
A monoid associated with a self-similar group

action

Mark V. Lawson

Department of Mathematics

and the Maxwell Institute for Mathematical Sciences

Heriot-Watt University

Riccarton

Edinburgh EH14 4AS

Scotland

M.V.Lawson@ma.hw.ac.uk

October 1, 2006

Abstract

We prove that there is a correspondence between self-similar group ac-

tions and the class of left cancellative right hereditary monoids satisfying

the dedekind height property. The monoids in question turn out to be co-

extensive with the Zappa-Szép products of free monoids and groups, and

the ideal structure of the monoid reflects properties of the group action.

These monoids can also be viewed as ‘tensor monoids’ of covering bimod-

ules, and also arise naturally from a double category associated with the

action. There is also a correspondence between self-similar group actions

and a class of inverse monoids, which are congruence-free when the actions

are faithful; these inverse monoids arise naturally in the construction of

the Cuntz-Pimsner algebras associated with the actions, and generalise

the polycyclic monoids from which the Cuntz algebras are constructed.

Finally, these results have the effect of correcting an error in a paper of

Nivat and Perrot.

2000 AMS Subject Classification: 20M10, 20M50.

1 Self-similar group actions

The results of this paper are closely related to a general theory originating in
the pioneering papers of Rees [22] and Clifford [5], and subsequently developed
by a number of authors [23, 17, 18, 16]. However the special case we consider
is of independent interest, is developed from scratch, and has the added effect
of shedding a new light on this general theory. The paper arose in the first
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instance from trying to write out a proof of Proposition 6 of [20], and failing:
this is amplified in the remark following Proposition 4.8.

In this section, we shall define what we mean by the term ‘self-similar group
action’ in this paper: it is used in a slightly more general sense than in [19]. We
begin by recalling some definitions from [1]. Let Xω denote the set of all (right)
infinite strings over the alphabet X. An action of G on Xω, denoted ◦, is said
to be ‘self-similar’ if for each g ∈ G and x ∈ X there exists h ∈ G and y ∈ X

such that
g ◦ (xw) = y(h ◦ w)

for all w ∈ Xω. The group element h depends on g and x but is not assumed
to be unique. Applying the above definition a number of times we deduce the
following: for each string u of length n and group element g there exists a string
v of length n and a group element k such that

g ◦ (uw) = v(k ◦ w)

for all w ∈ Xω. Now define a function from G × X∗ to X∗ by g · u = v. This
defines an action of G on the free monoid X∗ on X. This action is length-
preserving in the sense that |g · x| = |x| for all x ∈ X∗, and prefix-preserving in
the sense that x = yz implies that g · x = (g · y)z′ for some string z′. Suppose
now that G acts faithfully on Xω. Then the element h is uniquely determined
by g and x; we will denote it by g|x. Under the assumption that the action is
faithful, it is easy to check that the following properties hold. Observe that we
use 1 to denote both the identity of the group G and the empty string of X∗.

(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

(SS4) 1|x = 1.

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) (gh)|x = g|h·xh|x.

(SS8) g · (xy) = (g · x)(g|x · y).

Observe that (SS1) and (SS2) simply restate that we have an action of G on
X∗. Property (SS3) follows from the fact that the action is length-preserving.
Property (SS4) follows from the fact that 1 · (xy) = xy for all x and y. Property
(SS5) follows from the fact that g · (1x) = g · x for all x. Property (SS6) follows
from the fact that g · ((xy)z) = g · (x(yz)) for all x, y and z. Property (SS7)
follows from the fact that (gh) · (xy) = g · (h · (xy)) for all x and y. Property
(SS8) is just a restatement of the definition.
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More generally, let G be a group, X a set, G × X∗ → X∗ an operation,
called the action, denoted by (g, x) 7→ g · x, and G × X∗ → G an operation,
called the restriction, denoted by (g, x) 7→ g|x, such that the above eight axioms
hold. Then we say that the action of G on X∗ is self-similar. Our definition of
self-similar action contains the faithful self-similar actions in the sense of [1] and
[19], but is more specialised than the general definition because the uniqueness
of the restriction operation and its properties are inbuilt.

Lemma 1.1 Let G act on X∗ in such a way that the axioms (SS1)–(SS8) hold.
Then the action is length-preserving and prefix-preserving.

Proof Prefix-preserving follows from (SS8). We now prove that the action is
length-preserving. Observe first that by (SS3), if x is the empty string so too is
g · x. Conversely, if g · x = 1 then x = g−1 · 1 = 1 by (SS3). Thus g · x is the
empty string iff x is. Let x ∈ X. Suppose that g ·x = yz where y is a letter and
z is a string, possibly empty. Then by (SS8), we have that

x = (g−1 · y)(g−1|y · z).

We know that g−1 · y cannot be empty and so has length at least one. Since the
leftthand side has length one, and lengths add we deduce that (g−1|y · z) has
length zero. Thus z is the empty string. It follows that letters are mapped to
letters. The result now follows by (SS8) and induction.

2 A class of left cancellative monoids

In this section, we describe the class of monoids we shall associate with self-
similar group actions.

An S-act or act (X,S) is an action of a monoid S on a set X on the right. If
S is a monoid then (S, S) is an act by right multiplication. If Y ⊆ X is a subset
such that Y S ⊆ Y then we say that Y is an S-subact or just a subact. Right ideals
of S are subacts under right multiplication. If X and Y are acts then a function
θ from X to Y is an S-homomorphism or just a homomorphism if θ(xs) = θ(x)s
for all x ∈ X and s ∈ S. For a fixed S, we can form the category consisting
of S-acts and the homomorphisms between them. The usual definitions from
module theory can be adapted to the theory of acts. In particular, we can define
when an act is projective. A monoid S is said to be right PP if all its principal
right ideals are projective as right S-acts, and right hereditary if all its right
ideals are projective as right S-acts. The following was proved by Dorofeeva [7].

Theorem 2.1 A monoid S is right hereditary iff it is right PP, incomparable
principal right ideals are disjoint, and S has the ascending chain condition for
principal right ideals.
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We do not need the general characterisation of right PP monoids for this
paper; it is enough to know that the right PP monoids with a single idempotent
are precisely the left cancellative monoids.

Remarks

1. We shall often use the fact that (ACC) on principal right ideals is equiv-
alent to the condition that every non-empty set of principal right ideals
has a maximal element.

2. From now on, ‘ideal’ will always mean ‘principal right ideal’ unless other-
wise stated, and ‘maximal ideal’ will always mean ‘maximal proper prin-
cipal right ideal’.

3. If two maximal ideals intersect in a left cancellative right hereditary monoid
then they are equal; this is because they must be comparable, but both
are maximal.

4. We denote the group of units of a monoid S by G(S) or just G.

5. In a left cancellative monoid S we have that aS = bS iff a = bg for some
unit g; we say that a and b are associates.

6. In a left cancellative monoid S we have that aS = S iff a is invertible.

7. Generators of maximal ideals will be called irreducible elements.

8. Let S be a monoid and a ∈ S. A left factor of a is an element b ∈ S such
that a ∈ bS.

We shall study left cancellative right hereditary monoids satisfying a further
finiteness condition [3]. Let S be a left cancellative right hereditary monoid and
a ∈ S. Then the set of all principal right ideals containing a need not be finite,
but if it is we say that S has the dedekind height property.

Let aS and bS be two principal right ideals. A chain of length n from aS to
bS is a sequence

aS = a0S ⊂ a1S ⊂ a2S ⊂ . . . ⊂ anS = bS.

Lemma 2.2 Let S be a left cancellative right hereditary monoid. Then the
following are equivalent.

(i) S has the dedekind height property.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

Proof (i) ⇒ (ii). The set of all principal right ideals containing a is finite. Thus
there is a bound on the length of chains starting at aS and ending at S. Given
two such chains of maximum length they must be equal. To prove this, we show
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that the two chains must agree term by term. We use the fact that if two ideals
have a non-empty intersection, then they must be comparable. Let

aS = a0S ⊂ a1S ⊂ . . . ⊂ amS = S

and
aS = b0S ⊂ b1S ⊂ . . . ⊂ bnS = S

be two such chains. We claim that a1S = b1S. To see why observe that they
are comparable because both contain aS. Thus either a1S ⊂ b1S or vice-versa.
If the former we could refine the second chain, if the latter we could refine the
first chain. But neither refinement is possible since each chain is of maximum
length. Thus a1S = b1S. This process continues. If m > n then we could use
the first chain to refine the second. If n > m then we could use the second chain
to refine the first. So the two chains must have the same length and the same
terms.

(ii) ⇒ (i). All the distinct principal right ideals containing aS must be com-
parable so they will form a totally ordered set from aS to S. This will be a
chain of maximum length and so equal to the unique such chain assumed to
exist. Thus the set of all principal right ideals containing aS must be finite.

The next lemma provides us with a class of examples of monoids satisfying
the dedekind height property.

Lemma 2.3 Let S be a left cancellative right hereditary monoid equipped with
a monoid homomorphism λ: S → N such that λ−1(0) = G(S). Then S satisfies
the dedekind height property.

Proof Let aS ⊆ bS. Then a = bs and so λ(a) = λ(b)+λ(s). Thus, in particular,
λ(a) ≥ λ(b). Suppose, in addition, that λ(a) = λ(b). Then λ(s) = 0 and so s is
a unit. It follows that in this case, aS = bS. We deduce that if aS ⊂ bS then
λ(a) > λ(b). Thus the length of any chain of principal right ideals starting at
aS is bounded by λ(a).

We define a length function on an arbitrary monoid S to be a homomorphism
λ: S → N such that λ−1(0) = G(S).

Let S be left cancellative and right hereditary satisfying the dedekind height
property. Let aS = S0 ⊂ S1 ⊂ S2 . . . ⊂ Sn = S be a chain of principal right
ideals of maximum length. We define λ(a) = n.

Lemma 2.4 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property. Let

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

be a chain of maximum length joining bS to S. Then

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS.
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Proof We show first that the inclusions really are distinct. Suppose that abiS =
abi+1S for some i. Then abi = abi+1g for some unit g. By left cancellation,
bi = bi+1g giving biS = bi+1S, which contradicts our assumption. Next we show
that the chain is of maximum length. Suppose not. Then we can interpolate a
principal right ideal somewhere

abiS ⊂ cS ⊂ abi+1S.

Let abi = cf for some f and c = abi+1d for some d. Thus by left cancellation,
bi = bi+1df . We therefore have

biS ⊆ bi+1dS ⊆ bi+1S.

Suppose that biS = bi+1dS. Then bi = bi+1dg for some unit g. By left cancella-
tion, it follows that g = f and is a unit. Thuis abiS = cS, which is contradiction.
Suppose that bi+1dS = bi+1S. Then bi+1d = bi+1h for some unit h. By left
cancellation, d = h and so cS = abi+1S, which is a contradiction. However, we
now have

bsS ⊂ bi+1dS ⊂ bi+1S

which contradicts the fact that our original chain was of maximum length. It
follows that our new chain is of maximum length.

Lemma 2.5 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property. Then the function λ defined before Lemma 2.4 is a
length function.

Proof By Lemma 2.4, if

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

is a chain of maximum length joining bS to S, then

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS. Now glue this to a chain

aS = a0 ⊂ a1S ⊂ . . . ⊂ aλ(a)S = S

of maximum length. The resulting chain links abS to S and has maximum
length, and this length is λ(a) + λ(b). Thus λ is a homomorphism. Those
elements a of length 0 are precisely those where aS = S, which are just the
invertible elements.

We combine Lemmas 2.2,2.3 and 2.5 in the following theorem.

Theorem 2.6 Let S be a left cancellative, right hereditary monoid. Then the
following are equivalent.
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(i) S satisfies the dedekind height property.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

(iii) The monoid S is equipped with a length function.

Remark We shall see in Section 3, that left cancellative right hereditary monoids
satisfying the dedekind height property possess length functions which are sur-
jective and are induced by the usual length function on a free submonoid.

An arbitrary monoid M is said to be equidivisible if for all a, b, c, d ∈ M

the fact that ab = cd implies that either a = cu, ub = d for some u ∈ M or
c = av, b = vd for some v ∈ M .

Lemma 2.7 Let S be a left cancellative monoid. Then the following are equiv-
alent

(i) Incomparable principal right ideals are disjoint.

(ii) S is equidivisible.

If either holds, then incomparable principal left ideals are disjoint.

Proof (i)⇒(ii). Suppose that ab = cd. Then aS ∩ cS 6= ∅. Thus aS ⊆ cS or
cS ⊆ aS. Suppose the former. Then a = cu for some u ∈ S. But ab = cd and
so cub = cd. By left cancellation, ub = d. Suppose the latter. Then c = av for
some v ∈ S. But ab = cd and so ab = avd. By left cancellation, b = vd. Thus
S is equidivisible.

(ii)⇒(i). This is immediate.
To prove the last assertion, suppose that Sb ∩ Sd 6= ∅. Then ab = cd for

some b, c ∈ S. The result now follows by equidivisibility.

The following is immediate from Theorem 2.6 and Lemma 2.7 and Corol-
lary 5.1.6 of [11] and the fact that free monoids are left cancellative, right
hereditary and their length functions really are length functions in our sense.

Corollary 2.8 Let S be a left cancellative right hereditary monoid satisfying
the dedekind height property. Then S is a free monoid if and only if the group
of units is trivial.

Remark The above corollary tells us that left cancellative right hereditary
monoid satisfying the dedekind height property are natural generalisations of
free monoids.

The class of left cancellative right hereditary monoids satisfying the dedekind
height property is a proper subclass of the class of all left cancellative monoids.
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We shall now show how closely these two classes are related. We shall use the
theory of Rhodes-expansions described in [3] adapted to our situation.

Let S be a left cancellative monoid. We shall be interested in finite sequences
of elements of S

x = (x1, . . . , xn)

where xi+1 ∈ xiS but xi+1S 6= xnS and where x1 is a unit. We denote by Ŝ

the set of all such sequences. We shall now define a product on such sequences.
Let

x = (x1, . . . , xm) and y = (y1, . . . , yn).

Consider the sequence

x1, . . . , xm−1, xm, xmy1, . . . , xmyn.

Because y1 is a unit, we have that xmS = xmy1S. Clearly, xmy1S ⊂ xm−1S.
Also from yi+1S ⊂ yiS we get xmyi+1S ⊆ xmyiS. Observe that if xmyi+1S =
xmyiS then xmyi+1 = xmyig for some unit g. Thus by left cancellation, yi+1 =
yig implying that yi+1S = yiS, contradicting our assumption. It follows that

xy = (x1, . . . , xm−1, xmy1, . . . , xmyn)

is a well-defined element of Ŝ. This defines a binary operation on Ŝ. The fact
that this is a semigroup follows from the general theory in [3]. It is easy to check
that it is a monoid with identity (1), and that left cancellation in S is inherited
by Ŝ.

Proposition 2.9 For each left cancellative monoid S, the monoid Ŝ is left can-
cellative, right hereditary and equipped with a dedekind height function. There
is a surjective homomorphism from Ŝ onto S.

Proof We first characterise the left factors of an element of Ŝ. Suppose that
x ∈ yŜ. Then

(x1, . . . , xm) = (y1, . . . , yn)(z1, . . . , zp).

Thus m ≥ n, y1 = x1, . . . , yn−1 = xn−1 and ynS = xnS. Conversely, suppose
that (x1, . . . , xm) and (y1, . . . , yn) are such that m ≥ n, y1 = x1, . . . , yn−1 =
xn−1 and ynS = xnS. For 0 ≤ i ≤ m−n define zi+1 by xn+i = ynzi+1. Observe
that z1 is a unit. It is easy to check that z = (z1, . . . , zp) is a well-defined

element of Ŝ and that x = yz.
We can now show that Ŝ is right hereditary and satisfies the dedekind height

property. Suppose that xŜ∩yŜ 6= ∅. Then there is a z which has both x and y as
left factors. Let z = (z1, . . . , zp), x = (x1, . . . , xm), and y = (y1, . . . , yn). Then
p ≥ m,n and x1 = z1, . . . , xm−1 = zm−1, zmS = xmS and y1 = z1, . . . , yn−1 =
zn−1, znS = ynS. Without loss of generality, suppose that m ≤ n. Then
x1 = y1, . . . , xm−1 = ym−1 and xmS = zmS = ymS. Thus y ∈ xŜ.

From the above we can easily derive the criterion for yŜ = xŜ: x and y

have the same length, all the components are the same except the rightmost
ones which are associate.
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It follows from the above two characterisations that the dedekind height
property is satisfied. Define ηS : Ŝ → S by (x1, . . . , xn) 7→ xn. Then this is a
surjective homomorphism. Observe that restricted to the R-classes of Ŝ, this
homomorphism is injective.

We conclude this section by looking at the cancellative right hereditary
monoids satisfying the dedekind height property. A group G is said to be in-
dicable if there is a surjective homomorphism θ: G → Z. We shall call the full
inverse image under θ of the natural numbers (and zero!) the positive cone of
G. In [22], Rees considers the structure of left cancellative monoids in which
the principal right ideals form a descending chain order-isomorphic to the nat-
ural numbers under the reverse of the usual ordering. For convenience, I shall
call such monoids as left cancellative ω-monoids. They are clearly right hered-
itary and satisfy the dedekind height property. The following is due to Stuart
Margolis (private communication).

Proposition 2.10 The positive cones of indicable groups are precisely the can-
cellative ω-monoids.

Proof Let G be an indicable group and θ: G → Z its surjective homomorphism.
Put S = θ−1(N), the positive cone of G. It is easy to check that the group
of units of S is precisely the group θ−1(0), and that for all s, t ∈ S, we have
that sS = tS if and only if θ(s) = θ(t). Let a be a fixed element of S such
that θ(a) = 1, which exists by surjectivity. Now given s, t ∈ S, suppose that
θ(s) ≤ θ(t). Then θ(saθ(t)−θ(s)) = θ(t), and so tS = saθ(t)−θ(s)S ⊆ sS. It
follows that S is a cancellative ω-monoid.

Conversely assume that S is a cancellative ω-monoid. From [22], there is
a surjective homomorphism θ: S → N such that θ−1(0) is the group of units
of S. Then S satisfies the Ore conditions and thus has a group of fractions G

such that each element of G is of the form st−1 where s, t ∈ S. It is easy to see
from the structure of groups of fractions that θ extends uniquely to a surjec-
tive function G to Z, proving that G is indicable and that S is the positive cone.

For each monoid S there is a group U(S) and a homomorphism ι: S → U(S)
such that for each homomorphism φ: S → G to a group there is a unique homo-
morphism φ̄: S → G such that φ = φ̄ι. The group U(S) is called the universal
group of S. The monoid S can be embedded in a group iff ι is injective. It
can be deduced from the results of Section 0.5 of [6] that every cancellative
monoid in which any two principal right ideals are either disjoint or comparable
can be embedded in a group. It follows that the cancellative right hereditary
monoids satisfying the dedekind height property can be embedded in their uni-
versal groups. If S is a cancellative right hereditary monoids satisfying the
dedekind height property, then there is a homomorphism from S onto N and so
a homomorphism from S to Z. It follows that the universal group of S admits a
homomorphism to Z. Since the image of this homomorphism contains N it is in
fact the whole of Z and so surjective. We have therefore proved the following.
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Proposition 2.11 The universal group of a cancellative right hereditary monoid
satisfying the dedekind height property is indicable.

3 The correspondence

In this section, we set up a correspondence between the self-similar group actions
of Section 1 and the left cancellative right hereditary monoids satisfying the
dedekind height property of Section 2.

Proposition 3.1 Let S be a left cancellative right hereditary monoid satisfying
the dedekind height property. Let X be a transversal of the generators of the
maximal proper principal right ideals, and denote by X∗ the submonoid gener-
ated by the set X. Then

(i) S = X∗G(S).

(ii) Each element of S can be written uniquely as a product of an element of
X∗ and an element of G(S).

(iii) The monoid X∗ is free.

Proof (i) Let s ∈ S \G(S). Consider the set of all proper ideals that contain s.
This set contains a maximal element x1S, which is necessarily a maximal ideal,
and x1 ∈ X. Thus s = x1s1. If s1 is a unit or irreducible the process stops.
Otherwise, repeat this process with s1 to get s1 = x2s2 and so on. Thus we can
write s = x1 . . . xisi. To show that this process terminates observe that

sS ⊂ x1 . . . xiS ⊂ . . . ⊂ x1S.

Thus termination follows from the dedekind height property. It follows that we
can write s = x1 . . . xng where g is a unit.

(ii) Let s = xu = yv where x, y ∈ X∗ and u, v ∈ G(S). Then xuS = xS

and yvS = yS so that xS = yS. Let x = x1 . . . xm and y = y1 . . . yn where
the xi, yj ∈ X. Now xS = yS ⊆ x1S, y1S. It follows that x1S = y1S and
so x1 = y1. By left cancellation, x2 . . . xm = y2 . . . yna. Assume m < n.
Then repeating the above argument we eventually get 1 = ym+1 . . . yna. Thus
ym+1 . . . yn is invertible. But then S = ym+1S meaning ym+1 is invertible, which
is a contradiction. We also get a contradiction if m > n. Thus in fact, we must
have that m = n, and so xi = yi and this gives a = 1. By left cancellation again
we get that u = v.

(iii) Observe that X = X∗ \ (X∗)2. The result now follows by Proposi-
tion 5.1.3 of [11] and (ii) above.

Remark The above proposition says that S is a ‘Zappa-Szép product’ of a free
monoid by a group, a point we shall return to later.

The following is a consequence of the theory of Zappa-Szép products, but
we sketch a proof anyway.
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Proposition 3.2 With each left cancellative right hereditary monoid satisfying
the dedekind height property we can associate a self-similar group action.

Proof From Proposition 3.1, if g ∈ G(S) and x ∈ X∗ then we can write

gx = x′g′

for unique elements x′ ∈ X and g′ ∈ G(S). We write these unique elements as
follows

gx = (g · x)g|x.

Thus we have defined a function G(S) × X∗ → X∗ given by (g, x) 7→ g · x and
a function G(S) × X∗ → G(S) given by (g, x) 7→ g|x. It is now straightforward
to check that these operations satisfy axioms (SS1)–(SS8): (SS1) and (SS4)
follow from the fact that x = 1x; (SS2) and (SS7) follow from the fact that
(gh)x = g(hx); (SS6) and (SS8) follow from the fact that g(xy) = (gx)y; (SS3)
and (SS5) follow from the fact that g1 = g.

We shall now look at the converse of the above result. Let G be an arbi-
trary group, and M an arbitrary left cancellative monoid (not necessarily free)
equipped with a function G×M → M , denoted by (g,m) 7→ g·m, and a function
G×M → G, denoted by (g,m) 7→ g|m, satisfying the obvious generalisations of
(SS1)–(SS8). On the set M × G define the binary operation by

(x, g)(y, h) = (x(g · y), g|yh).

The following is part of the general theory of Zappa-Szép products, but we prove
it anyway.

Proposition 3.3 With the above product, M × G is a left cancellative monoid
containing copies of M and G such that M × G can be written as a unique
product of these copies.

Proof We begin by proving associativity. We calculate first

[(x, g)(y, h)](z, k).

By (SS2), (SS7), and (SS6) we get

(x(g · y)g|y · (h · z), g|y(h·z)h|zk).

We now calculate
(x, g)[(y, h)(z, k)].

Using (SS8), we get the same result.
We now show that (1, 1) is the identity. We calculate

(1, 1)(x, g) = (1(1 · 1), 1|xg) = (x, g)
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using (SS1) and (SS4). We calculate

(x, g)(1, 1) = (x(g · 1), g|11) = (x, g)

using (SS3) and (SS5). We have now used all the axioms (SS1)–(SS8).
Next we show that M ./ G is left cancellative. Suppose that

(x, g)(y, h) = (x, g)(z, k).

Then
(x(g · y), g|yh) = (x(g · z), g|zk).

Left cancellation in M gives us g · y = g · z and so because this is an action
y = z. Hence h = k.

We now have to show that M and G are each embedded in M ./ G. Define
ιM : M → M ./ G by x 7→ (x, 1). This is an injective homomorphism by (SS1)
and (SS4). Denote its image by M ′. Define ιG: G → M ./ G by g 7→ (1, g).
This is an injective homomorphism by (SS3) and (SS5). Denote its image by G′.
Observe that (x, g) = (x, 1)(1, g). Thus M ./ G = M ′G′. This decomposition
is evidently unique.

The monoid constructed in Proposition 3.3 is called the Zappa-Szép product
of M and G and is denoted M ./ G.

Proposition 3.4 Let S be a monoid. Suppose that S = MG uniquely where
M is a left cancellative monoid and G is a group. Then S is a left cancellative
monoid whose ideal structure is order isomorphic with the ideal structure of M .
In particular, when M is a free monoid, the monoid S is right hereditary and
equipped with a length function.

Proof Observe that {1} = G ∩ M . To see why if g ∈ G ∩ M then g = 1g = g1
and so we would lose uniqueness. We use the notation gx = (g ·x)g|x. We prove
first that S is left cancellative. Let ab = ac where a = mg, b = nh, and c = pk.
Then mgnh = mgpk. Thus m(g · n)g|nh = m(g · p)g|pk. In the monoid M we
have that m(g ·n) = m(g · p), and in the group G we have that g|nh = g|pk. By
left cancellation in M and properties of the group action we get n = p and so
h = k. Hence b = c, as required.

We now show that the ideal structures of M and S are order-isomorphic. If
a ∈ S then a = xg and so aS = xS. We prove that xS ⊆ yS iff xM ⊆ yM .
Suppose that x = yb for some b ∈ S. Let b = zu where z ∈ M and u ∈ G. Then
x = (yz)u. By uniqueness, u = 1 and so x ∈ yM . The converse is clear.

Finally, when M is a free monoid, the monoid S will be right hereditary and
satisfy the dedekind height property because S and M have isomorphic ideal
structures. The fact that S has a length function follows from Theorem 2.6.

Remark By the result above, the length functions of left cancellative right
hereditary monoids satisfying the dedekind height function can be assumed to
extend the length function on a submonoid that is free; in particular, they can
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be assumed surjective.

Combining Propositions 3.1,3.2,3.3 and 3.4, we obtain the following.

Theorem 3.5 A monoid is left cancellative, right hereditary and satisfies the
dedekind height property if and only if it isomorphic to a Zappa-Szép product of
a free monoid by a group. Furthermore, Zappa-Szép products of free monoids
by groups determine, and are determined by, self-similar group actions.

We have therefore set up a correspondence between self-similar group ac-
tions and left cancellative right hereditary monoid satisfying the dedekind height
property. Each determines the other upto isomorphism.

4 Special cases

With each self-similar group action of G on X∗ we have the associated monoid
S = X∗ ./ G. In this section, we shall explore the connection between the
structure of the group action and the structure of S.

Green’s relation J is defined by aJ b iff SaS = SbS. If a = xg, where
x ∈ X∗ and g ∈ G then SaS = SxS. Thus to study the principal ideals it is
enough to study those of the form SxS where x ∈ X∗.

Lemma 4.1 Let x, y ∈ X∗. Then SxS ⊆ SyS implies |x| ≥ |y|.

Proof By assumption, x = syt for some s, t ∈ S. Let s = wg and t = zh where
w, z ∈ X∗ and g, h ∈ G. Then

x = wgyzh = w(g · y)g|yzh = w(g · y)(g|y · z)g|yzh.

By uniqueness, g|yzh = 1 and so x = w(g · y)(g|y · z). Thus |x| = |w| + |g · y| +
|g|y ·z| ≥ |g ·y| = |y|, since the action is length-preserving by Lemma 1.1. Hence
|x| ≥ |y|.

Lemma 4.2 Let x, y ∈ X∗. Then the following are equivalent:

(i) SxS ⊆ SyS and |x| = |y|.

(ii) x = g · y for some g ∈ G.

(iii) SxS = SyS.

Proof (i)⇒(ii). Suppose that SxS ⊆ SyS and |x| = |y|. Then x = sxt where
s, t ∈ S. Let s = wg and t = zh where w, z ∈ X∗ and g, h ∈ G. Then

x = wgyzh = w(g · y)g|yzh = w(g · y)(g|y · z)g|yzh.

13



By uniqueness, g|yzh = 1 and so x = w(g · y)(g|y · z). Thus |x| = |w| + |g ·
y| + |g|y · z|. Since the action is length-preserving by Lemma 1.1, we have that
|y| = |g ·y| and |z| = |g|y ·z|. Thus |x| = |w|+ |y|+ |z|. By assumption, |x| = |y|.
Thus |w| = 0 and |z| = 0, and so w and z are the empty strings. Hence x = g ·y,
as required.

(ii)⇒(iii). Suppose that x = g · y. Observe that SgyS = S(g · y)g|yS =
S(g · y)S = SxS. Thus SxS = SyS.

(iii)⇒(i). Suppose that SxS = SyS. By Lemma 4.1, we have that |x| = |y|.
Thus (i) holds.

Proposition 4.3 The associated monoid has a maximum proper principal two-
sided ideal if and only if the action of G on X is transitive.

Proof Suppose that for some x ∈ X∗, the two-sided ideal SxS is maximum and
proper. We show first that x ∈ X. Let x = yz where y has length one. Thus
SxS ⊆ SyS. Now SxS is maximal proper and so either SyS = S, which would
imply y has length zero, or SxS = SyS which implies x has length one (and so
z is the empty string). Now let y ∈ X. Then SyS ⊆ SxS and |y| = |x|. Thus
by Lemma 4.2 we have that y = g · x for some g. Since y was arbitrary with
length one, it follows that the action of G on X is transitive.

Conversely, suppose that the action of G on X is transitive. Then for any
two strings x and y of length one, we know that x = g · y and so by Lemma 4.3,
we know that SxS = SyS. Let SzS be any two-sided principal ideal where
|z| ≥ 2. Now z = xy where |x| = 1. Thus SzS ⊆ SxS. Hence SxS is a maxi-
mum proper principal two-sided ideal.

If G acts on X∗ by length-preserving prefix-preserving transformations in
such a way that the action of G on Xn is transitive for all n, then we say that
the action is level transitive.

Proposition 4.4 The principal two-sided ideals form a descending chain in the
associated monoid if and only if the action of G on X∗ is level-transitive.

Proof Suppose first that the action of G on X∗ is level transitive. Let In = SxS

where x ∈ Xn is a string of length n. By level transitivity, In = SyS where
y is any string of length n. If |x| = n + 1 then x = yz where |y| = n. Thus
SxS ⊆ SyS. Hence In+1 ⊆ In, and we have our descending chain.

Conversely, suppose that the principal two-sided ideals form a descending
chain. We denote them by In = SxnS for some xn ∈ X∗ where In+1 ⊆ In.
Since xn+1 ∈ SxnS we know that |xn+1| ≥ |xn|. We also know that S = I0.

Let us now consider I1. We claim that x1 has length one. Suppose that
|x1| ≥ 2. Then x1 = xy where x has length one. Thus Sx1S ⊆ SxS. Now
either SxS = S which is impossible or Sx1S = SxS, which implies that x1 has
length one by Lemma 4.2. Now we prove that SxS = Sx1S for any string x of
length one. Suppose SxS = In where n > 1. Then SxS is contained in I1. Thus
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SxS ⊆ Sx1S and |x| = |x1|. Hence x = g ·x1 by Lemma 4.2 and so SxS = Sx1.
In particular, G is transitive on X.

Suppose now that for all m ≤ n we have proved that SxmS is equal to SxS

where x is any string of length m. We now prove the same for In+1. We prove
first that xn+1 has length n + 1. It cannot have length n or less thus we can
write it as xn+1 = xyz where x has length n, and y has length one. Then
Sxn+1S ⊆ SxyS. If they are not equal, then Sxy has got to equal one of the
earlier ideals in the chain. But that would mean xy would have length at most
n which is a contradiction. Thus Sxn+1S = SxyS. It follows that xn+1 has
length n + 1. Now let SxS be any ideal where x has length n + 1. It cannot
be equal to any of the earlier ideals and so it is equal either to In+1 or to a
later ideal in the chain. In any event, SxS ⊆ Sxn+1S. But x and xn+1 have
the same length and so by Lemma 4.2, we have that x = g · xn+1. It follows
that In+1 is generated by any element of Xn and that G acts transtively on Xn.

We may summarise as follows.

Theorem 4.5 Left cancellative right hereditary monoids satisfying the dedekind
height property in which the principal two-sided ideals form a descending chain
are in correspondence with level transitive self-similar group actions.

For each x ∈ X∗ denote by Gx the stabiliser of x in G under the action. Put
M ′ =

⋂
x∈X∗ Gx, a subgroup of G. The action is faithful iff M ′ is the identity.

Define
M = {g ∈ G: gs ∈ sG for all s ∈ S}.

The definition of M is due to Rees [22].

Lemma 4.6 With the above definitions, M = M ′.

Proof Let g ∈ M ′. Thus g · x = x for all x ∈ X∗. Let s ∈ S. Then s = xh.
Thus gs = gxh = (g · x)g|xh = xg|xh = xh(h−1g|xh) = s(h−1g|xh). It follows
that g ∈ M . To prove the reverse inclusion, let g ∈ M . Let x ∈ X∗. Then
gx = xh but gx = (g · x)g|x. Thus x = g · x by uniqueness. Hence g ∈ M ′.

The subgroup M is the greatest ‘right normal divisor’ of S. Monoids for
which M = {1} we shall call fundamental.

Corollary 4.7 A left cancellative right hereditary monoid satisfying the dedekind
height property is fundamental if and only if its associated group action is faith-
ful.

Rees [22] shows that the fundamental monoids are the building blocks for
the arbitrary ones.
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Remark It follows by Corollary 4.7 that there is a correspondence between fun-
damental left cancellative right semihereditary monoid satisfying the dedekind
height property and faithful self-similar group actions of [1, 19].

Green’s relation R is defined by aR b iff aS = bS. In our case, this is
equivalent to the existence of a unit g such that a = gb. This relation is always
a left congruence.

Proposition 4.8 The relation R is a right congruence, and so a congruence,
if and only if the action of G on X∗ is trivial.

Proof Suppose that R is a right congruence. Let g ∈ G and x ∈ X. Then
gS = S = 1S and so gR 1. By assumption, gxRx. Thus gxS = xS. There
is therefore a unit h such that gx = xh. But gx = (g · x)g|x. By uniqueness,
x = g · x, and so the action is trivial.

Suppose now that the action is trivial. Let aR b. We prove that acR bc.
Let a = bg and c = yh. Then

ac = bgc = bgyh = b(g · y)g|yh = byg|yh = byh(h−1g|yh) = bc(h−1g|yh)

and so acR bc, as required.

Remark Suppose that the action is trivial. Then the multiplication in X∗ ./ G

is given by
(x, g)(y, h) = (xy, g|yh).

Thus there is a surjective homomorphism from X∗ ./ G onto X∗. For each
x ∈ X∗ define φx: G → G by φx(g) = g|x. Then φ1 is the identity function,
φxy = φyφx, and φx(gh) = φx(g)φx(h). It follows that the multiplication is
determined by φ. This is essentially the struture theorem described in Propo-
sition 6 of [20]. However, there it is claimed to give the structure of all left
cancellative right hereditary monoids satisfying the dedekind height property:
this is wrong. It gives the structure only of those monoids in the class where
R is a congruence. As a special case, it gives the structure of left cancellative
ω-monoids (see Section 2), since in that case the action is automatically trivial.
That the action need not be trivial is immediate from the many examples to be
found in, say. [19]. But here is a different example. Centre the Sierpinski gasket
at the origin, and consider the monoid S of all similarities of the plane that map
the gasket into itself. I shall now pick out certain important elements of S: a
clockwise rotation by 2π

3 denoted by ρ; a reflection in the vertical denoted by σ;
and three similarities denoted T , L and R which halve the size of the gasket and
then translate it to the top, left and right parts of the original gasket. It is not
hard to see that the monoid generated by these similarities is S, and that the
group of units is the symmetry group of the equilateral triangle. The submonoid
of S generated by T , L and R is the free monoid on three generators. Simple
calculations show that

ρT = Rρ, ρL = Tρ, ρR = Lρ
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and
σT = Tσ, σL = Rσ, σR = Lσ.

Thus the monoid S is a Zappa-Szép product and the group action is non-trivial.

Let G and X∗ be a self-similar group action. If x ∈ G then as usual Gx is
the stabiliser of x in G and so a subgroup of G. The proofs of the following are
straightforward.

Lemma 4.9

(i) The function φx: Gx → G given by g 7→ g|x is a homomorphism.

(ii) Let y = g · x. Then Gy = gGxg−1 and

φy(h) = g|yφx(g−1hg)(g|x)−1.

Lemma 4.10

(i) If φx is injective then φg·x is injective.

(ii) If φx is injective for all x ∈ X then φy is injective for all y ∈ X∗.

Proof (i) This is immediate by Lemma 4.9.
(ii) We prove the result by induction on the length of y. The result is true

for strings of length one by assumption. We assume the result true for strings
of length n. We now prove it for strings of length n + 1. Let y be of length
n + 1. Thus y = zx where z has length n and x has length one. We prove that
φy is injective on Gy. Let h, k ∈ Gy. Thus h · y = y = k · y. It follows that
h · z = z = k · z and h|z · x = x = k|z · x. Suppose that φy(h) = φy(k). Thus
h|y = k|y. By axiom (SS6), we have that (h|z)|x = (k|z)|x. Now observe that
h|z, k|z ∈ Gx. Thus by injectivity h|z = k|z. Now observe that h, k ∈ Gz. Thus
by injectivity h = k, as required.

Proposition 4.11 The associated monoid S is right cancellative (and so can-
cellative) iff all φx are injective.

Proof We suppose first that all the φx are injective. Suppose that ab = cb

where a = wg, b = yk and c = zl. We therefore get w(g · y) = z(l · y) and
g|yk = l|yk. Since the action is length-preserving and by uniqueness we have
that g · y = l · y and g|y = l|y. Our result will follow if we can show that g = l.
Observe that g−1l ∈ Gy. Thus φy(g−1l) is defined and equals (g−1l)|y. But this
quickly reduces to (g−1g)|y = 1. Thus g = l, as required.

Conversely, suppose that S is right cancellative. We prove that φx is injec-
tive. Let g, h ∈ Gx and suppose that φx(g) = φx(h). Thus g|x = h|x. Now
gx = (g · x)g|x = xg|x, and hx = (h · x)h|x = xh|x. Thus gx = hx. By right
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cancellation, g = h, and so φx is injective.

Remark If the action of G on X is transitive then we need only know that one
of the maps φx for a one letter string x is injective to know that the associated
monoid is right cancellative. Also |X| = |G :Gx|. Thus if |X| is finite the ho-
momorphism φx: Gx → G is a virtual endomorphism.

Following [19], we say that a self-similar group action is recurrent if G is
transitive on X, and φx is onto for any x ∈ X.

Proposition 4.12 The self-similar action is recurrent iff the associated monoid
has a maximum proper principal left ideal and a maximum proper principal two-
sided ideal.

Proof Suppose that the action is recurrent. Since the action is therefore tran-
sitive the monoid has a maximum proper principal two-sided ideal. Let xg and
yh be any two elements such that x, y ∈ X. Because the action is transitive
there exists k ∈ G such that k · x = y. Thus k(xg) = (k · x)k|xg. By assump-
tion, φk·x: Gk·x → G is onto. Thus there exists p ∈ Gk·x such that φk·x(p) =
hg−1(k|x)−1. Hence (pk)(xg) = yh. In particular, Sxg = Syh. Put L = Sxg.
Let Sx1 . . . xng′ be any principal left ideal. Then Sx1 . . . xng′ ⊆ Sxng′ = L.
Thus L is a maximum proper principal left ideal.

Conversely, suppose that the associated monoid has a maximum proper prin-
cipal left ideal and a maximum proper principal two-sided ideal. By Proposi-
tion 4.3, the action is transitive. Let L = Sxg be the maximum proper principal
left ideal. We claim that for any y ∈ X and h ∈ G we have that L = Syh.
Clearly Syh ⊂ L. Thus yh = a(xg). Let a = zk. Then yh = z(k · x)k|xg. Thus
z is the empty string (comparing lengths). It follows that Syh = Sxg = L. It
remains to show that φx is onto for any x ∈ X. Let g ∈ G. Then Sxg−1 is a
proper principal left ideal, as is Sx. By the result above Sxg−1 = Sx. Thus
x = h(xg−1) for some h ∈ G. Thus x = (h · x)h|xg−1. It follows that h · x = x

and h|x = g. Hence h ∈ Gx and φx(h) = g.

5 Covering bimodules and tensor monoids

In Chapter 2 of [19], the algebraic properties of self-similar group actions are
handled using ‘covering bimodules’. In this section, we show how to construct
the monoid associated with the self-similar group action from the covering bi-
module.

Let X be a set and S and T monoids. We say that X is a (S, T )-biact if
X is a left S-act, a right T -act and if (sx)t = s(xt) for all s ∈ S, t ∈ T and
x ∈ X.1 If X and Y are (S, T )-biacts then a function θ: X → Y is called a

1In [19], the term ‘commuting’ is used for the last condition, which is misleading.
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bihomomorphism if θ(sxt) = sθ(x)t for all s ∈ S, t ∈ T and x ∈ X. We shall be
interested in biacts where both acting monoids are the same and are groups.

Let S be a monoid with group of units G. Then under left and right multi-
plication S is also a (G,G)-biact.

Lemma 5.1 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property. Let M be the set of generators of the maximal proper
principal right ideals of S. Then M is a (G,G)-biact under left and right mul-
tiplication by G, and the right G-action is free.

Proof Let x be a generator of a maximal proper principal right ideal. Then
xS = xgS and so xg is a generator of a maximal proper principal right ideal.
Consider now gx. We prove that gxS is a maximal proper principal ideal. If it
is not maximal then there is a maximal proper principal right ideal yS such that
gxS ⊆ yS. Thus xS ⊆ g−1yS. Now xS is maximal and so either g−1yS = S

or gxS = yS. The former cannot occur because y is not invertible. Thus
gxS = yS. Thus gx is also a generator of a maximal proper principal right
ideal. Observe that by left cancellation, the right G-action is free.

Remark Let S = X∗ ./ G. In this case, the set M is M = X × G. Observe
that

(1, h)(x, g) = (h · x, h|xg) and (x, g)(1, h) = (x, gh).

Thus if we define left and right actions by G on M as follows: G × M → M is
given by h(x, g) = (h·x, h|xg), and M×G → M is given by (x, g)h = (x, gh) then
we get a (G,G)-biact. In [19], biacts such as this are called ‘covering bimodules’.

We define a covering biact to be a (G,G)-biact M where the righthand action
is free. In Lemma 5.1, we showed how to construct a covering biact M from a left
cancellative right hereditary monoid satisfying the dedekind height condition.

We shall now investigate the relationship between the original monoid S

and the covering biact M constructed from it. It is convenient to assume that
S = X∗G, uniquely. In this case, M = XG. Define ι: M → S by ι(xg) = xg.
Recall that S is a (G,G)-biact for left and right multiplication by G. The
function ι is a (G,G)-bihomomorphism: this is simply because M is a (G,G)-
subact of S. The relationship between M and S is characterised by the following
theorem.

Theorem 5.2 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property and with group of units G. Let M be the covering biact
associated with S. Let T be a monoid with group of units G. Let α: M → T

be a (G,G)-bihomomorphism. Then there is a unique monoid homomorphism
ᾱ: S → T such that α = ᾱι and which is the identity on the group of units of S.

Proof Define ᾱ by

ᾱ(x1 . . . xng) = α(x1) . . . α(xn)g.
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It is clear that ᾱι = α. We need to prove that ᾱ is a homomorphism. Let
x = x1 . . . xmg and y = y1 . . . ynh be elements of S. Their product is

x1 . . . xm(g · y1)(g|y1
· y2) . . . (g|y1...yi

· yi+1) . . . (g|y1...yn−1
· yn)g|y1...yn

h.

We now calculate ᾱ(xy). This is equal to

α(x1) . . . α(xm)α(g·y1)α(g|y1
·y2) . . . α(g|y1...yi

·yi+1) . . . α(g|y1...yn−1
·yn)α(1, g|y1...yn

h).

We shall now use the fact that α is a bihomomorphism. Consider

α(g · y1)α(g|y1
· y2).

We write this as
α(g · y1)g|y1

(g|y1
)−1α(g|y1

· y2)

and now use the fact that α is a bihomomorphism and that

(g|y1
)−1|g|y1

·y2
= (g|y1y2

)−1

by (SS1) and (SS7) to get

α((g · y1)g|y1
)α(y2(g|y1y2

)−1)

which is equal to
gα(y1)α(y2)(g|y1y2

)−1.

We now consider the remaining product

(g|y1y2
)−1α(g|y1y2

· y3) . . . α(g|y1...yi
· yi+1) . . . α(g|y1...yn−1

· yn)α(g|y1...yn
h).

We now push the leftmost group element through the product using the fact
that

(g|y1...yi
)−1|g|y1...yi

·yi+1
= (g|y1...yi+1

)−1.

The last term is
(g|y1...yn

)−1α(g|y1...yn
h) = h.

It follows that
ᾱ(xy) = ᾱ(x)ᾱ(y).

It remains to prove uniqueness. Let α′: S → T be another monoid homo-
morphism such that α′ι = α. Then ᾱ(xg) = α′(xg) for all x ∈ X and
g ∈ G. By definition ᾱ(x1 . . . xng) = α(x1) . . . α(xn)g. By assumption this
is equal to α′(x1) . . . α′(xn)g. But α′ is a homomorphism and so this is equal to
α′(x1 . . . xng), as required.

Let M be an arbitrary covering (G,G)-biact. We may form the tensor
product M ⊗ M whose elements we denote by x ⊗ y. The bihomomorphism
⊗: M × M → M ⊗ M has the property that xg ⊗ y = x ⊗ gy; such maps are
called bimaps. The tensor product is the universal such bimap. Observe that
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a⊗ b = c⊗ d iff a = cg and b = g−1d. The theory of tensor products of monoid
acts is described in [10].

Define M⊗0 = G and M⊗n = M⊗n−1 ⊗ M . For p, q > 0 there are isomor-
phisms φp,q: M⊗p ⊗ M⊗q → M⊗p+q which map (u, v) to u ⊗ v. Observe that
all tensor products are free right G-acts. Put S =

⋃∞
n=0 M⊗n. There is the

obvious embedding ι:M → S. The (G,G)-biact S becomes a monoid under
tensor products and left and right actions by G: we use the isomorphisms above
to define the multiplication. We call S the tensor monoid of the (G,G)-biact
M by analogy with the tensor algebra of a module [15].

More informally, the elements of S can be regarded as the elements of G

together with all formal products x1⊗. . .⊗xn where xi ∈ M . The product of two
formal products u and v is just the formal product u⊗v and the product of g ∈ G

and a formal product x1 ⊗ . . .⊗xn is given by g(x1 ⊗ . . .⊗xn) = gx1 ⊗ . . .⊗xn

and (x1 ⊗ . . . ⊗ xn)g = x1 ⊗ . . . ⊗ xng.

Lemma 5.3 The tensor monoid of a covering (G,G)-biact is left cancellative,
right hereditary and satisfies the dedekind height property.

Proof The group of units of S is G, and there is a surjective homomorphism
from S to N, in which the inverse image of 0 is G. Thus S is equipped with a
length function. Because the action is free on the right, it is easy to check that if
x⊗y = x⊗y′ in S then y = y′ and so S is left cancellative (this works because
lengths match). Thus S is left cancellative. We finish off by showing that S is
equidivisible (see Lemma 2.7) Suppose that x ⊗ u = y ⊗ v. There are three
cases to consider depending on the relative lengths of x and y. We shall just
consider the case where the length of x is m, that of y is n and where m < n.
We therefore suppose that u = w⊗ z and that x⊗w has the same length as y.
Thus x ⊗ w = yg and z = g−1v. Thus y = x ⊗ (wg−1). Once the argument is
completed by the other two cases, it will follow that S is equidivisible.

The following theorem can be proved using the universal properties of tensor
products.

Theorem 5.4 Let S be the tensor monoid of the covering (G,G)-biact M . Let
T be any monoid with group of units G, and let α: M → T be a bihomomor-
phism. Then there is a unique monoid homomorphism ᾱ: S → T such that
α = ᾱι and which is the identity on the group of units.

The results of this section can be placed in a categorical framework. We
fix a group G and consider the category whose objects are the left cancellative
right hereditary monoids satisfying the dedekind height property with G as their
groups of units and whose morphisms are the monoid homomorphisms which
are the identity on the groups of units and which map generators of maximal
proper principal right ideals to generators of maximal proper principal right
ideals. There is then a forgetful functor from this category to the category whose

21



objects are the covering (G,G)-biacts and whose morphisms are the (G,G)-
bihomomorphisms: associate with a monoid its covering biact. This functor has
a left adjoint which associates with a covering biact its tensor monoid.

6 Categories and automata

In this section, we shall look at some further interpretations of self-similar group
actions involving categories and automata. We first adapt to our setting some
of the ideas to be found in [8] where full definitions can be found if required.
Let G be a group with a self-similar group action on X∗. We define a double
category as follows. Its elements are squares of the form

g·x
//

g

��

g|x

��

x
//

We define horizontal multiplication as follows: let

h·y
//

h

��

h|y

��

y
//

be another square such that g|x = h. Then their product is

(g·x)(h·y)
//

g

��

h|y

��

xy
//

This is well-defined because g · (xy) = (g · x)(g|x · y) = (g · x)(h · y), and
h|y = (g|x)|y = g|xy. We define vertical multiplication as follows: we suppose
now that x = h · y. Then their product is

g·x
//

gh

��

g|xh|y

��

y
//

This is well-defined because (gh) · y = g · (h · y) = g · x, and (gh)|y = g|h·yh|y =
g|xh|y. It is easy to check that the interchange law holds, so we have defined a
double category from a self-similar group action. This double category has the
vertical structure of a group and the horizontal structure of a free monoid. The
following emulates Proposition 2.4 of [8].
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Proposition 6.1 Let B be a double category in which the vertical structure
is a group G, the horizontal structure is a free monoid X∗ such that the star
condition holds: every pair

g

��

x
//

can be uniquely completed to a square

g·x
//

g

��

g|x

��

x
//

where g ·x and g|x denote uniquely defined elements. Then there is a self-similar
group action of G on X∗.

Proof From horizontal multiplication we get that (SS6) and (SS8) hold, from
vertical multiplication we get that (SS2) and (SS7) hold. The remaining four
axioms hold by considering the horizontal and vertical morphisms in the double
category: squares of the form

x
//

1

��

1

��

x
//

are the horizontal morphisms and imply that axioms (SS1) and (SS4) hold,
squares of the form

1
//

g

��

g

��

1
//

are the vertical morphisms and imply that axioms (SS3) and (SS5) hold.

With each double category can be associated a bisimplicial complex. The
diagonal of this bisimplicial set is a simplicial set which is actually the nerve of
a category. In our case, this category is a monoid: its elements are diagrams of
the form

x
//

g

��

and the product with
y

//

h

��
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is given by
x

//

g

��

g·y
___

g|y
�

�

�

y
//

h

��

using the star condition of Proposition 6.1 and so is just

x(g·y)
//

g|yh

��

This monoid is just the monoid associated with the self-similar group action.
The argument of Proposition 2.6 of [8] therefore yields the following result.

Proposition 6.2 Let a self-similar group action be given. Then the classifying
space of the double category associated with the action is canonically homotopi-
cally equivalent to the classifying space of the monoid associated with the action.

We now turn to automata. A (non-initial) (Mealy) machine A = (S,X, |, ·)
consists of the following information: a set of states S, an input/output alphabet
X, a state transition function S×X → S, denoted by (s, x) 7→ s|x, where x ∈ X

and an output function S × X → X, denoted by (s, x) 7→ s · x, where x ∈ X.
Machines are defined to process input and output letters, but can easily be
extended to process input and output strings in the following way. First, state
transitions for strings are defined by

• s|1 = s for all states s.

• s|ax = (s|a)|x where a is a letter and x a string.

Second, outputs are defined for strings by

• s · 1 = 1.

• s · (ax) = (s · a)(s|a · x) where a is a letter and x a string.

Observe that these conditions are actually axioms (SS5), (SS6), (SS3), and
(SS8).

A function θ: A → B is a homomorphism of Mealy machines if θ: S → T ,
θ(s|x) = θ(s)|x, and s · x = θ(s) · x. The composition of homomorphisms is a
homomorphism and the identity function on a set of states is the identity func-
tion on the Mealy machine. An isomorphism is just a bijective homomorphism.
We therefore have a category A whose objects are Mealy machines (over the
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same input/output alphabet X) and whose morphisms are the homomorphisms
of Mealy machines. This category is endowed with extra structure which we
now describe and exploit later. We denote by I the machine with one state, and
which simply outputs the input. Given two machines A, with set of states S,
and B, with set of states T , we define a new machine A∗B as follows: the set of
states is S×T ; the input/output alphabet is X; the transition function is given
by (s, t)|x = (s|t·x, t|x); and the output function is given by (s, t) · x = s · (t · x).
Intuitively, this machine is constructed by taking the output of B and using it
as the input to A. We call it the cascade product of A and B. Observe that
underlying the construction of A ∗ B is the product of sets, and that I has
as underlying set the one-element set. Now the category of sets is a monoidal
category with respect to products of sets and the one-element set as unit. Our
homomorphisms are simply set functions satisfying certain algebraic conditions.
We therefore have the following.

Theorem 6.3 The category A of Mealy machines over a fixed input/output al-
phabet X is a monoidal category with respect to cascade product.

For each state s ∈ S, there is an initial Mealy machine As where s is the
distinguished initial state. An initial Mealy machine As computes a function
from X∗ to itself which maps x ∈ X∗ to s ·x. A homomorphism between initial
Mealy machines is required to map initial states to initial states. It can be
shown that if there is a homomorphism between two initial Mealy machines then
they compute the same function. If As is an initial Mealy machine computing
f : X∗ → X∗ and Bt is an initial Mealy machine computing g: X∗ → X∗ then
As ∗ Bt computes fg, composing from right-to-left.

Suppose that we have a self-similar group action. Then we have a Mealy
machine A(G) = (G,X, |, ·). Denote by µ: G × G → G the multiplication
operation in G.

Lemma 6.4 The function µ is a homomorphism of Mealy machines A∗A → A.
In addition, there is a homomorphism η: I → A which maps the single state of
I to the identity of A.

Proof Let (g, h) be a state in A∗A Let x be an input letter. Then by definition
(g, h)|x = (g|h·x, h|x). Thus µ((g, h)|x) = (g|h·x)(h|x). On the other hand,
µ(g, h)|x = (gh)|x. These two are equal by axiom (SS7).

Let (g, h) be a state and x and input letter. Then (g, h) · x = g · (h · x) and
µ(g, h) · x = (gh) · x. These two are equal by axiom (SS2).

The fact that η is a homomorphism follows by axioms (SS1) and (SS4).

Remarks

1. It follows from the fact that η: I → A is a homomorphism that A1 com-
putes the identity function.
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2. Lemma 6.4 shows that a self-similar group action gives rise to a monoid
in the monoidal category (A, ∗, I).

3. The elements of the double category we constructed at the beginning of
this section have an automata-theoretic interpretation: (g, x) represents
current state and new input whilst (g|x, g · x) represents new state and
output. Such square notation is used in [2].

7 An associated inverse monoid

The monoids associated with self-similar group actions can also be used to
construct a class of inverse monoids. This is a well-known procedure so I shall
simply sketch out the theory as it applies to our case. For more details see [13].
For all undefined terms from inverse semigroup theory see [12].

Let S be a left cancellative, right hereditary monoid satisfying the dedekind
height property. The inverse monoid B(S) of all S-isomorphisms between the
principal right ideals of S together with the empty function is a 0-bisimple
inverse monoid. There is a useful isomorphic representation of B(S). Define an
equivalence relation on the set of nonzero ordered pairs of elements of S by (a, b)
is equivalent to (au, bu) for all units u ∈ S. Denote by [a, b] the equivalence class
containing (a, b). Consider now the set of all such equivalence classes together
with a zero element. Define [d, c][b, a] to be zero if cS ∩ bS is empty. If cS ∩ bS

is not empty there are two possibilities. If c = bs for some s then we define
the product to be [d, as]. If b = cs for some s then we define the product to be
[ds, a]. It can be proved that the resulting structure is isomorphic to B(S) and,
from now on, we shall treat B(S) in this way. The non-zero idempotents of B(S)
are the elements [a, a]. The natural partial order is given by [a, b] ≤ [c, d] iff
(a, b) = (c, d)p for some p ∈ S. The idempotent structure of B(S) is isomorphic
to the semilattice of principal right ideals of S together with the empty set. It
follows that if e and f are idempotents of B(S) and ef 6= 0 then e and f are
comparable with respect to the natural partial order. The identity of B(S) is
[1, 1] and the L-class of the identity consists of elements of the form [a, 1] and
forms a left cancellative monoid isomorphic to S.

It follows from the general theory of 0-bisimple inverse semigroups that there
is a correspondence between the following two classes of monoids:

• Left cancellative, right hereditary monoids satisfying the dedekind height
property.

• 0-bisimple inverse monoids with two properties: first, if e and f are idem-
potents and ef 6= 0 then e and f are comparable and second, there are
only a finite number of idempotents above any non-zero idempotent.

Under this correspondence, fundamental monoids of the first class correspond
to fundamental inverse monoids of the second. I shall call the inverse monoids
that arise in this way the associated inverse monoids.
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If S is an inverse semigroup with zero, then S∗ = S \ {0}. A prehomomor-
phism θ from an inverse semigroup S to an inverse semigroup T is a function
θ: S∗ → T ∗ such that ab 6= 0 implies that θ(ab) = θ(a)θ(b). An inverse monoid
is said to be strongly E∗-unitary if it admits a prehomomorphism to a group
such that the inverse image of the identity consists only of idempotents. The
associated inverse monoid is strongly E∗-unitary if and only if the associated
monoid is cancellative [13].

The set of idempotents of an inverse semigroup is said to be 0-disjunctive if
whenever 0 < e < f then there exists a nonzero idempotent g such that g ≤ f

and ge = 0.

Lemma 7.1 If |X| > 1, then the set of idempotents of an associated inverse
monoid is 0-disjunctive.

Proof Let 0 < [a, a] < [b, b] in B(S). Then a = bp in S. Let a = xg, b = yh and
p = zk. Then xg = y(h · z)h|zk. Thus by uniqueness x = y(h · z) and g = h|zk.
If x = y then h · z is the identity and so z would be the empty string. This
would imply that [a, a] = [b, b]. It follows that y is a proper prefix of x. Let
x = yw where w has length at least one. Let q ∈ X different from the first let-
ter of w. Put c = yq. Then 0 < [c, c] ≤ [b, b], and [a, a][c, c] = 0 by construction.

Fundamental 0-bisimple inverse monoids with a 0-disjunctive set of indem-
potents are congruence-free (see page 181 of [21]). It follows by Corollary 4.7,
that the inverse monoids associated with faithful self-similar group actions on
free monoids with at least two letters are congruence-free.

It is possible to write the elements of B(S) in a more straightforward form. If
x ∈ X∗ then x−1 denotes the reverse string of x. Observe that (xy)−1 = y−1x−1.
If z = xy then we define x−1z = y. We can identity the nonzero elements of
B(S) with the formal products xgy−1. The product of xgy−1 and whz−1 is
then: zero if neither y nor w is a prefix of the other; x(g · p)g|phz−1 if w = yp;
and xg(h|h−1·p)(h

−1 · p)−1z−1 if y = wp. Monoids of the form B(X∗) are called
the polycyclic monoids [20]. The form of the elements and product in B(S) just
described generalises the usual way in which polycylic monoids are described.

Finally, the inverse monoids defined here lead to Cuntz-Pimsner algebras
in the same way that the polycyclic monoids lead to Cuntz algebras. See Sec-
tion 13.2 of [1]
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