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Abstract

We prove that left cancellative right hereditary monoids satisfying the

dedekind height property are precisely the Zappa-Szép products of free

monoids and groups. The ‘fundamental’ monoids of this type are in bi-

jective correspondence with faithful self-similar group actions.
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1 A class of left cancellative monoids

This paper develops some ideas that were touched on first in our paper [6], where
we corrected an error in Nivat and Perrot’s [8] generalisation of some pioneering
work by David Rees [9]. In this section, we define the class of monoids we shall
be interested in.

An important role in this paper will be played by free monoids. If X is a set
then X∗ denotes the free monoid generated by X. Elements of X∗ are strings
and the length of a string x is denoted by |x|. The prefix order on X∗ is defined
by x ≤ y iff x = yz for some string z.

An S-act or act (X,S) is an action of a monoid S on a set X on the right. If
S is a monoid then (S, S) is an act by right multiplication. If Y ⊆ X is a subset
such that Y S ⊆ Y then we say that Y is an S-subact or just a subact. Right ideals
of S are subacts under right multiplication. If X and Y are acts then a function
θ from X to Y is an S-homomorphism or just a homomorphism if θ(xs) = θ(x)s
for all x ∈ X and s ∈ S. For a fixed S, we can form the category consisting
of S-acts and the homomorphisms between them. The usual definitions from
module theory can be adapted to the theory of acts. In particular, we can define
when an act is projective. A monoid S is said to be right PP if all its principal
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right ideals are projective as right S-acts, and right hereditary if all its right
ideals are projective as right S-acts. The following was proved by Dorofeeva [4].

Theorem 1.1 A monoid S is right hereditary iff it is right PP, incomparable
principal right ideals are disjoint, and S has the ascending chain condition for
principal right ideals.

We do not need the general characterisation of right PP monoids for this
paper; it is enough to know that the right PP monoids with a single idempotent
are precisely the left cancellative monoids.

Remarks

1. We shall often use the fact that (ACC) on principal right ideals is equiv-
alent to the condition that every non-empty set of principal right ideals
has a maximal element.

2. From now on, ‘ideal’ will always mean ‘principal right ideal’ unless other-
wise stated, and ‘maximal ideal’ will always mean ‘maximal proper prin-
cipal right ideal’.

3. If two maximal ideals intersect in a left cancellative right hereditary monoid
then they are equal; this is because they must be comparable, but both
are maximal.

4. We denote the group of units of a monoid S by G(S) or just G.

5. In a left cancellative monoid S we have that aS = bS iff a = bg for some
unit g; we say that a and b are associates.

6. In a left cancellative monoid S we have that aS = S iff a is invertible.

7. Generators of maximal ideals will be called irreducible elements.

8. Let S be a monoid and a ∈ S. A left factor of a is an element b ∈ S such
that a ∈ bS.

We shall study left cancellative right hereditary monoids satisfying a further
finiteness condition. Let S be a left cancellative right hereditary monoid and
a ∈ S. Then the set of all principal right ideals containing a need not be finite,
but if it is we say that S satisfies the dedekind height property [1].

Let aS and bS be two principal right ideals. A chain of length n from aS to
bS is a sequence

aS = a0S ⊂ a1S ⊂ a2S ⊂ . . . ⊂ anS = bS.

Lemma 1.2 Let S be a left cancellative right hereditary monoid. Then the
following are equivalent.
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(i) S has the dedekind height property.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

Proof (i) ⇒ (ii). The set of all principal right ideals containing a is finite. Thus
there is a bound on the length of chains starting at aS and ending at S. Given
two such chains of maximum length they must be equal. To prove this, we show
that the two chains must agree term by term. We use the fact that if two ideals
have a non-empty intersection, then they must be comparable. Let

aS = a0S ⊂ a1S ⊂ . . . ⊂ amS = S

and
aS = b0S ⊂ b1S ⊂ . . . ⊂ bnS = S

be two such chains. We claim that a1S = b1S. To see why observe that they
are comparable because both contain aS. Thus either a1S ⊂ b1S or vice-versa.
If the former we could refine the second chain, if the latter we could refine the
first chain. But neither refinement is possible since each chain is of maximum
length. Thus a1S = b1S. This process continues. If m > n then we could use
the first chain to refine the second. If n > m then we could use the second chain
to refine the first. So the two chains must have the same length and the same
terms.

(ii) ⇒ (i). All the distinct principal right ideals containing aS must be com-
parable so they will form a totally ordered set from aS to S. This will be a
chain of maximum length and so equal to the unique such chain assumed to
exist. Thus the set of all principal right ideals containing aS must be finite.

The next lemma provides us with a class of examples of monoids satisfying
the dedekind height property.

Lemma 1.3 Let S be a left cancellative right hereditary monoid equipped with
a monoid homomorphism λ: S → N such that λ−1(0) = G(S). Then S satisfies
the dedekind height property.

Proof Let aS ⊆ bS. Then a = bs and so λ(a) = λ(b)+λ(s). Thus, in particular,
λ(a) ≥ λ(b). Suppose, in addition, that λ(a) = λ(b). Then λ(s) = 0 and so s is
a unit. It follows that in this case, aS = bS. We deduce that if aS ⊂ bS then
λ(a) > λ(b). Thus the length of any chain of principal right ideals starting at
aS is bounded by λ(a).

We define a length function on an arbitrary monoid S to be a surjective
homomorphism λ: S → N such that λ−1(0) = G(S).

Let S be a left cancellative and right hereditary satisfying the dedekind
height property. In addition, we shall assume throughout this paper that S is
not a group. Let aS = S0 ⊂ S1 ⊂ S2 . . . ⊂ Sn = S be a chain of principal right
ideals of maximum length. We define λ(a) = n.
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Lemma 1.4 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property. Let

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

be a chain of maximum length joining bS to S. Then

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS.

Proof We show first that the inclusions really are distinct. Suppose that abiS =
abi+1S for some i. Then abi = abi+1g for some unit g. By left cancellation,
bi = bi+1g giving biS = bi+1S, which contradicts our assumption. Next we show
that the chain is of maximum length. Suppose not. Then we can interpolate a
principal right ideal somewhere

abiS ⊂ cS ⊂ abi+1S.

Let abi = cf for some f and c = abi+1d for some d. Thus by left cancellation,
bi = bi+1df . We therefore have

biS ⊆ bi+1dS ⊆ bi+1S.

Suppose that biS = bi+1dS. Then bi = bi+1dg for some unit g. By left cancella-
tion, it follows that g = f and is a unit. Thus abiS = cS, which is contradiction.
Suppose that bi+1dS = bi+1S. Then bi+1d = bi+1h for some unit h. By left
cancellation, d = h and so cS = abi+1S, which is a contradiction. However, we
now have

bsS ⊂ bi+1dS ⊂ bi+1S

which contradicts the fact that our original chain was of maximum length. It
follows that our new chain is of maximum length.

Lemma 1.5 Let S be a left cancellative right hereditary monoid satisfying the
dedekind height property. Then the function λ defined before Lemma 1.4 is a
length function.

Proof By Lemma 1.4, if

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

is a chain of maximum length joining bS to S, then

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS. Now glue this to a chain

aS = a0 ⊂ a1S ⊂ . . . ⊂ aλ(a)S = S
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of maximum length. The resulting chain links abS to S and has maximum
length, and this length is λ(a) + λ(b). Thus λ is a homomorphism. Those
elements a of length 0 are precisely those where aS = S, which are just the
invertible elements. Finally, to show that the length function is surjective, it is
enough to show that the number 1 is in the image of λ, but this follows from
the existence of maximal ideals.

We combine Lemmas 1.2, 1.3 and 1.5 in the following theorem.

Theorem 1.6 Let S be a left cancellative, right hereditary monoid. Then the
following are equivalent.

(i) S satisfies the dedekind height property.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

(iii) The monoid S is equipped with a length function.

An arbitrary monoid M is said to be equidivisible if for all a, b, c, d ∈ M

the fact that ab = cd implies that either a = cu, ub = d for some u ∈ M or
c = av, b = vd for some v ∈ M .

Lemma 1.7 Let S be a left cancellative monoid. Then the following are equiv-
alent

(i) Incomparable principal right ideals are disjoint.

(ii) S is equidivisible.

If either holds, then incomparable principal left ideals are disjoint.

Proof (i)⇒(ii). Suppose that ab = cd. Then aS ∩ cS 6= ∅. Thus aS ⊆ cS or
cS ⊆ aS. Suppose the former. Then a = cu for some u ∈ S. But ab = cd and
so cub = cd. By left cancellation, ub = d. Suppose the latter. Then c = av for
some v ∈ S. But ab = cd and so ab = avd. By left cancellation, b = vd. Thus
S is equidivisible.

(ii)⇒(i). This is immediate.
To prove the last assertion, suppose that Sb ∩ Sd 6= ∅. Then ab = cd for

some b, c ∈ S. The result now follows by equidivisibility.

The following is immediate from Theorem 2.6 and Lemma 2.7 and Corol-
lary 5.1.6 of [5] and the fact that free monoids are left cancellative, right hered-
itary and their length functions really are length functions in our sense. It tells
us that left cancellative right hereditary monoid satisfying the dedekind height
property are natural generalisations of free monoids.

Corollary 1.8 Let S be a left cancellative right hereditary monoid satisfying
the dedekind height property. Then S is a free monoid if and only if the group
of units is trivial.
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To conclude this section, we shall look at two different ways in which exam-
ples of monoids satisfying our conditions might arise.

The class of left cancellative right hereditary monoids satisfying the dedekind
height property is a proper subclass of the class of all left cancellative monoids.
We shall now show how closely these two classes are related. We shall use the
theory of Rhodes-expansions described in [1] adapted to our situation. Let S be
a left cancellative monoid. We shall be interested in finite sequences of elements
of S

x = (x1, . . . , xn)

where xi+1 ∈ xiS but xi+1S 6= xnS and where x1 is a unit. We denote by Ŝ

the set of all such sequences. We shall now define a product on such sequences.
Let

x = (x1, . . . , xm) and y = (y1, . . . , yn).

Consider the sequence

x1, . . . , xm−1, xm, xmy1, . . . , xmyn.

Because y1 is a unit, we have that xmS = xmy1S. Clearly, xmy1S ⊂ xm−1S.
Also from yi+1S ⊂ yiS we get xmyi+1S ⊆ xmyiS. Observe that if xmyi+1S =
xmyiS then xmyi+1 = xmyig for some unit g. Thus by left cancellation, yi+1 =
yig implying that yi+1S = yiS, contradicting our assumption. It follows that

xy = (x1, . . . , xm−1, xmy1, . . . , xmyn)

is a well-defined element of Ŝ. This defines a binary operation on Ŝ. The fact
that this is a semigroup follows from the general theory in [1]. It is easy to check
that it is a monoid with identity (1), and that left cancellation in S is inherited
by Ŝ.

Proposition 1.9 For each left cancellative monoid S, the monoid Ŝ is left can-
cellative, right hereditary and equipped with a dedekind height function. There
is a surjective homomorphism from Ŝ onto S.

Proof We first characterise the left factors of an element of Ŝ. Suppose that
x ∈ yŜ. Then

(x1, . . . , xm) = (y1, . . . , yn)(z1, . . . , zp).

Thus m ≥ n, y1 = x1, . . . , yn−1 = xn−1 and ynS = xnS. Conversely, suppose
that (x1, . . . , xm) and (y1, . . . , yn) are such that m ≥ n, y1 = x1, . . . , yn−1 =
xn−1 and ynS = xnS. For 0 ≤ i ≤ m−n define zi+1 by xn+i = ynzi+1. Observe
that z1 is a unit. It is easy to check that z = (z1, . . . , zp) is a well-defined

element of Ŝ and that x = yz.
We can now show that Ŝ is right hereditary and satisfies the dedekind height

property. Suppose that xŜ∩yŜ 6= ∅. Then there is a z which has both x and y as
left factors. Let z = (z1, . . . , zp), x = (x1, . . . , xm), and y = (y1, . . . , yn). Then
p ≥ m,n and x1 = z1, . . . , xm−1 = zm−1, zmS = xmS and y1 = z1, . . . , yn−1 =
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zn−1, znS = ynS. Without loss of generality, suppose that m ≤ n. Then
x1 = y1, . . . , xm−1 = ym−1 and xmS = zmS = ymS. Thus y ∈ xŜ.

From the above we can easily derive the criterion for yŜ = xŜ: x and y

have the same length, all the components are the same except the rightmost
ones which are associate.

It follows from the above two characterisations that the dedekind height
property is satisfied. Define ηS : Ŝ → S by (x1, . . . , xn) 7→ xn. Then this is a
surjective homomorphism. Observe that restricted to the R-classes of Ŝ, this
homomorphism is injective.

A group G is said to be indicable if there is a surjective homomorphism
θ: G → Z. For each monoid S there is a group U(S) and a homomorphism
ι: S → U(S) such that for each homomorphism φ: S → G to a group there is a
unique homomorphism φ̄: S → G such that φ = φ̄ι. The group U(S) is called
the universal group of S. The monoid S can be embedded in a group iff ι is
injective. It can be deduced from the results of Section 0.5 of [3] that every
cancellative monoid in which any two principal right ideals are either disjoint or
comparable can be embedded in a group. It follows that the cancellative right
hereditary monoids satisfying the dedekind height property can be embedded in
their universal groups. If S is a cancellative right hereditary monoids satisfying
the dedekind height property, then there is a homomorphism from S onto N

and so a homomorphism from S to Z. It follows that the universal group of S

admits a homomorphism to Z. Since the image of this homomorphism contains
N it is in fact the whole of Z and so surjective. We have therefore proved the
following.

Proposition 1.10 The universal group of a cancellative right hereditary monoid
satisfying the dedekind height property is indicable.

2 Zappa-Szép products

The goal of this section is to obtain a structural description of the class of
monoids introduced in Section 1. The tool we shall use is Zappa-Szép products.
The paper by Matt Brin [2] is a useful introduction and contains further refer-
ences. However, I shall prove almost everything from scratch here and so prior
knowledge of this construction is not needed. The proof of the following was
first given in [6], but I reproduce it here for the sake of completeness.

Proposition 2.1 Let S be a left cancellative right hereditary monoid satisfying
the dedekind height property with group of units G(S). Let X be a transversal of
the generators of the maximal proper principal right ideals, and denote by X∗ the
submonoid generated by the set X. Then the monoid X∗ is free, S = X∗G(S),
and each element of S can be written uniquely as a product of an element of X∗

and an element of G(S).
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Proof We show first that S = X∗G(S). Let s ∈ S \ G(S). Consider the set
of all proper ideals that contain s. This set contains a maximal element x1S,
which is necessarily a maximal ideal, and x1 ∈ X. Thus s = x1s1. If s1 is a
unit or irreducible the process stops. Otherwise, repeat this process with s1 to
get s1 = x2s2 and so on. Thus we can write s = x1 . . . xisi. To show that this
process terminates observe that

sS ⊂ x1 . . . xiS ⊂ . . . ⊂ x1S.

Thus termination follows from the dedekind height property. It follows that we
can write s = x1 . . . xng where g is a unit.

Next we prove that X∗ is free. Suppose that

1 = x1 . . . xm

where m ≥ 1 and xi ∈ X. Then S = x1 . . . xmS ⊆ x1S and so x1 is invertible,
which is a contradiction. Now suppose that

x1 . . . xm = y1 . . . yn

where xi, yj ∈ X. By our result above, we can assume that m,n ≥ 1. Now
x1 . . . xmS = y1 . . . ynS ⊆ x1S, y1S. It follows that x1 = y1 and so, by left
cancellation, x2 . . . xm = y2 . . . yn. This process can be repeated and because
either m < n or n < m would lead to a contradiction, namely that an element
of X is invertible, we must have that m = n and xi = yi. Thus X∗ is the free
monoid on X.

Finally, we prove the uniqueness of the decomposition. Suppose that xg = yh

where x, y ∈ X∗, g, h ∈ G(S), and x = x1 . . . xm and y = y1 . . . yn where
xi, yj ∈ X. Arguing as before, xS = yS ⊆ x1S, y1S and so x1 = y1. By left
cancellation x2 . . . xmg = y2 . . . ynh. If m = n then we can repeat this argument
to get x = y and so g = h, by left cancellation. If m < n, then we can easily
deduce that ym+1 is invertible, which is a contradiction. A similar argument
shows that we cannot have n < m.

We now make a key definition. Let G be a group and X∗ a free monoid on
the set X. We suppose that there two operations that link G and X∗. The
first is defined by a function G × X∗ → X∗, called the action, denoted by
(g, x) 7→ g · x. The second is defined by a function G × X∗ → G, called the
restriction, denoted by (g, x) 7→ g|x. We require that the following eight axioms
hold:1

(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

1Observe that we use 1 to denote both the identity of the group G and the empty string

of X∗.
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(SS4) g · (xy) = (g · x)(g|x · y).

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) 1|x = 1.

(SS8) (gh)|x = g|h·xh|x.

I shall call this a ZS-action of G on the free monoid X∗.
An action of a group G on a free monoid X∗ is length preserving if |g ·x| = |x|

for all x ∈ A∗, and prefix preserving if x = yz in A∗ implies that g · x = (g · y)z′

for some string z′. This means precisely that if x ≤ y then g · x ≤ g · y. The
following was proved as Lemma 2.5 of [6].

Lemma 2.2 Let G act on X∗ in such a way that the axioms (SS1)–(SS8) hold.
Then the action is length-preserving and prefix-preserving.

The following is a consequence of the theory of Zappa-Szép products and
follows from the properties of the identity element and associativity. A proof
can also be found as Proposition 2.4 of [6].

Proposition 2.3 With each left cancellative right hereditary monoid satisfying
the dedekind height property we can associate a ZS-action.

We shall now look at the converse of the above result. Let G be an arbi-
trary group, and M an arbitrary left cancellative monoid (not necessarily free)
equipped with a function G×M → M , denoted by (g,m) 7→ g·m, and a function
G×M → G, denoted by (g,m) 7→ g|m, satisfying the obvious generalisations of
(SS1)–(SS8). On the set M × G define the binary operation by

(x, g)(y, h) = (x(g · y), g|yh).

The following is part of the general theory of Zappa-Szép products, but we prove
it anyway.

Proposition 2.4 With the above product, M × G is a left cancellative monoid
containing copies of M and G such that M × G can be written as a unique
product of these copies.

Proof We begin by proving associativity. We calculate first

[(x, g)(y, h)](z, k).

By (SS2), (SS8), and (SS6) we get

(x(g · y)g|y · (h · z), g|y(h·z)h|zk).
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We now calculate
(x, g)[(y, h)(z, k)].

Using (SS4), we get the same result.
We now show that (1, 1) is the identity. We calculate

(1, 1)(x, g) = (1(1 · 1), 1|xg) = (x, g)

using (SS1) and (SS7). We calculate

(x, g)(1, 1) = (x(g · 1), g|11) = (x, g)

using (SS3) and (SS5). We have now used all the axioms (SS1)–(SS8).
Next we show that M ./ G is left cancellative. Suppose that

(x, g)(y, h) = (x, g)(z, k).

Then
(x(g · y), g|yh) = (x(g · z), g|zk).

Left cancellation in M gives us g · y = g · z and so because this is an action
y = z. Hence h = k.

We now have to show that M and G are each embedded in M ./ G. Define
ιM : M → M ./ G by x 7→ (x, 1). This is an injective homomorphism by (SS1)
and (SS7). Denote its image by M ′. Define ιG: G → M ./ G by g 7→ (1, g).
This is an injective homomorphism by (SS3) and (SS5). Denote its image by G′.
Observe that (x, g) = (x, 1)(1, g). Thus M ./ G = M ′G′. This decomposition
is evidently unique.

The monoid constructed in Proposition 2.4 is called the Zappa-Szép product
of M and G and is denoted M ./ G.

Proposition 2.5 Let S be a monoid. Suppose that S = MG uniquely where
M is a left cancellative monoid and G is a group. Then S is a left cancellative
monoid whose ideal structure is order isomorphic with the ideal structure of M .
In particular, when M is a free monoid, the monoid S is right hereditary and
equipped with a length function.

Proof Observe that {1} = G ∩ M . To see why if g ∈ G ∩ M then g = 1g = g1
and so we would lose uniqueness. We use the notation gx = (g ·x)g|x. We prove
first that S is left cancellative. Let ab = ac where a = mg, b = nh, and c = pk.
Then mgnh = mgpk. Thus m(g · n)g|nh = m(g · p)g|pk. In the monoid M we
have that m(g ·n) = m(g · p), and in the group G we have that g|nh = g|pk. By
left cancellation in M and properties of the group action we get n = p and so
h = k. Hence b = c, as required.

We now show that the ideal structures of M and S are order-isomorphic. If
a ∈ S then a = xg and so aS = xS. We prove that xS ⊆ yS iff xM ⊆ yM .
Suppose that x = yb for some b ∈ S. Let b = zu where z ∈ M and u ∈ G. Then
x = (yz)u. By uniqueness, u = 1 and so x ∈ yM . The converse is clear.
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Finally, when M is a free monoid, the monoid S will be right hereditary and
satisfy the dedekind height property because S and M have isomorphic ideal
structures. The fact that S has a length function follows from Theorem 1.6.

Remark It follows from the theory that the length functions of left cancellative,
right hereditary monoids satisfying the dedekind height property always restrict
to the usual length function on the free submonoid X∗.

Combining Propositions 2.1, 2.3, 2.4 and 2.5, we obtain the following.

Theorem 2.6 A monoid is left cancellative, right hereditary and satisfies the
dedekind height property if and only if it isomorphic to a Zappa-Szép product of
a free monoid by a group. Furthermore, Zappa-Szép products of free monoids
by groups determine, and are determined by, ZS-actions.

A natural question at this point is whether the monoids of the kind we are
considering in this paper ‘occur in nature’. We shall prove that they do, and
complete an argument begun in [6].

Let S be a left cancellative, right hereditary monoid satisfying the dedekind
height property. A subgroup N of G(S) is said to be a right normal divisor of
S if Ns ⊆ sN for all s ∈ S. Define

M(S) = {g ∈ G(S): gs ∈ sG(S) ∀s ∈ S}.

Then M(S) is the greatest right normal divisor of S [9]. We shall say that S is
fundamental2 if M(G) = {1}. Associated with S we have the action of G(S) on
X∗ defined by (g, x) 7→ g ·x. The following was proved as Proposition 2.6 of [6].

Proposition 2.7 The action of G(S) on X∗ is faithful if and only if S is fun-
damental.

The next result tells us that faithful ZS-actions admit a simpler characteri-
sation.

Lemma 2.8 Let G act faithfully on the free monoid X∗ in a length-preserving
way and suppose that there is a function G × X∗ → G denoted by (g, x) 7→ g|x
such that g · (xy) = (g · x)(g|x · y). Then this determines a ZS-action.

Proof We are assuming that axioms (SS1), (SS2) and (SS4) hold. We prove
that the remaining axioms hold. From the fact that g·x = g·(1x) we deduce that
(SS3) and (SS5) hold. The proof of (SS7) follows from that fact that xy = 1·(xy).
The fact that (SS6) holds follows from the fact that g · (x(yz)) = g · ((xy)z).
Finally, (SS8) follows from the fact that (gh) · (xy) = g · (h · (xy)).

2This is not a term used by Rees, but is adapted from its related usage in inverse semigroup

theory.

11



Actions of the type described in the lemma are said to be faithful self-similar
actions [7]. We therefore conclude that fundamental left cancellative right hered-
itary monoids satisfying the dedekind height property correspond to faithful self-
similar group actions.
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