T ′ = T ′RT ′ and it is easy to check
that R = RS′R and R = RT ′R. Every inverse semigroupoid gives rise to an
ordered groupoid in a way that directly generalises the way in which inverse
semigroups give rise to ordered groupoids. We denote this ordered groupoid by

G(S, T ;X) . (4)

We see that G(S, T ;X) is an enlargement of both G(S′) and G(T ′). This proves
the result.

Conversely, let S and T be inductive groupoids which are ordered sub-
groupoids of the ordered groupoid G and where G is an enlargement of them
both. Let X be the set of all the arrow of G that have domains in T and
codomains in S. We define a left action of S on X by sx = s ⊗ x, and a right
action of T on X by xt = x ⊗ t. Define 〈x, y〉 = x ⊗ y−1 and [x, y] = x−1 ⊗ y.
Here ⊗ is the pseudoproduct in the ordered groupoid G; the pseudoproduct a⊗b
is defined whenever a−1a and bb−1 have a meet in the partially ordered set of
identities of G. If this meet is e then a⊗ b = (a | e)(e | b). The pseudoproduct
is associative whenever this makes sense. The theory behind pseudoproducts is
explained in [13]. It is routine using this theory to check that in this way we
have defined a Morita context. 2

2.3 Actions and étale actions

In this paper, we have studied two kinds of categories of actions of an inverse
semigroup S: the unitary and the étale. We denote the former by Fact and
the latter by Étale since in this section the inverse semigroup S will be fixed.
Recall that when the categories of unitary actions of two inverse semigroups are
equivalent we say that the inverse semigroups are Morita equivalent, whereas
when the categories of étale actions are equivalent the semigroups are said to
be strongly Morita equivalent. We proved in Proposition 2.16 that these two
notions of Morita equivalence are the same; it is the goal of this section to better
understand this equivalence.

Étale may be taken as the definition of the topos B(S): an object is a set

X equipped with a left action by S and a map X
p // E (the étale structure)

such that p(sx) = sp(x)s∗ and p(x)x = x. Maps in Étale commute with the
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actions and with the projections to E. Thus, Étale is the full subcategory of

Fact/E on those objects X
p // E satisfying p(x)x = x, whose inclusion has a

right adjoint denoted V in (7).
Under the equivalence of Étale with presheaves on L(S), the representable

presheaves correspond to the étale actions Se // E, s 7→ ss∗ = r(s) (the reader
will easily verify that this map is indeed étale), and the Yoneda embedding
L(S) // PSh(L(S)) is identified with the functor L(S) // Etale carrying

e to Se // E. A morphism d
s // e goes to the map αs : Sd // Se (over E)

such that αs(t) = ts∗. For instance, αs(d) = ds∗ = (sd)∗ = s∗, so s = αs(d)
∗.

Any étale map α : Sd // Se is uniquely determined this way by the morphism
x = α(d)∗ : d // e of L(S), since α(t) = α(td) = tα(d) = αx(t). We have thus
proved the Yoneda Lemma, which asserts in this case that there is a functorial
bijection between the étale morphisms Sd // Se and L(S)(d, e).

We proved (also in Proposition 2.16) that in Fact the left actions Se =
U(Se // E) are precisely the projective indecomposables up to isomorphism.
The functor e 7→ Se of C(S) into Fact is full and faithful (Prop. 2.26), so that
C(S) is therefore equivalent to the full subcategory of Fact on the projective
decomposables. When this functor is restricted to the subcategory L(S), the
following diagram of functors commutes.

Etale Fact
U //

L(S)

Etale

Yoneda

��

L(S)

Fact
""EEEEEEEE

(5)

The functor U(X // E) = X that forgets étale structure is faithful.

Lemma 2.22 Let S be an inverse semigroup.

(i) A morphism of Étale is a monomorphism if and only if it is injective. In
particular, an étale morphism Se // Sf is injective.

(ii) A morphism of Étale is an epimorphism if and only if it is a surjection.

Proof. The presheaf on L(S) that corresponds to X
p // E is the ‘fiber map’

e 7→ p−1(e). A morphism of étale actions is an epimorphism iff its corresponding
natural transformation of presheaves is an epimorphism iff its component maps
are surjections iff the given map of étale actions is a surjection. Likewise for
monomorphisms and injections.

A map between representables is injective because such a map must come
from a morphism of L(S) (Yoneda). But every morphism of L(S) is a monomor-
phism, and the natural transformation corresponding to a monomorphism (un-
der Yoneda) must have injective component maps. 2

Proposition 2.23 An étale action X // E is isomorphic to a representable
one Se // E if and only if it is projective and indecomposable. The Yoneda
functor (explained above) gives an equivalence between L(S) and the full sub-
category of Étale on the projective indecomposable objects.
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Proof. This is a consequence of Prop. 2.2, although in Prop. 2.2 we use the
term “connected” instead of “indecomposable.” 2

In the proof of Prop. 2.10 we encountered the fact that C(S) is equivalent
to Span(L(S)). Indeed, two functors

C(S) Span(L(S))
**

hh

giving the equivalence are (e, s, f) 7→ ((f, s∗), (e, ss∗)), and ((f, t), (e, s)) 7→
(e, st∗, f). We emphasizes this equivalence in terms of projective indecompos-

able module and étale actions. For instance, a module map Sf
θ // Se corre-

sponds to the morphism (e, x, f) of C(S), where x = θ(f)∗. The functor above
carries this to the span ((f, x∗), (e, xx∗)) of morphisms in L(S), which in turn
corresponds to a span of étale maps

Sf Se

Sxx∗

Sf

θ1

����
��

�
Sxx∗

Se

θ2

��?
??

??

defined as follows: θ1(s) = sx, and θ2(s) = se. Observe that θ2 is subset
inclusion since xx∗ ≤ e. Spans are composed in an obvious manner by pullback.

We return to the faithful functor U (5) that forgets étale structure.

Proposition 2.24 U has a right adjoint R:

R(X) =
∐

E

eX // E ; (e, x) 7→ e ,

where
eX = {x ∈ X | ex = x} = {ex | x ∈ X} ∼= Fact(Se,X)

for an idempotent e.

Proof. We denote a typical member of the coproduct
∐

E eX by (e, x). The
action by S that

∐

E eX carries is defined by:

s(e, x) = (ses∗, sx) .

Since idempotents commute in S, if e fixes x, then ses∗ fixes sx: ses∗sx =
ss∗sex = sx. The projection to E is easily to be étale. The unit of U ⊣ R at

X
p // E is the étale map

X

E
p ��?

??
??

X
∐

E eX
x7→(p(x),x)// ∐

E eX

E
����

��
�

. (6)

The counit UR(X) // X of U ⊣ R at a unitary actionX is the map
∐

E eX
// X,

(e, x) 7→ x. 2
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R may also be described as the equalizer:

R(X) // //E ×X X

ex
&&

x

88 .

Evidently, R is the composite

Fact/E Etale
V //

Fact

Fact/E

E∗

��

Fact

Etale

R

$$JJJJJJJJJJ

(7)

of two right adjoints, where E∗(X) = E ×X // E, and

V (X
p // E) = {x | p(x)x = x} // E ,

which is right adjoint to inclusion. Because idempotents commute in S, the
action of S in X restricts to {x | p(x)x = x}:

p(sx)sx = sp(x)s∗sx = ss∗sp(x)x = sx .

R is defined for any S-action, not just the unitary ones.

Lemma 2.25 An S-action X is unitary (SX = X) if and only if the counit
of U ⊣ R at X is an epimorphism. In particular, the right adjoint R is faithful
when restricted to unitary actions.

Proof. We have seen that the unitary condition SX = X is equivalent to the
condition

∀x ∈ X∃e ∈ E, ex = x ,

which holds if and only if
∐

E eX
// X is onto. A simple diagram chase shows

that if the counit maps of any adjoint pair are epimorphisms, then the right
adjoint is faithful. 2

Proposition 2.26 A unitary action is projective and indecomposable if and
only if it is isomorphic to Se, for some idempotent e. The set {Se | e ∈ E} of
unitary actions separates maps in Fact. The functor C(S) // Fact, e 7→ Se,
is full and faithful.

Proof. The first statement is already proved in Proposition 2.16. The repre-
sentable étale actions Se // E separate maps in the topos Étale. Therefore,
the Se do the same in Fact because U has a faithful right adjoint. The functor
e 7→ Se is full and faithful because an action preserving map α : Sd // Se is
uniquely determined by α(d): this calculation is the same as for L(S) except
that we can only conclude α(d) ∈ dSe, so that x = α(d)∗ ∈ C(S)(d, e), and
α(t) = tx∗ = αx(t). 2

23



The theory of monads is adequately explained in the literature [2], but briefly
a monad in a category is an endofunctor M of the category equipped with an
associative multiplication M2 // M and a unit id // M . The (Eilenberg-
Moore) algebras for a monad form a category that maps to the given category
by forgetting an algebra’s M structure. A functor is said to be monadic if it is
equivalent to such a forgetful functor from the category of algebras for a monad.
We will use the following well-known sufficient conditions: if a functor has a
left adjoint, reflects isomorphisms, coequalizers exist and the functor preserves
them, then it is monadic. A comonad is a monad in the opposite category. All
topos terminology and facts that we use are part of the basic theory [19].

An example of a monad (ultimately explained in Theorem 2.32) is the one in
Étale associated with the adjoint pair U ⊣ R: its endofunctor M = RU carries

an étale action X
p // E to

∐

E eX
// E. We shall show that the category of

Eilenberg-Moore algebras for this monad is equivalent to PSh(C(S)), identifying
the forgetful functor with the inverse image functor I∗. We begin by explaining
this functor.

Restriction of presheaves along the inclusion functor I : L(S) // C(S) is
denoted

I∗ : PSh(C(S)) // PSh(L(S)) .

Under the equivalence of PSh(L(S)) and Étale, if P is a presheaf on C(S), then
I∗(P ) is the étale action

∐

E

P (e) // E ,

where s(e, x) = (ses∗, P (es∗)(x)). I∗ is the inverse image functor of a geometric
morphism of toposes

I∗ ⊣ I∗ : Etale // PSh(C(S)) .

The right adjoint I∗ is given by ‘taking sections,’ whose explicit description
we omit. The above geometric morphism is termed a surjection because its
inverse image functor I∗ reflects isomorphisms. Thus, in a geometric sense,
C(S) is a quotient of L(S). By our sufficient criteria (previous paragraph), I∗ is
comonadic by a finite limit preserving comonad. (A well-known fact from topos
theory is that a functor is equivalent to the inverse image functor of a surjective
geometric morphism iff it is comonadic by a finite limit preserving comonad.)

I∗ also has a left adjoint I! (calculated in Lemma 2.29): by definition, if

X
p // E is étale, and e is an idempotent, then

I!(p)(e) = lim //
X

( x 7→ C(S)(e, p(x)) ) , (8)

where X is the category with objects X, and morphisms x
s // y, such that

p(x)
s // p(y) is a morphism of L(S) satisfying s∗y = x. I∗ is also monadic

(again by the same criteria) by a monad that preserves all colimits, explained
further in Theorem 2.32.
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Consider the following commuting diagrams of functors.

C(S)

e7→Se

����
��

��
�
C(S)

Yoneda

��?
??

??
??

Fact/E Etale
V //

Fact

Fact/E

E∗

��

Fact PSh(C(S))
Σ∗

// PSh(C(S))

Etale

I∗

��

R

&&MMMMMMMMMMM

C(S)

e7→Se

����
��

��
�
C(S)

Yoneda

��?
??

??
??

Fact/E Etaleoo

Fact

Fact/E

OOFact PSh(C(S))oo Σ
PSh(C(S))

Etale

OO

I!

ff
U

MMMMMMMMMMM

We have Σ∗(X)(e) = eX ∼= Fact(Se,X). Σ∗ is faithful since R is. I∗ and E∗

are also faithful. Of course the corresponding diagram of left adjoints commutes
(above, right). Only the left adjoint Σ of Σ∗ deserves more explanation; its
existence depends on the existence of colimits in Fact.

Lemma 2.27 Fact has all small colimits, created in the category of sets. All
small limits also exist in Fact (but they are not created in sets).

Proof. A small coproduct
∐

AXa of unitary actions is an S-set in the obvious
way, which is easily seen to be unitary. The set coequalizer

Z// //X Y
&&
88

of two S-maps also has an action by S in an obvious way (just use the universal
property of Z), which again is unitary.

Limits are slightly more complicated than colimits. For example, a finite
product X × Y has underlying set {(x, y) | ∃e ∈ E, ex = x, ey = y}. Arbitrary
products follow the same pattern. Equalizers are, like coequalizers, created in
sets. 2

Proposition 2.28 Σ∗ has a left adjoint Σ given by (colimit extension):

Σ(P ) = lim //
P

(

P // C(S)
e7→Se// Fact

)

,

where P // C(S) is the discrete fibration corresponding to a presheaf P . We
have ΣI! ∼= U , and Σ commutes with Yoneda.

Lemma 2.29 We have I! ∼= Σ∗U : for any étale X
p // E and any e ∈ E,

I!(p)(e) ∼= eX.

Proof. We argue this fact by direct calculation. Let X
p // E be an étale

action. We claim that the unit map I!(p) // Σ∗ΣI!(p) ∼= Σ∗U(p) is a natural
isomorphism (of presheaves on C(S)). For any e ∈ E, the component map at e
of this unit is

I!(p)(e) =
∐

x∈X

C(S)(e, p(x))/ ∼ // eX ; equiv. class of (x, e
s // p(x)) 7→ s∗x ,
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where the left-hand side is the colimit (8), calculated as a coproduct factored

by an equivalence relation. This map has inverse x 7→ (x, e
p(x) // p(x)), where

e
p(x) // p(x) is the inequality p(x) ≤ e understood as a map in C(S), which holds

because ex = x, hence ep(x) = p(x). Furthermore, given any (x, e
s // p(x)),

the map s∗x
s // x in the category X (from 8) witnesses that (x, e

s // p(x)) is

equivalent in the colimit to (s∗x, e
p(s∗x)// p(s∗x)), noting p(s∗x) = s∗p(x)s =

s∗s ≤ e. 2

Proposition 2.30 U reflects isomorphisms, U has a right adjoint, and Étale
has all equalizers and U preserves them. U is therefore comonadic.

Proof. U preserves equalizers because they are created in both categories by
their underlying sets. 2

Proposition 2.31 I! reflects isomorphisms, I! has a right adjoint, and Étale
has all equalizers and I! preserves them. I! is therefore comonadic.

Proof. I! reflects isomorphisms because U does and ΣI! ∼= U . By Lemma 2.29,
I! preserves any limit U does, such as an equalizer, because Σ∗ preserves all
limits. 2

Summing up, I∗, I! and U are all comonadic, but we wish to emphasize the
following fact.

Theorem 2.32 The monads in Étale associated with the adjoint pairs U ⊣

R and I! ⊣ I∗ coincide. The endofunctor of this monad carries X
p // E to

∐

E eX
// E, as in (6). It preserves all colimits. The category of Eilenberg-

Moore algebras for this monad is equivalent to PSh(C(S)), and the comparison
functor associated with U ⊣ R is Σ∗.

Proof. We have already mentioned that I∗ is monadic. By Lemma 2.29, we
have I∗I! ∼= I∗Σ∗U ∼= RU . 2

3 Atlases

This section has a different goal from the rest of the paper and depends only on
the definition of equivalence bimodule.

Inverse semigroups originated in differential geometry as pseudogroups of
transformations. One of the founders of the field, V. V. Wagner5, was one
of the few who continued to seek inspiration from this source. In differential
geometry, pseudogroups are usually not studied on their own but in combination
with the notion of an atlas. Just as Wagner defined inverse semigroups to be the

5This name is usually transliterated as ‘Vagner’ in the literature, but we understand that
‘Wagner’ was his preferred transliteration.
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algebraic versions of pseudogroups, so too he defined a class of structures, called
generalized heaps, to be the algebraic versions of atlases. Unlike semigroups,
which are equipped with a binary operation, heaps are defined in terms of a
ternary operation [31, 32, 33]. A convenient place to find an axiomatization is
Boris Schein’s paper [26]. This work by Wagner and his school did not become
well known outside of Eastern Europe for a variety of reasons: mathematically,
heaps are unusual in being based on a ternary operation rather than a binary
one; more substantively, the theory of heaps appears to be tangential to the main
theory of inverse semigroups, perhaps nothing more than a generalization for
generalization’s sake; finally, the theory was developed at a time when political
tensions between East and West impeded the dissemination of ideas. Whatever
the reasons, although Wagner is one of the founding fathers of the field the
details of this particular aspect of his work have been largely forgotten.

It was while the authors were working on this paper, that they began to
sense that the notion of equivalence bimodule might be connected in some way
to generalized heaps. Our first calculation, which is now Proposition 3.1 below,
showed that from an equivalence bimodule we could construct a generalized
heap, a structure satisfying the axioms in Schein’s paper. Having gone in one
direction, it was natural to wonder if we could go back. It turned out that
we could: we proved there is a bijective correspondence between equivalence
bimodules and generalized heaps. In other words, equivalence bimodules are to
atlases as inverse semigroups are to pseudogroups. Far from being tangential
to inverse semigroup theory or a generalization for generalization’s sake, gener-
alized heaps are the mathematical devices which witness a Morita equivalence
between two inverse semigroups. Because the term ‘generalized heap’ does not
sound good in English, we have preferred to call them atlases.

What follows is an exposition of the exact correspondence between equiva-
lence bimodules and atlases. We found it convenient to prove this correspon-
dence in terms of Kock’s notion of a ‘pregroupoid’ [9, 10] which is a categorical
formulation of the differential geometric notion of atlas and which enables one
to envisage what is going on quite clearly.

We should stress that we make no claim to originality in what follows: these
are Wagner’s ideas in modern dress. We hope that it will provide a new lease
of life for Wagner’s pioneering work.

Motivation

Given two spaces X and Y , a concrete atlas A from X to Y is a set of partial
bijections such that the union of their domains isX and the union of their images
is Y . The set T = A−1A is a collection of partial bijections defined on X, and
S = AA−1 is a collection of partial bijections defined on Y . For example, if X
and Y = R

n are topological spaces, A consists of homeomorphisms, and S is
the pseudogroup of all smooth maps defined between open subsets of Y then
the atlas A defines the structure of a differential manifold on X. Other such
local structures can be defined in a similar way.

This concrete notion of an atlas can be made algebraic. Observe that if
x, y, z ∈ A, an atlas, then also xy−1z ∈ A, as long as A is sufficiently large.
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Define now {xyz} = xy−1z. We may therefore regard the set A as an algebraic
structure equipped with the ternary operation (x, y, z) 7→ {xyz}. One may
seek to axiomatise the properties of this structure and relate it back, in the
spirit of Cayley’s theorem, to the original concrete notion of an atlas. This
idea formed the basis of a number of papers by Wagner and his students, but
whereas Wagner’s ideas on inverse semigroups entered the mainstream, his work
on abstract atlases has been largely neglected. In this section, we shall repair
that neglect.

The definition of atlas we shall use runs as follows. An atlas is a set X
equipped with a ternary operation (x, y, z) 7→ {xyz} that satisfies the following
axioms; they are not independent and we refer the reader to [26] for further
information.

(A1) {xxx} = x.

(A2) {{x1x2x3}x4x5} = {x1{x4x3x2}x5} = {x1x2{x3x4x5}}.

(A3) {xyx} = x and {yxy} = y implies that x = y.

(A4) {xx{yyz}} = {yy{xxz}}.

(A5) {{zxx}yy} = {{zyy}xx}.

From equivalence bimodules to atlases

We begin by proving the easy direction.

Proposition 3.1 Let (S, T,X, 〈−,−〉, [−,−]) be an equivalence bimodule. On
the set X define a ternary operation

{xyz} = 〈x, y〉z.

Then (X, {}) is an atlas.

Proof. (A1) holds. We have that {xxx} = 〈x, x〉x = x by (MC3).
(A2) holds. By definition, we have that

{{x1x2x3}x4x5} = 〈〈x1, x2〉x3, x4〉x5 = 〈x1, x2〉〈x3, x4〉x5

by (MC1);

{x1, {x4x3x2}x5} = 〈x1, 〈x4, x3〉x2〉x5 = 〈x1, x2〉〈x4, x3〉
∗x5 = 〈x1, x2〉〈x3, x4〉x5

by (MC1) and (MC2);

{x1x2{x3x4x5}} = 〈x1, x2〉〈x3, x4〉x5

where we have used the associativity of the action.
(A3) holds. Suppose that {xyx} = x and {yxy} = y. Then 〈x, y〉x = x and

〈y, x〉y = y. Observe that

〈x, x〉 = 〈〈x, y〉x, x〉 = 〈x, y〉〈x, x〉.
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Thus 〈x, x〉 ≤ 〈x, y〉 since 〈x, x〉 is an idempotent by Proposition 2.3(7) of [27].
It follows that 〈x, x〉 ≤ 〈y, x〉 also. Now

x = 〈x, x〉x = 〈x, x〉〈y, x〉x = 〈x, x〉y[x, x]

by (MC7). However, this implies that x ≤ y using Proposition 3.6 of [27] and
the order defined in Proposition 3.2. A dual argument shows that y ≤ x and so
x = y, as required.

(A4) holds. We have that

{xx{yyz}} = 〈x, x〉〈y, y〉z

whereas
{yy{xxz}} = 〈y, y〉〈x, x〉z.

These two elements are equal because 〈x, x〉 and 〈y, y〉 are idempotents and so
commute.

(A5) holds. We have that

{{zxx}yy} = z[x, x][y, y]

whereas
{{zyy}xx} = z[y, y][x, x]

using (MC1) and (MC7). These two elements are equal because [x, x] and [y, y]
are idempotents and so commute. 2

From atlases to equivalence bimodules

This direction is more complex and will be carried out in a series of steps.
Our first goal is to show that from each atlas we can construct a pregroupoid
in the sense of Kock [9, 10]. Here is the definition. Let X be a set equipped
with a partially defined ternary operation {}, and surjections p : X // E and
q : X // F such that {xyz} is defined if and only if q(x) = q(y) and p(y) = p(z)
and such that the following axioms hold:

(PG1) p({xyz}) = p(x) and q({xyz}) = q(z).

(PG2) {xxz} = z and {yxx} = y.

(PG3) {vy{yxz}} = {vxz} and {{yxz}zw} = {yxw}.

Then we call (X, {}, p, q) a pregroupoid.
Recall that a band is a semigroup in which every element is an idempotent.

A band is left normal if it satisfies the law xyz = xzy, and it is right normal if
it satisfies the law xyz = yxz. A commutative band is just a semilattice.

Lemma 3.2 Let X be an atlas.

29



(i) Define the binary operation ◦ on X by x ◦ y = {xxy}. Then (X, ◦) is a right
normal band. The minimum semilattice congruence on X◦ is given by the
R-relation. Put E = X◦/R and denote the natural map from X to E by
p.

(ii) Define the binary operation • on X by x • y = {xyy}. Then (X, •) is a left
normal band. The minimum semilattice congruence on X◦ is given by the
L-relation. Put F = X•/L and denote the natural map from X to F by
q.

Proof. We prove (i); the proof of (ii) follows by symmetry. The fact that every
element is an idempotent follows by (A1). We prove associativity. We have that
(x ◦ y) ◦ z = {{xxy}{xxy}z} and x ◦ (y ◦ z) = {xx{yyz}}. But

(x ◦ y) ◦ z = {{{xxy}yx}xz}

by (A2). By (A2) and (A4) we have that

{{{xxy}yx}xz} = {{xx{yyx}}xz} = {{yy{xxx}}xz}

but by (A1) this is equal to
{{yyx}xz}.

Finally we use (A2) and (A4) to get

{yy{xxz}} = {xx{yyz}},

as required. We have thefore proved that we have a band. To show that we
have a right normal band observe that

x ◦ y ◦ z = {xx{yyz}} = {yy{xxz}} = y ◦ x ◦ z

using (A4). 2

By the above

p(x) = p(y)⇔ x = y ◦ x and y = x ◦ y

and
q(x) = q(y)⇔ x = x • y and y = y • x.

The elements of the atlas X should be regarded as arrows

p(x)
x
←− q(x).

If X is an atlas, then we define the restricted product on X to be the ternary
operation restricted to those triples (x, y, z) where q(x) = q(y) and p(y) = p(z)

Proposition 3.3 Let X be an atlas and let p : X // E and q : X // F be
defined as in Lemma 3.2. Then with respect to the restricted product (X, {}, p, q)
is a pregroupoid.
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Proof. (PG1) Suppose that q(x) = q(y) and p(y) = p(z). Thus x = {xyy},
y = {yxx} and y = {zzy} and z = {yyz}. We have that

{xx{xyz}} = {{xxx}yz} = {xyz}

and

{{xyz}{xyz}x} = {{xyz}z{yxx}} = {{xyz}zy} = {xy{zzy}} = {xyy} = x.

Thus p({xyz}) = p(x).
We also have that

{{xyz}zz} = {xy{zzz}} = {xyz}

and

{z{xyz}{xyz}} = {{zzy}x{xyz}} = {yx{xyz}} = {{yxx}yz} = {yyz} = z.

Thus q({xyz}) = q(z).
(PG2) Both of these follow immediately from the definitions
(PG3) We have that

{vy{yxx}} = {{vyy}xz} = {vxz}.

Similarly, we have that

{{yxz}zw} = {yx{zzw}} = {yxw}.

2

We now follow Kock [9, 10] and use this pregroupoid structure to construct
two groupoids that we denote by XX−1 and X−1X. We define X−1X; the
definition of XX−1 is obtained dually. Let

XpX = {(x, y) ∈ X ×X : p(x) = p(y)}.

We identify a pair of elements (x, y) and (u, v) of this set if and only if q(x) =
q(u) and q(y) = q(v) and y = {xuv}. This is an equivalence relation. We
denote the equivalence class containing the pair (x, y) by x−1y and the set of
equivalence classes by X−1X. The element x−1y should be regarded as an arrow
from q(y) to q(x). Define a partial binary operation on X−1X by

x−1y · u−1v = x−1{yuv}

if and only if q(y) = q(u). With respect to this operation X−1X is a groupoid.
We check that the identities of the groupoid X−1X can be identified with the
semilattice F . Identities have the form x−1x. We map x−1x to q(x). This is well-
defined and surjective. Suppose that x−1x and y−1y are such that q(x) = q(y).
From our results above we have that x = {xyy} and so in fact x−1x = y−1y.
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Lemma 3.4 With the above notation, make the following definitions.

(i) Define 〈−,−〉 : X ×X // XX−1 by

〈x, y〉 = {xyy}{yxx}−1

a surjective map.

(ii) Define [−,−] : X ×X // X−1X by

[x, y] = {yyx}−1{xxy}

a surjective map.

(iii) Define XX−1 ×X // X by xy−1 · z = {xyz}.

(iv) Define X ×X−1X // X by x · y−1z = {xyz}.

(v) Axioms (MC2),(MC3),(MC5),(MC6) and (MC7) hold.

Proof. (i). We prove that q({xyy}) = q({yxx}). We calculate one part of the
proof

{{xyy}{yxx}{yxx}} = {{{xyy}xx}y{yxx}} = {{xyy}y{yxx}}

this is equal to

{x{yyy}{yxx}} = {xy{yxx}} = {{xyy}xx} = {xxx}yy} = {xyy}

It remains to show that this map is surjective. Let xy−1 ∈ XX−1. Then q(x) =
q(y). Thus x = {xyy} and y = {yxx}. It follows that 〈x, y〉 = {xyy}{yxx}−1 =
xy−1, as required.

(ii). We prove that p({yyx}) = p({xxy}). We calculate one part of the
proof.

{{yyx}{yyx}{xxy} = {{{yyx}x}{xxy}} = {{{yyx}xy}y{xxy}}

this is equal to

{{yyx}x{yy{xxy}}} = {{yyx}x{xxy}} = {yy{xxy}} = {xxy}.

It remains to show that this map is surjective. Let x−1y ∈ X−1X. Then by
assumption p(x) = p(y). Thus x = {yyx} and y = {xxy}. It follows that
[x, y] = {yyx}−1{xxy} = x−1y, as required.

(iii) We have to show that this operation is well-defined; this is similar to
the proof of (iv) below.

(iv). We have to show that this operation is well-defined. Let y−1z = u−1v.
We have that

x · y−1z = {xyz}
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and
x · u−1v = {xuv}.

By assumption z = {yuv}. Thus

{xyz} = {xy{yuv}} = {x{uyy}v}.

But q(y) = q(u) and so u = {uyy}. Thus {xyz} = {xuv}, as required.
(v). (M2) By construction 〈x, y〉 and 〈y, x〉 are groupoid inverses of each

other.
(M3) By definition 〈x, x〉x = {xxx} = x.
(M5) By construction [x, y] and [y, x] are groupoid inverses of each other.
(M6) By definition x[x, x] = {xxx} = x.
(M7) By definition

〈x, y〉z = {{xyy}{yxx}z}

which quickly simplifies to {xyz}. By definition

x[y, z] = {x{zzy}{yyz}}

which quickly simplifies to {xyz}. 2

We next show that X−1X and XX−1 are in fact inverse semigroups by using
the theory of ordered groupoids [13].

Proposition 3.5

(i) Define a relation ≤ on X−1X by

x−1y ≤ u−1v ⇔ x = x • u and y = {xuv}.

This relation is well-defined and a partial order. With respect to this order
X−1X is an inductive groupoid with pseudoproduct given by

x−1y ⊗ u−1v = {{yuu}yx}−1{yuv}.

(ii) Define a relation ≤ on XX−1 by

xy−1 ≤ uv−1 ⇔ y = y ◦ v and x = {uvy}.

This relation is well-defined and a partial order. With respect to this order
XX−1 is an inductive groupoid with pseudoproduct given by

xy−1 ⊗ uv−1 = {xyu}{vu{yyu}}−1.

Proof. We prove (i); the proof of (ii) is obtained dually.
We show first that the relation is well-defined. Suppose that x−1

1 y1 = x−1y
and u−1

1 v1 = u−1v. We have that q(x1) = q(x) and q(u1) = q(u). Thus in X•
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we have that x1Lx and u1Lu. It follows that X •x1 ⊆ X •u1 and so x1 = x1•u1.
We now calculate

{x1u1v1} = {x1u1{u1uv}} = {{x1u1u1}uv} = {x1uv} = {{x1xx}uv}

which is equal to
{x1x{xuv}} = {x1xy} = y1.

Next we check that this is a partial order. Let x−1y ∈ X−1X. Then x = x•x
and y = {xxy} since p(x) = p(y). Thus x−1y ≤ x−1y.

Suppose that x−1y ≤ u−1v and u−1v ≤ x−1y. We have that q(x) = q(u)
and y = {xuv}. We prove that q(y) = q(v). We calculate

{yvv} = {{xuv}vv} = {xu{vvv}} = {xuv} = y

and
{vyy} = {{uxy}yy} = {ux{yyy}} = {uxy} = v.

Finally, suppose that x−1y ≤ u−1v ≤ w−1z. We have that

X • x = X • x • u ⊆ X • u = X • u • w ⊆ X • w.

Thus x = x • w. We now calculate

y = {xuv} = {xu{uwz}} = {{xuu}wz} = {xwz}.

Observe that on the set of identities x−1x ≤ u−1u if and only if x = x • u.
Thus the order we have defined induces a semilattice ordering on the set of
identities. We shall now prove that with respect to this order X−1X is an
ordered groupoid and so by the observation above an inductive groupoid.

Suppose that x−1y ≤ u−1v. We prove that y−1x ≤ v−1u. We have that

y • v = {yvv} = {{xuv}vv} = {xu{vvv}} = {xuv} = y,

and
{yvu} = {{xuv}vu} = {xuu} = x.

Suppose that x−1
1 y1 ≤ u

−1
1 v1 and x−1

2 y2 ≤ u
−1
2 v2. We prove that x−1

1 y1x
−1
2 y2 ≤

u−1
1 v1u

−1
2 v2 where the products are groupoid products. We have that x1 =

x1 • u1 and y1 = {x1u1v1} and x2 = x2 • u2 and y2 = {x2u2v2}. We shall prove
that x−1

1 {y1x2y2} ≤ u−1
1 {v1u2v2}. We have x1 = x1 • u1. Now q(v1) = q(u2)

and so v1 = {v1u2u2}. Thus

{y1u2u2} = {{x1u1v1}u2u2} = {x1u1{v1u2u2}} = {x1u1v1} = y1.

We now calculate

{x1u1{v1u2v2}} = {{x1u1v1}u2v2} = {y1u2v2} = {y1u2{u2x2y2}} = {{y1u2u2}x2y2}

which is equal to {y1x2y2} as required.
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We now construct corestrictions, which is sufficient to prove that X−1X is
an ordered groupoid [13]. Let z−1z ≤ x−1x. Define

(z−1z | x−1y) = z−1{zxy}.

We prove that this is a corestriction.
It is easy to check that z−1{zxy} ≤ x−1y. Let u−1v ≤ x−1y where u−1u =

z−1z. Then
{uz{zxy}} = {{uzz}xy} = {uxy} = v.

We have therefore proved uniqueness.
Using the restriction and corestriction operations we can now calculate the

pseudoproduct. We get

x−1y ⊗ u−1v = {{yuu}yx}−1{yuu} · {yuu}−1{{yu}uv}.

This quickly simplifies to

{{yuu}yx}−1{yuv}.

2

From now on we shall denote the pseudoproducts by concatenation.

Proposition 3.6 X is a (XX−1,X−1X)-bimodule, and MC1) and (MC4) hold.

Proof. We show that X is a left XX−1-module. We have that

(xy−1uv−1) · z = {{xyu}{vu{yyu}}z}

whereas
xy−1 · (uv−1 · z) = {xy{uvz}}.

But

{{xyu}{vu{yyu}}z} = {{xy{u{yyu}u}}vz} = {{{xy{yyu}}vz}

which is equal to

{{xyy}yu} = {{xyu}vz} = {xy{uvz}}.

Thus X is a left XX−1-module. A dual argument shows that X is a right
X−1X-module.

To show that it is a bimodule we calculate (xy−1·z)·u−1v and xy−1·(z·u−1v).
But these are equal by (A2).

(MC1) holds. We calculate 〈xy−1 · u, v〉 and xy−1〈u, v〉. Now

〈xy−1 · u, v〉 = 〈{xyu}, v〉 = {{xyu}vv}{v{xyu}{xyu}}−1.

At this point we introduce something and apply (A5); the reason for doing this
will become clear

{v{xyu}{xyu}} = {{vvv}{xyu}{xyu}} = {{v{xyu}{xyu}}vv}.
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But

{v{xyu}{xyu}} = {vu{yx{xyu}}} = {vu{{yxx}yu}} = {vu{yyu}} = {{vuy}yu}.

Thus we have shown that

〈xy−1 · u, v〉 = {{xyu}vv}{{{vuy}yu}vv}−1.

But

xy−1〈u, v〉 = xy−1 · {uvv}{vuu}−1 = {xy{uvv}}{{vuu}{uvv}{yy{uvv}}}−1.

We now simplify the second component

{{vuu}{uvv}{yy{uvv}}} = {{{vuu}vv}u{yy{uvv}}} = {{vuu}u{yy{uvv}}}

this is equal to

{{vu{yy{uu{uvv}}}} = {vu{yy{{uuu}vv}}} = {vu{yy{uvv}}} = {{vuy}y{uvv}}

which is just
{{{vuy}yu}vv}.

We have shown that

xy−1〈u, v〉 = {{xyu}vv}{{{vuy}yu}vv}−1.

We have therefore shown that (MC1) holds.
The fact that (MC4) holds follows by a dual argument. 2

Combining the above results we get the following.

Theorem 3.7 With each atlas (X, {}) we can associate an equivalence bimodule

(XX−1,X−1X,X, 〈−,−〉, [−,−]).

Back and forth

It remains to show that the two constructions we have described are essen-
tially inverses of each other. If we start with an atlas, construct the correspond-
ing equivalence bimodule, and then construct the atlas from that then we arrive
back where we started. Thus we need only prove the following.

Proposition 3.8 Let (S, T,X, 〈−,−〉, [−,−]) be an equivalence bimodule and
let (XX−1,X−1X,X, 〈−,−〉1, [−,−]1). be the equivalence bimodule that arises
after successively applying our two constructions. Then the two equivalence
bimodules are isomorphic.
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Proof. We show first that X−1X is isomorphic to T .
Define a map X−1X // S by x−1y 7→ [x, y]. This map is well-defined, for

suppose that x−1y = u−1y. Then y = {xuv} = 〈x, u〉v. We calculate

[x, y] = [x, 〈x, u〉v] = [〈u, x〉x, v] = [u[x, x], v] = [u, v]

since q(x) = q(u) and so x = {xuu} = 〈x, u〉u = x[u, u]. Next we show that this
map is injective. Suppose that [x, y] = [u, v]. Then

y = 〈y, y〉y = 〈x, x〉y = x[x, y] = x[u, v] = 〈x, u〉v.

Thus y = {xuv}. Next we show that q(x) = q(u) and q(y) = q(v). We have
that

x = 〈x, x〉x = 〈y, y〉x = y[y, x] = y[v, u].

But [v, u][u, u] = [v, u]. Thus x[u, u] = x. Thus x = {xuu}. We may similarly
show that u = {uxx}. Thus q(x) = q(u). A similar argument shows that
q(y) = q(v). Thus the map is injective. We now show that the map is surjective.
Let s ∈ S. Then by assumption there exists (x, y) ∈ X×X such that [x, y] = s.
Consider the element yyx−1{xxy} ∈ X−1X. Then

[{yyx}, {xxy}] = [〈y, y〉x, 〈x, x〉y] = [x, y] = s

using Proposition 2.3 of [27]. It remains to show that this function is a ho-
momorphism. Again using Proposition 2.3 of [27], one quickly shows that the
image of x−1y · u−1v is equal to [x, y][u, v].

We have therefore shown that α : X−1X // S given by α(x−1y) = [x, y] is
an isomorphism of semigroups. A dual argument shows that β : XX−1 // T
given by β(xy−1) = 〈x, y〉 is an isomorphism of semigroups.

We now show that the actions are isomorphic. By definition

x · y−1z = {xyz} = 〈x, y〉z = x[y, z] = xα(y−1z).

A dual argument holds for the action of XX−1 on X.
Finally, we compare [−,−]1 and [−,−]. By definition

[x, y]1 = {yyx}−1{xxy} = [{yyx}, {xxy}] = [〈y, y〉x, 〈x, x〉y] = [x, y]

using Proposition 2.3 of [27]. The dual argument compares 〈−,−〉1 and 〈−,−〉.
2
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