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Abstract

We prove that every ordered groupoid is isomorphic to one constructed
from a category acting in a suitable fashion on a groupoid arising from an
equivalence relation. This construction can be used to provide greater un-
derstanding of Dehornoy’s structural monoid associated with a balanced
variety, and of the inverse semigroups used by Girard and Abramsky in
their work on linear logic and reversible computation respectively.
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1 Introduction

The theory of ordered groupoids was introduced by Ehresmann as a way of
formalising the theory of pseudogroups of transformations, particularly in dif-
ferential geometry [5].1 They subsequently found their way into semigroup
theory: first, in the original paper of Schein, translated as [22], and then, in
Nambooripad’s sophisticated description of regular semigroups and their sets
of idempotents in [19]. Despite Nambooripad’s work, most interest in ordered
groupoids within semigroup theory has centred on their applications to studying
inverse semigroups. This is probably due to the fact that inverse semigroups
arise naturally in a wide variety of mathematical contexts. During the 1990’s,
the author, starting from Ehresmann’s original papers, began a systematic in-
vestigation of the role of ordered groupoids in inverse semigroup theory. This
work is summarised in [10] and has come to be termed ‘the ordered groupoid ap-
proach to inverse semigroups’. This approach has been substantially advanced
by Ben Steinberg [23], and his work has led in turn to a ‘homotopy theory
of inverse semigroups’ that depends crucially for its development on ordered

IWhat we call ‘ordered groupoids’ were termed ‘functorially ordered groupoids’ by Ehres-
mann.



groupoids [12]. In a different direction, see Nick Gilbert’s paper [6] and the ref-
erences there for applications of ordered groupoids to the study of combinatorial
inverse semigroup theory. Recently, Ben Steinberg and the author showed that
ordered groupoids could be used to construct étendues [15].

We may summarise by saying that ordered groupoids are an important tool
in studying inverse semigroups, and that inverse semigroups are turning out to
be natural mathematical objects; the books [21], [20] and [10] provide many
examples justifying this last claim.

The aim of this paper is to describe a way of constructing ordered groupoids.
This may seem a strange ambition since a groupoid equipped with an order is a
simple enough combination that might appear to defy further analysis. However,
the construction I shall describe grew out of concrete examples: the clause
inverse semigroup introduced by Girard in [7] for applications in linear logic;
my construction of inverse semigroups from category actions in [11] that was
motivated by an analysis of Girard’s semigroup; and Dehornoy’s construction
of the structural monoid of an algebraic variety defined by a set of balanced
equations [4]. In the remainder of this section, I shall describe the intuitive idea
behind my construction.

Let G be a groupoid. I shall denote the right identity of g € G by d(g) and
the left identity by r(g). I shall also denote g by an arrow d(g) - r(g). The
partial product will be denoted by concatenation; note that the product gh is
defined iff d(g) = r(h). The set of identities of G is denoted G,. A groupoid G
is said to be ordered if it is equipped with a partial order < in such a way that
the following four axioms hold:

(OG1) z <y implies 27! <y~ L.
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If x <y and u < v and zu and yv are defined then zu < yv.

)
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(OG3) Let e < d(x) where e is an identity. Then there exists a unique element
x| e), called the restriction of x to e, such that (z|e) < z and d(z|e) =e.
(OG3)* Let e < r(x) where e is an identity. Then there exists a unique element
e| z), called the corestriction of x to e, such that (e|z) < z and r(e|z) =
e.

In fact, axiom (OG3)* is a consequence of the other axioms; see [10]. The homo-
morphisms between ordered groupoids are the ordered functors: those functors
that are also order-preserving. An ordered functor a: G — H is an ordered
embedding if g < h iff a(g) < a(h).

In the class of groupoids, those that arise from equivalence relations deserve
to be regarded as the simplest. They can be characterised as follows: if e and
f are identities then there is at most one element g such that e = f. We call
such groupoids combinatorial. Our goal is to construct ordered groupoids from
combinatorial groupoids plus some other data; what this other data is will have
to involve the partial order, the other ingredient in an ordered groupoid. One
way of constructing partial orders is by means of preorders: if < is a preorder



on a set X then it defines an equivalence relation = on X by z = y iff z < y and
y = z, and a partial order on the set of equivalence classes X/ =. Combining
these two ideas, we shall try to construct arbitrary ordered groupoids from
combinatorial groupoids equipped with a preorder. But this raises the question
of how the preorder should be described. At the moment, the preorder < is just
a given on the combinatorial groupoid H, however preorders can be induced by
actions. Monoid actions will induce preorders on a set, but we shall need the
more general notion of a category action. We now have all the ingredients we
need:

e A category C acts on a combinatorial groupoid H.
e It induces a preorder < on H whose associated equivalence relation is =.

e The quotient structure H/ = is a groupoid on which the preorder induces
an order.

e The groupoid H/ = is ordered and every ordered groupoid is isomorphic
to one constructed in this way.

In Sections 2 and 3, I shall show that this construction can be realised. In
Section 4, I prove a representation theorem of ordered groupoids arising from
my construction. This enables me to make a link with a construction of inverse
semigroups described in [11]. In later paper [16], I shall show how Dehornoy’s
structural monoids [4] can be analysed using the constructions of this paper. In
Section 5, I make some remarks of a historical nature.

Finally, I need to say a few words about the relationship between ordered
groupoids and inverse semigroups. Let G be an ordered groupoid. If z,y € G
are such that e = d(z) A r(y) exists, then Ehresmann defined

z@y = (z]e)(ely),

called the pseudoproduct of x and y. It can be proved [10] that if z® (y ® z) and
(r®y) ® z are both defined, then they are equal. An ordered groupoid is said to
be inductive if the order on the set of identities is a meet semilattice.? An induc-
tive groupoid gives rise to an inverse semigroup (G, ®) using the pseudoproduct,
and every inverse semigroup arises in this way. Ordered functors between in-
ductive groupoids that preserve the meet operation on the set of identities give
rise to homomorphisms between the associated inverse semigroups. An ordered
groupoid is said to be x-inductive if the following condition holds for each pair
of identities: if they have a lower bound, they have a greatest lower bound. A x-
inductive groupoid gives rise to an inverse semigroup with zero (G°, ®): adjoin a
zero to the set G, and extend the pseudoproduct on G to G° in such a way that
if s,t € G and s®t is not defined then put s®t¢ = 0, and define all products with
0 to be 0. Every inverse semigroup with zero arises in this way. The details of

2The term “inductive’ is used in inverse semigroup theory in a way quite different from
that used in Ehresmann’s work.



the ordered groupoid approach to inverse semigroup theory are described in [10].
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2 Categories acting on groupoids

In this section, I shall define a class of actions of categories on combinatorial
groupoids, and show that they can be used to construct ordered groupoids. The
definition of what it means for a category to act (on the left) on a groupoid is
essentially the one to be found in, say, [2] although I find it more convenient to
express the definition in terms of actions rather than functors.

Let C be a category and G a groupoid. Let m: G — C, be a function to the
set of identities of C. Define

Cx+xG={(a,z) € C x@G: d(a) = n(z)}.

We say that C' acts on G if there is a function from C x G to G, denoted by
(a,z) — a -z, which satisfies the axioms (A1)—(A6) below. Note that I write
Ja - z to mean that (a,z) € C' * G. I shall also use 3 to denote the existence of
products in the categories C' and G.

(A1) In(z) -z and w(z) -z = =.

(A2) Ja -z implies that w(a - z) = r(a).

(A3) Ja - (b-x) iff I(abd) - z, and if they exist they are equal.
(A4)

A4) Ja -z iff Ja- d(z), and if they exist then d(a - z) = a - d(z);
Ja - z iff Ja - r(z), and if they exist then r(a- z) = a - r(z).

(A5) If w(z) = w(y) and Jzy then w(zy) = 7(x).
(A6) If Ja - (zy) then (a-z)(a-y) and a- (zy) = (a- z)(a-y).

We write (C, @) to indicate the fact that C' acts on G.

Remarks

(1) The usual definition of a category acting on a set is a special case of the
definition of a category acting on a groupoid: a set can be regarded as
a groupoid in which each element is an identity. In this case, axioms
(A4)—(A6) are automatic.



(2) Let C act on the groupoid G. Then C acts on the groupoid G,. To prove
this, it is enough to show that if x is an identity in G and Ja -z then a -
is an identity in G. This follows by (A4), since d(a-z) =a-d(z) =a - z.
Thus if C acts on the groupoid G then an action of C' on the set G, is
induced; this observation will be important later.

(3) Let C act on the groupoid G. If + € G and a € C then Ja -z iff Ja - 71,
in which case (a-z)™! = a-27!. It is straightforward to check that
G. = n1(e) is a subgroupoid of G, and that if f <— e in C, then the
function z — a -z from G. to Gy is a functor. These observations provide
the connection with the approach to category actions described in [2].

(4) Let C act on the groupoids G and G'. We say that (C, G) is isomorphic to
(C,@G") iff there is an isomorphism a: G — G’ such that Ja - z iff Ja - a(x)
in which case a(a - ) = a - a(x).

There is one further piece of notation we shall use. If C' acts on G and z € G
then define
C-z={a-z: Ja-z}.

Observe that if z is an identity then C' - z consists entirely of identities.

Let C act on the groupoid G. Define £ < y in G iff there exists a € C such
that x = a -y. It is easy to check that < is a preorder on G. Let = be the
associated equivalence: x =y iff x <y and y < z.

Remarks
(1) Observe that z <y if C-2 CC-y. Thusa=yif C-z=C-y.
(2) If x =y then d(z) = d(y) and r(z) = r(y) by axiom (A4).

Denote the =-equivalence class containing z by [z], and denote the set of
=-equivalence classes by J(C,G). The set J(C, Q) is ordered by [z] < [y] iff
T XY.

We shall be interested in actions of categories C' on groupoids G that satisfy
two further conditions:

(A7) G is combinatorial.
(A8) r(a-z) =r(b-z) iff d(a-2z) = d(b- z).

Condition (A7) is to be expected; condition (A8) will make everything work, as
will soon become clear.

Theorem 2.1 Let C' be a category acting on the groupoid G, and suppose in
addition that both (A7) and (A8) hold. Then

(i) J(C,G) is an ordered groupoid.

(ii) J(C, Q) is x-inductive iff for all identities e, f € G we have that C-eNC- f
non-empty implies there exists an identity i such that C-enNC - f =C -i.



Proof (i) We begin with some preliminary definitions and results. Define
d[z] = [d(z)] and rfz] = [r(2)].*

These are well-defined by (A4).

We claim that d[z] = r[y] iff there exists ' € [z] and y' € [y] such that
Jz'y’. To prove this, suppose first that ' € [z] and y' € [y] are such that
Az'y’. Then 2’ = z, y = v’ and d(z') = r(y'). From (A4), we deduce that
d(z') = d(z) and r(y') = r(y), which gives d(z) = r(y). Hence d[z] = r[y], as
claimed. Conversely, suppose that d[z] = r[y]. Then d(z) = r(y). There exist
elements a,b € C such that d(z) = a-r(y) and r(y) = b-d(z). By (A4), we
may deduce that both a -y and b -z are defined. By (A2) and (A3), we have
that b- (a -y) is defined. By (A4),

r(b- (a-y)) = r(y).
By (A8), this implies that

d(b-(a-y)) =d(y).

By (A7), this means that y = b-(a-y). Hence y = a-y and, in addition, 3z(a-y),
as required.
We define a partial product on J(C,G) as follows: if d[z] = r[y] then

[z][y] = [z'y'] where z' € [z], ¥' € [y] and Tz'y’,

otherwise the partial product is not defined. To show that this partial product
is well-defined we shall use (A7) and (A8). Let 2" € [z] and y" € [y] be such
that J2"y"”. We need to show that z'y’ = z"y”. By definition there exist
a,b,c,d € C such that

and there exist s,t,u,v € C such that

y=s-y, y=t-y, y'=u-y, y=v-y"

Now z = b-z' and 2" = ¢- z. Thus z" = (¢b) - ' by (A3). Now Iz'y’ and so
m(z'y") = w(z") by (A5). Thus 3(cb)-(z'y"). Hence (cb)-(z'y") = [(cb)-z'][(cb)-y']
by (A6). The latter is z''[(cb) - y']. We shall show that (¢b) -y’ = y". This will

n,1

prove that z"y"” < z'y’; the fact that 2'y’ < z''y” holds by a similar argument
so that z'y’ = x"y" as required. We now prove that (cb) -y’ = y”. We have that
y" = (ut) -y and d(z") = r(y"). Thus d(z") = r(y") = (ut) - r(y') by (A4).

But d(z") = (¢b) - r(y'). Thus (ut) - r(y') = (cb) - r(y’). Hence

r((ut) -y') =r((ch) - ¥)

by (A4). Therefore
d((ut) -y") = d((cb) - y')
3Strictly speaking, I should write d([z]) but I shall omit the outer pair of brackets.




by (A8). It follows that the elements (ut)-y’ and (cb) -y’ have the same domains
and codomains, and so are equal by (A7). It follows that (cb)-y' = (ut)-y' = y".
Thus the partial product is well-defined.

It is now easy to check that J(C,G) is a groupoid: [z]~! = [z7!], and the
identities are the elements of the form [z] where z € G,. The order on J(C,G)
is defined by [z] < [y] iff z = a - y for some a € C.

It remains to show that J(C,G) is an ordered groupoid with respect to this
order.

(OG1) holds: suppose that [z] < [y]. Then z = a-yandso z~! = (a-y)~! =
a-y~!. Thus [z71] < [y~!] and so [z]7! < [y]~.

(OG2) holds: let [z] < [y] and [u] < [v] and suppose that the partial products
[#][u] and [y][v] exist. Then there exist 2’ € [z], u' € [u], ¥’ € [y] and v’ € [v]
such that [z][u] = [#'v'] and [y][v] = [y'v']. By assumption, [z'] < [y'] and
[u'] < [v'] so that there exist a,b € C such that 2’ = a-y' and v’ =b-0'. We
need to show that z'uv' < y'v'. Now d(z') = r(v') and so a-d(y') = b- r(v').
But d(y') = r(v'). Thus a-d(y") = b-d(y"). Hence

d(a-y’) =d(b-y).
By (A8), we therefore have that
r(a-y) =r(b-y),

andsoa-y =b-y' by (A7). Thus z'v' = (a-y")(b-v'") = (b-y')(b-v'). Now
Jy'v' and so by (A5) and (A6) we have that (b-y')(b-v') = b- (y'v'). Thus
z'u' =b- (y'v') and so z'u’ < y'v', as required.

(OG3) holds: let [e] < d[z] where e € G,. Then e < d(z) and so e = a-d(x)
for some a € C. Now Ja - = by (A4). Define

([z][[e]) = [a - z].

Clearly [a - z] < [a], and d[a - z] = [a- d(z)] = [e]. It is also unique with these
properties as we now show. Let [y] < [z] such that d[y] = [e]. Then y =b-x for
some b € C and d(y) = e. Because of the latter, there exists ¢ € C such that
e =c-d(y). Thus e = (¢b) - d(z). But e = a-d(z). Thus (¢b) - d(z) = a - d(x).
Hence (¢b)-r(z) = a-r(x) by (A8). So by (A7), c-(b-z) = a-z, giving c-y = a-=x.
It follows that we have shown that a -z < y. From d(y) = e, there exists d € C
such that d(y) = d - e. Using (A7) and (A8), we can show that y = d - (a - z),
and so y < a-z. We have therefore proved that y = a-z. Hence [y] = [a- 2], as
required.

(OG3)* holds: although this axiom follows from the others, we shall need
an explicit description of the corestriction. Let [e] < r[z] where e € G,. Then
e <r(z) and so e = b-r(x) for some b € C. Now b -z by (A4). Define

(el [z]) = [b- =].

The proof that this has the required properties is similar to the one above.



(i) We now turn to the properties of the pseudoproduct in J(C,G). Let
[e], [f] be a pair of identities in J(C,G). It is immediate from the definition of
the partial order that [e] and [f] have a lower bound iff C-eNC - f # (). Next,
a simple calculation shows that [i] < [e],[f]ff C-i C C-enC - f. Observe
that C-j C C-iiff j < 4. It is now easy to deduce that [i] = [e] A [f] iff
C-i=C-enC-f.

It will be useful to have a description of the pseudoproduct itself. If C'-i =
C-encC - f then denote by

exfand fxe
elements of C', not necessarily unique, such that
i=(exf)-f=(fxe)-e.

Suppose that [z], [y] are such that the pseudoproduct [z] ® [y] exists. Then by
definition [d(z)] A [r(y)] exists. Thus C'-d(z) NC -r(y) = C - e for some e € G,.

It follows that
[z] ® [y] = ([z] | [e])([e] | [y])-

Now

([z] [ [e]) = [(x(y) xd(z)) - «]
and

([e] [ y]) = [(d(z) *x(y)) - y].
Hence

[z] © [y] = [((x(y) *d(2)) - 2)((d(2) * £(y)) - y)]-

The condition that if C-eNnC' - f is non-empty, where e and f are identities,
then there exists an identity ¢ such that C -enNC - f = C - i will be called the
orbit condition for the pair (C,G). Part (ii) of Theorem 2.1 can therefore be
stated thus: J(C,QG) is x-inductive iff (C, @) satisfies the orbit condition.

3 Universality of the construction

In this section, I shall show that every ordered groupoid is isomorphic to one of
the form J(C, H) for some action of a category C on a combinatorial groupoid
H.

Let G be an ordered groupoid. There are three ingredients needed to con-
struct J(C,H): a category, which I shall denote by C'(G), a combinatorial
groupoid, which I shall denote by R(G), and a suitable action of the former on
the latter. We define these as follows:



o We define the category C'(G) as follows: an element of C'(G) is an ordered
pair (z,e) where (z,e) € G X G, and d(z) < e. This element can be
represented thus

r(z) e

We define a partial product on C'(G) as follows: if (z,e), (y, f) € C'(G)
and e = r(y) then (z,e)(y, f) = (x®y, f). This product can be represented

thus
@ e S
ENEN

(@@ [n) ™

since in this case z ® y = z(d(z)|y). It is easy to check that in this
way C'(G) becomes a right cancellative category with identities (e,e) €
G, x G,. Further details of this construction may be found in [14].

e We define the groupoid R(G) as follows: its elements are pairs (z,y)
where r(z) = r(y). Define d(z,y) = (y,y) and r(z,y) = (z,z). The
partial product is defined by (z,y)(y, z) = (z, z). Evidently, R(G) is the
groupoid associated with the equivalence relation that relates =z and y iff
r(z) =r(y).

e We shall now define what will turn out to be an action of C'(G) on R(G).
Define m: R(G) = C'(G), by w(z,y) = (r(z),r(y)), a well-defined func-
tion. Define (g,e) - (z,y) = (9 ® 1,9 ® y) iff e = r(z) = r(y). Thisis a
well-defined function from C'(G) * R(G) to R(G).

Proposition 3.1 Let G be an ordered groupoid. With the above definition, the
pair (C'(G), R(G)) satisfies azioms (A1)—(A8).

Proof The verification of axioms (A1)—(A7) is routine. We show explicitly that
(A8) holds. Suppose that

r((s,e) - (z,y)] = r[(t;€) - (2,9)]-

Then s ® r = t ® . The groupoid product 2z~ 'y is defined, and the two ways
of calculating the pseudoproduct of the triple (s,z,2~'y) are defined, and the
two ways of calculating the pseudoproduct of the triple (¢,z,z~'y) are defined.
It follows that s ® y =t ® y; that is,

d[(s,e) - (z,y)] = d[(t,€) - (z,9)].

The converse is proved similarly. ]

The next theorem establishes what we would hope to be true is true.



Theorem 3.2 Let G be an ordered groupoid. Then J(C'(G), R(G)) is isomor-
phic to G.

Proof Define a: G — J(C'(G), R(G)) by a(g) = [(r(g),9)]- We show first
that a is a bijection. Suppose that a(g) = a(h). Then (r(g), ) = (rv(h), h).
(h), (

Thus (a,r(g)) - (r(9),9) = (r(h), h) and (b,r(h)) - (x(h), h) = (r(g),g) for some
category elements (a,r(g)) and (b,r(h)). Hence

a®r(g)=r(h), brh)=r(g), a®g=h, andb®@h=g.

It follows that a and b are identities and so h < g and g < h, which gives g = h.
Thus «a is injective. To prove that « is surjective, observe that if [(z,y)] is an
arbitrary element of J(C'(G), R(G)), then (z,y) = (d(z),z~'y) because

(@', r(@) - (2,9) = (d(z),27'y) and (z,d(2)) - (d(2),27'y) = (z,).

Next we show that « is a functor. It is clear that identities map to identities.
Suppose that gh is defined in G. Now a(g) = [(r(9), 9)] and a(h) = [(r(h), h)].
We have that d[(r(g), 9)] = [(9, 9)] and r[(x(h), h)] = [(x(h),r(h))]. Now (g,9) =
(d(g),d(g)) because

(97",d(9)) - (9,9) = (d(9),d(9))

and
(9,d(g)) - (d(g),d(g)) = (9,9)-

Thus a(g)a(h) is also defined. Now (r(h), h) = (g, gh) because

(g,x(R)) - (x(h), k) = (g,gh)

and
(g7 ',x(9)) - (9, 9h) = (x(h), h).

Thus a(g)a(h) = [(r(g),gh)] = a(gh). It follows that « is a functor.
Finally, we prove that « is an order isomorphism. Suppose first that g < h

in G. Then ¢! < h! and (d(g)|h!) < A ! and r(d(g)|h!) = d(g) =

r(g~!). Thus (d(g)|h~!) = g~!. It is now easy to check that (r(g),g)

(g ® h=t,r(h)) - (r(h),h). Thus a(g) < a(h). Now suppose that a(g) < a(h

Then (r(g),9) = (a,r(h)) - (r(h),h). It follows that a is an identity and tha

g =a® h and so g < h. We have proved that « is an order isomorphism.
Hence a is an isomorphism of ordered groupoids.

The first application of the theory is to provide a way of describing inverse
semigroups. I shall show how the theory can be used to describe inverse semi-
groups with zero; the case of inverse semigroups without zero is similar.

Let S be an inverse semigroup with zero. We denote by S* the set S\ {0}
regarded as an ordered groupoid: the partial product of s and ¢ is defined iff
s7!s = tt~1 in which case it is equal to the usual product st; the partial order
is the natural partial order.

10



The category C' = C"(S*) consists of those ordered pairs (s, e) where s € S*
and e € E(S*), the set of non-zero idempotents of S, such that s~1s < e. The
product of (s,e) and (¢, f) is defined iff e = #¢~! in which case (s,e)(t, f) =
(st, f).

The combinatorial groupoid R = R(S*) consists of those pairs (s,t) such
that s and ¢ are both non-zero and ss~! = tt~1. Now the relation R is defined
on S by sRtiff ss™! =tt~! and is one of Green’s relations.

By Proposition 3.1, the ordered groupoid S* is isomorphic to J(C’, R). Thus
the inverse semigroup S is isomorphic to J(C', R)? equipped with the pseudo-
product. We may summarise these results as follows.

Theorem 3.3 FEvery inverse semigroup with zero S is determined upto iso-
morphism by three ingredients: the category C'(S*), Green’s R-relation, and
the action of the category on the groupoid determined by Green’s R-relation. ®

The results of Section 8 of [11] can be translated easily into this new for-
malism. Here is one important example. An ordered groupoid G is said to
be E*-unitary if e < g, where e is an identity, implies that g is an identity.
An inverse semigroup with zero S is E*-unitary iff the ordered groupoid S* is
E*-unitary. The class of E*-unitary inverse semigroups is important; see [13].

Proposition 3.4 Let (C,G) satisfy azioms (A1)-(A8). Then J(C,G) is E*-
unitary iff a- g an identity implies that g is an identity.

Proof Suppose that J(C,G) is E*-unitary. Let a - g = e, an identity. Then
[e] < [g] in the ordered groupoid J(C,G). But [e] is an identity and so [g] is an
identity using the fact that J(C,G) is an ordered groupoid. It follows from the
proof of Theorem 2.1, that g is an identity, as required.

Now suppose that a - g an identity implies that g is an identity. Let [e] < [g]
in J(C,G) where [e] is an identity. Then e = a - g for some a € C. It follows
that g is an identity and so [g] is an identity, as required. u

4 A representation

In this section, I shall prove some results that link the construction described
in this paper to an earlier construction by the author described in [11].

Ordered groupoids can be regarded as axiomatisations of ordered groupoids
of partial bijections. It is noteworthy, therefore, that the ordered groupoid
J(C,@G) can be naturally represented by means of partial bijections between
certain subsets of G,. To prove this, we shall need some preliminaries.

Let (C,Q) satisfy the axioms (A1)-(A8). Let e € G,. We have already
observed that the set C'-e consists entirely of identities. A function a: C-e — C-f
is called a C'-isomorphism if it satisfies the following three conditions:

(IM1) It is a bijection.
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(IM2) w(a(z)) =n(z) forall z € C - e.
(IM3) a(a-z)=a-az) forall z € C-eand a € C.
Denote the set of all C-isomorphisms of G by I(C,G).

Proposition 4.1 I(C,G) is an ordered groupoid. The identities are the identity
functions on the subsets of G of the form C - e where e is an identity.

Proof Clearly if o is a C-isomorphism so is a™'. If a: C-e = C - f and
B: C-f — C-iare C-isomorphisms then so is fa: C -e — C -i. It follows
that I(C,G) is a groupoid. We order the elements of I(C,G) using the usual
order of partial functions. Let a: C'-e — C - f be an element of I(C, ), and
let C-i C C-e. Let 8 be the restriction of a to C -i. Using the fact that
m(a(z)) = w(x), it is easy to check that a(C -e) = C - a(e). It is now clear that
B € I(C,G). Tt follows readily that with these definitions I(C,G) is an ordered
groupoid. [ |

The next lemma is the key to obtaining a representation of J(C,G) in

1(C, G).

Lemma 4.2 Let (C,G) satisfy the azioms (A1)—(A8). Let g € G be such that
e f. Define,: C-e = C-fbyby(a-e)=a-f. Then 8, is a well-defined
C-isomorphism such that 8,(e) = f. In addition, if g = h then 6, = 6),.

Proof We begin by showing that 8, is well-defined. If Ja - e then d(a) = w(e).
It follows easily from (A4), that w(e) = w(f) so that a - f is defined. Suppose
that a -e = b-e. Then by (A4), d(a-g) = d(b-g). It follows by (A8) that
r(a-g) =r(b-g). Thus a- f =b- f. We have show that 0, is well-defined. The
function 6, is injective by (A8). To show that it is surjective, let a- f € C - f.
Then d(a) = 7(f) = 7(r(g)). It follows that Ja - e and so fy(a-€) =a- f. It is
easy to check from the definition that m(6,(z)) = w(z).

Suppose that g = h. Then d(g) = d(h) and r(g) = r(h), so that C -d(g) =
C -d(h) and C -r(g) = C - r(h). Thus 6, and 6, have the same domains and
codomains. It remains to show that they have the same effects.

By assumption, g = h and so g = u - h and h = v - g for some u,v € C. Let
z € C-d(g). Then z = a-d(g) and so

6,(z) = 8y(a- d(g)) = a-x(g).
Now d(g) =u-d(h), and so z = a- (u-d(h)) = (au) - d(h). It follows that
0n(z) = (au) - r(h).
But u - r(h) = r(g) and so ,(x) = 05(z), as required. ]
In view of the above lemma, we may define a function
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Theorem 4.3 Let C be a category acting on the groupoid G satisfying axioms
(A1)-(A8). Then ¢: J(C,G) — I(C,G) is an ordered embedding, which induces
an isomorphism between the posets of identities.

Proof Suppose that dzy. Then it is easy to check that ¢y = ¢z)@y)- Thus
¢ is a functor between groupoids. Suppose that [z] < [y]. Then z <X y. It
follows that d(z) < d(y) and r(z) < r(y). Thus C -d(z) C C -d(y) and
C-r(z) C C-r(y). It is now easy to check that ¢, is the restriction of ¢r,;.
Conversely, suppose that @[, is the restriction of ¢[,;. We prove that [z] < [y].
By assumption, d(z) € C - d(y). Thus d(z) = a-d(y) for some a € C. Thus
d(z) = d(a-y). Now ¢p,1(d(z)) = r(z). Also ¢pyj(a-d(y)) = a-r(y). Thus
r(z) =r(a-y). Hence z = a-y by (A7).

Finally, observe that for each identity e € G, the identity function on C - e
is a C-isomorphism which is equal to ¢.. The last claim is now clear. u

We say that the action of C on G is complete if the function ¢ defined in
Theorem 4.3 is surjective, in which case J(C,G) and I(C,G) are isomorphic
ordered groupoids. This does not appear to be true in general.

Let (C, G) satisfy axioms (A1)—(A8). Define the relation R* on the set G, as
follows: e R* f iff w(e) = w(f) and for all a,b € C' we have that, when defined,
a-e=b-e& a-f=>-f. Observe that R* is an equivalence relation on the
set G,. In addition, e R* f implies that ¢-eR* ¢- f for all ¢ € C where c-e and
¢+ f are defined.

Lemma 4.4 Let (C,G) satisfy the axioms (A1)—(A8). Then the following are
equivalent:

(i) eR* f.
(ii) There is a C-isomorphism a: C -e — C - f such that a(e) = f.

Proof (i) = (ii). Suppose that e R* f. Define a: C-e = C- f by a(a-e) = a-f.
Observe that Ja - e iff d(a) = w(e). By assumption n(e) = w(f) and so Ja - f;
thus the right-hand side really is defined. Suppose that a -e = a' - e. Then by
assumption a - f = a' - f. It follows that «a is a well-defined function. Suppose
that a(a-e) = a(b-e). Thena-f=0b-f and soa-e = b-e. Hence « is injective.
Let a- f € C - f. Then d(a) = w(f) and so d(a) = w(e), which implies that
a - e is defined. It is immediate that a(a-e) = a- f. We have shown that « is
a bijection. Observe that 7(a(a -€)) = w(a- f) = r(a) and «(a - e) = r(a) by
(A2). It follows that w(a(a - €)) = w(a-e). It is immediate from the definition
that a(a-z) = a- a(z). Finally, we have that a(e) = a(w(e) -e) = n(e) - f = f.

(ii) = (i). Suppose there is a C-isomorphism a: C -e — C - f such that
a(e) = f. Tt is immediate that 7(e) = w(f). Suppose that a-e =b-e. Then
a-ale) =b-ale), and soa-f = b-f. Suppose that a- f = b- f. Then
afa-e)=ab-e),and soa-e =>b-e. Hence eR* f. u

We now have the following criterion for the completeness of (C,G).
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Proposition 4.5 Let (C,G) satisfy axioms (A1)—-(A8). Then (C,G) is com-
plete if and only if (e R* f iff e = f, for some element g of G).

Proof Suppose that (C,G) is complete. By Lemmas 4.2 and 4.4, from e - f
we can deduce that e R* f, always. We shall prove that e R* f implies e -+ f
for some g € G. By Lemma 4.4, there exists a C-isomorphism a: C'-e = C - f
such that a(e) = f. By assumption, there exists g € G such that a = ¢[,) = 0,,

and so, in particular, e - f, as required.

Suppose now that e R* f implies e -+ f for some g € G. We shall prove
that (C,G) is complete. Let a: C'-e — C - f be a C-isomorphism. We can
assume without loss of generality that a(e) = f; to see why, put ale) = f'.
Then f' € C- f and so f' < f. On the other hand, « is surjective and f € C - f
and so there exists z € C - e such that a(z) = f. Since z = a - e for some
a € C, we have that a(z) = a-ale) =a-f' = f and so f < f'. It follows
that f = f'and so C'- f = C - f'. By Lemma 4.4, we deduce that e R* f. Thus
by assumption, there exists g € G such that e —— f. But then 0y = a and so
#1g) = @, and so (C, G) is complete. [

I can now explain the connection between this paper and [11]. Let (C, X) be
a pair consisting of a category C' acting on a set X where we denote by 7: X —
C, the function used in defining the action. We may define the equivalence
relation R* on X, and so we get a combinatorial groupoid

G(C,X) = {(z,y): zR" y}.

Define 7': G(C,X) — C, by n'(z,y) = w(z), and define an action of C' on
G(C,X) by a-(z,y) = (a-z,a-y) when d(a) = 7'(z,y). It is easy to check that
axioms (A1)—(A8) hold. In addition, (C, G(C, X)) is complete: we use Proposi-
tion 4.5 to prove this. It is equivalent to the fact that (z,z) R* (y,y) iff z R* y.
We have proved the following except the last claim which is straightforward to
prove.

Proposition 4.6 Let C' be a category acting on the set X. Then, with the
definition above, C' acts on combinatorial groupoid G(C,X) in a complete way.
In addition, the action of C' on X is isomorphic to the action of C on G(C,X), .M

We now go in the other direction. Let C act on the combinatorial groupoid
G. From the remarks made after the statement of (A6), it follows that there is
an induced action of C' on the set G,.

Proposition 4.7 Let (C,G) satisfy axioms (A1)-(A8). If (C,G) is complete,
then the action of C on G is determined by the action of C on G,.

Proof Let (C,G) satisfy axioms (A1)—(A8). The action of the category C re-
stricts to an action of the category C on the set G,, where the set is regarded as
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a discrete category consisting only of identities. The relation R* is defined en-
tirely in terms of the action (C,G,). Let G' denote the groupoid corresponding
to the equivalence relation R*. Define {: G — G’ by £(g) = (r(g),d(g)). Then
¢ is a functor, which is injective by (A7). The functor £ is surjective iff (C,G)
is complete, by Proposition 4.5. Thus completeness implies that the groupoid
G can be recovered upto isomorphism from the action (C, G,).

Assuming completeness, define an action of C on G’ by Ja - (e, f) iff Ja - e
— which is equivalent to Ja - f since 7(e) = 7(f) — in which case, a - (e, f) =
(a-e,a- f). It is easy to check that we have an action satisfying axioms (A1)-
(A8). Suppose that Ja-g. Then by (A4), it is immediate that a-&(g) is defined.
Furthermore, £(a-g) = a-&(g), again by (A4). Now suppose that Ja-£(g). Then
by (A4), we have that Ja - g. It follows that the actions (C,G) and (C,G’) are
isomorphic. [ |

We say that the pair (C, G) satisfies the right cancellation conditionif a-e =
b-e, where a,b € C and e € G, implies that a = b. The following is easy to
check.

Lemma 4.8 Let (C,G) satisfy axioms (A1)-(A8) and the right cancellation
condition. Then e R* f iff w(e) = w(f). ]

Let G be an ordered groupoid. It is easy to check that the pair (C'(G), R(G))
of Theorem 3.2 satisfies the right cancellation condition. It follows that on
R(G) we have that (z,z) R* (y,y) iff r(z) = r(y) where z,y € G. We therefore
immediately deduce the following from Proposition 4.7.

Corollary 4.9 FEvery ordered groupoid G is isomorphic to an ordered groupoid
of the form J(C, H) where (C, H) is complete. |

We conclude this section by classifying a class of substructures of J(C,G).
We say that a subgroupoid G’ of a groupoid G is wide if G}, = G,.

Proposition 4.10 Let C act on G and satisfy all the azioms. Let H be a wide
subgroupoid of G such that C - H C H. Then J(C,H) is a wide subgroupoid of
J(C,G) which is also an order ideal. Every wide subgroupoid of J(C,G) which
is an order ideal is constructed in this way.

Proof Let H be a wide subgroupoid of G such that C-H C H. Then the action
of C on H satisfies all the axioms and so we can form the groupoid J(C, H).
This is a subset of J(C,G) because if x € H and y = z then y € H. So the
equivalence class of x with respect to the action of C on H is the same as the
equivalence class of z with respect to the action of C' on G. It is now easy to
check that J(C, H) is a wide subgroupoid of J(C,G) and an order ideal.

Now let J' C J(C,G) be a wide subgroupoid and order ideal. Let H = {z €
G: [z] € J'}. Tt is now routine to check that H is a wide subgroupoid of G and
that C - H C H. Tt is easy to check that J(C,H) = J'. ]
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5 Concluding remarks

I would like to say a few words about the origins of the constructions described
in Sections 2 and 3. Let G be an ordered groupoid. The category C'(G) is
one of a pair of categories that can be associated with an ordered groupoid G.
The other, denoted C(G), is left rather than right cancellative. The origin of
these categories goes back to one of the founding papers of inverse semigroup
theory written by Clifford [3]. However the explicit connection between Clif-
ford’s work and category theory seems to have been discovered by Leech [17]. He
showed that in the case of inverse monoids, the whole structure of the semigroup
could be reconstituted from either of these two categories. The importance of
these categories was further underlined in the discovery by Loganathan [18]
that the cohomology of inverse semigroups introduced by Lausch [9] was the
same as the usual cohomology of one of its categories. Further applications
of these categories can be found in [13, 14, 15]. As I indicated above, these
categories completely determine the structure of the semigroup in the case of
inverse monoids. This raises the question of what can be said in general. The
semigroup background to this question is discussed in [11]. As a result of read-
ing a paper by Girard on linear logic, I was led to the construction described
in [11], which shows how inverse semigroups can be constructed from categories
acting on sets. I thought this was the final word on this construction until Claas
Rover pointed out to me the paper by Dehornoy [4]. Dehornoy constructs an
inverse semigroup from any variety, in the sense of universal algebra, that is
described by equations which are balanced, meaning that the same variables
occur on either side of the equation. This construction was clearly related to
my construction in [11], but I felt the fit was not quite good enough. It was an
analysis of the connections between the two that led me to the construction of
this paper. Section 4 describes the connection between my old paper [11] and
my new constructions of Sections 2 and 3; the details are spelt out in Proposi-
tions 4.6 and 4.7.

16



References

[1]
[2]

[3]

[4]

[7]

[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

S. Abramsky, A structural approach to reversible computation, Preprint.

M. Barr, C. Wells, Category theory for computing science, Prentice Hall,
1990.

A. Clifford, A class of d-simple semigroups, Amer. J. Math. 75 (1953),
547-556.

P. Dehornoy, Structural monoids associated to equational varieties, Proc.
Amer. Math. Soc. 117 (1993), 293-304.

C. Ehresmann, Oeuvres complétes et commentées, (ed A. C. Ehresmann)
Supplements to Cahiers de Topologie et Géométrie Différentielle Amiens,
1980-83.

N. D. Gilbert, HNN extensions of inverse semigroups, accepted for publi-
cation in J. Alg.

J.-Y. Girard, The geometry of interaction III: accommodating the addi-
tives, in Advances in linear logic (eds J.-Y. Girard, Y. Lafont, L. Regnier)
Cambridge University Press, 1995.

J. Kellendonk, M. V. Lawson, Partial actions of groups, to appear in Inter.
J. of Alg. and Computation.

H. Lausch, Cohomology of inverse semigroups, J. Alg. 35 (1975), 273-303.

M. V. Lawson, Inverse semigroups: the theory of partial symmetries, World
Scientific, 1998.

M. V. Lawson, Constructing inverse semigroups from category actions, J.
of Pure and Applied Alg. 137 (1999), 57-101.

M. V. Lawson, J. Matthews, T. Porter, The homotopy theory of inverse
semigroups, Inter. J. of Alg. and Computation 12 (2002), 755-790.

M. V. Lawson, E*-unitary inverse semigroups, in Semigroups, algorithms,
automata and languages (eds G. M. S. Gomes, J.-E. Pin, P. V. Silva) World
Scientific, 2002, 195-214.

M. V. Lawson, Ordered groupoids and left cancellative categories, to appear
in in Semigroup Forum.

M. V. Lawson, B. Steinberg, Etendues and ordered groupoids, ac-
cepted for publication by Cahiers de Topologie et Géométrie Différentielle
Catégoriques.

M. V. Lawson, Dehornoy’s structural monoids, in preparation.

17



[17] J. Leech, Constructing inverse semigroups from small categories, Semigroup
Forum 36 (1987), 89-116.

[18] M. Loganathan, Cohomology of inverse semigroups, J. Alg. 70 (1981), 375—
393.

[19] K. S. S. Nambooripad, Structure of regqular semigroups I, Memoirs of the
American Mathematical Society 224 (1979).

[20] A. L. T. Paterson, Groupoids, inverse semigroups, and their C*-algebras,
Birkhauser, 1998.

[21] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathe-
matics 793, Springer-Verlag, Berlin, 1980.

[22] B. M. Schein, On the theory of inverse semigroups and generalized grouds,
Amer. Math. Soc. Translations (2) 113 (1979), 89-122.

[23] B. Steinberg, Factorization theorems for morphisms of ordered groupoids
and inverse semigroups, Proc. Edinburgh Math. Soc. 44 (2001), 549-569.

18



