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Abstract

We show how the Thompson group F' can be constructed from the
polycyclic monoid on two generators.
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1 Introduction

The Thompson group F' almost needs no introduction. I shall assume the reader
has met some construction of the group; a good reference is [2]. The polycyclic
monoid on two generators was introduced by Nivat and Perrot [7], and is dis-
cussed in Chapter 9 of my book [6]. Birget [1] has described one connection
between the Thompson group and the polycyclic monoid on two generators:
he proved that the group is a subgroup of a quotient algebra of the monoid.
Our approach is different, and more elementary. The idea is to show that the
elements of the Thompson group, regarded as bijections, can be represented as
disjoint unions of partial bijections that ultimately arise from a representation
of the polycyclic monoid. The idea for this representation came in two stages.
In Section 9.3 of my book [6], I wrote up work with Peter Hines, some of which
appeared in his thesis [5], on an interpretation of some calculations by Girard
[4] in linear logic in terms of representations of the polycyclic monoid. It was
only when I read Dehornoy’s paper [3] that I realised the calculations Peter and
I carried out could be used to construct the Thompson group F'.



2 The polycyclic monoid and its representations

Let S be an inverse semigroup with zero. If s € S we write d(s) = s s and
r(s) = ss~1. A pair of elements s,t € S are said to be disjoint if

sHt=0=st"".

If s and ¢ are disjoint I shall write s L ¢t. Observe that s L ¢ iff d(s)d(¢t) =0
and r(s)r(t) = 0.

Let X be a set. The symmetric monoid on X, denoted I(X), is the inverse
semigroup of all partial bijections on X. Note that functional composition will
be evaluated from right to left. If f L g in I(X) then f and g have disjoint
domains and disjoint ranges. It follows that their union f U g also belongs to
I(X). I shall denote the operation of the union of disjoint functions in I(X) by
+, and call it disjoint union. If f1,..., f, is a set of n elements of I(X) such
that f; L f; for i # j then we can form f; + ...+ f, which I shall also write
as y ., fi- The following lemma summarises some important properties of the
disjoint union of partial bijections. The proofs are all easy.

Lemma 2.1 In the symmetric inverse monoid, the following hold.

(i) If Yi, fi exists, then > 1| fi ' exists and
(Z fz')_1 = Z fi_l'
i=1 i=1
(i) If Y0, fi exists and f € I(X) then Y i, ff; exists and

i=1 i=1

and dually.
(ili) If 3202, fi and 305, g both exist, then 3, ; fig; ewists and

(Z fz')(_z 9;) = Z fig;.

(iv) If L, fi) exists, then both >, d(f;) and Y1 v(f;) exist and

n n

A} fo) = d(fi) and x(d_ fi) =Y r(f)-
=1 =1

i=1 =1



The polycyclic monoid on two generators, Ps, is defined by means of the
following monoid-with-zero presentation

1

Po={(pg,p g ippt=1=qqg andpg ' =0=¢gp!).

Each non-zero element in P, can be written uniquely in the form z 'y where 2
and y are strings over the alphabet {p, ¢}. With respect to these normal forms,
the product in P; is defined as follows:

1 (wv) ify=wu
(7 ly)(utv) =< (wz)"tv ifu=wy
0 else

It can be proved that P; is congruence-free.

We shall be interested in homomorphisms from P> to I(X), where X is a
non-empty set, which are monoid homomorphisms and map the zero of P; to
the zero of I(X). Because P, is congruence-free, 8 will be an injection. We call
0 a representation of P,. We say that a representation is strong if

0(p~'p) +0(¢""q) = 1x.
By X U X I mean the set (X x {0}) U (X x {1}).

Theorem 2.2

(i) Ewvery injection from X U X to X determines and is determined by a repre-
sentation of P;.

(ii) Ewery bijection from X UX to X determines and is determined by a strong
representation of Ps.

Proof (i) Let ¢: X U X — X be an injective function. Define functions
p~ ¢~ X = X as follows:

p~(z) = ¢(x,0) and ¢~ (z) = ¢(z, 1).

It is easy to check that p~! and ¢~! are injective functions. Their partial inverses
are denoted p and q respectively. Hence pp~' = 1x = gq~!. The fact that ¢ is
injective implies that the images of p~! and ¢! are disjoint. Thus p~'p L ¢ 'q.
It follows that pg~! =0 = gp~!.

Conversely, suppose we have injective functions p~*,¢~!: X — X such that
pp~l=1x =qq ! and p~'p L ¢ 'q. Define ¢: X UX — X by

¢(z,0) = p~'(z) and ¢(z,1) = ¢~ (2).

It is easy to check that ¢ is an injection.
(ii) The function ¢ is surjective iff each element of X lies either in the image
of p~! or in the image of ¢~ ! iff 1x = p~ip+q~lq. |



In what follows, I shall assume that a strong representation of P has been
chosen and fixed. Without loss of generality, let p,q € I(X) be such that

pg~' =0=gp~! and pp~' =1 = g¢~! where 0 denotes the empty function and

1 the identity function in I(X). Let f,g € I(X). Define
feg=p"'fr+q "9
Theorem 2.3 With the above definitions we have that
(i) 1lel=1.
(ii) (fog)(h@k)=fhe gk.
(iii) (fog)t=fTog™!
Proof (i) By definition
1ol=p Hp+qgliig=1.
(ii) By definition
feg=p'fr+q'ggand h@&k=p 'hp+q 'kq.
We now multiply these two expressions together using Lemma 2.1 and, after

simplifying, obtain fh @ gk.
(iii) The proof is straightforward and uses Lemma 2.1. ]

We shall now describe a way of representing the elements of P> by means
of pictures, although not strictly necessary in what follows they provide useful
motivation for otherwise arbitrary looking definitions. Each picture should be

read from right to left and scaled to be the same size. The zero element has
diagram

The identity 1 = ¢~ has the diagram

The element p has diagram



The element ¢ has diagram

The element p~! has diagram

The element ¢! has diagram

Here is the general recipe for constructing the diagram of 2~ 'y. The element
z tells us about the range or left-hand side of the diagram, and y tells us about
the domain or the right-hand side of the diagram. Let |z| = m and |y| = n.
Divide the range into 2 equal intervals, and the domain into 2" equal intervals.
The string z tells us which of the 2™ to choose: read the string x from right-to-
left; the letter p means ‘top-half’ and the letter ¢ means ‘bottom-half’. The same
procedure is adopted for the string y. Let L be the interval that x describes,
called the range of the diagram, and let R be the interval that y describes, called
the domain of the diagram. The diagram is completed by drawing a line from
the top of R to the top of L, and from the bottom of R to the bottom of L.
Here are some examples.



Some examples of diagrams

pq




AVA 4




It is clear that there is a bijection between elements of P> and diagrams. It
is possible to define a multiplication on diagrams so that this bijection becomes
an isomorphism. Consider the diagrams D; and D, corresponding to 'y and
u~ v respectively:

e If the domain of D; does not contain or is not contained by the range of

D, then the product of the two diagrams is the zero diagram.

Suppose that y = wu. Then the domain of D; is wholly contained in the
range of Dy (or is equal to it if w = €). The range of D1 D, is the same as
the range of Dy; the domain of Dy D, is described by wv — it is therefore
contained in the domain of D». This can be obtained by ‘projecting back’
the domain of D; to an interval within the domain of D,.

Suppose that 4 = wy. Then the range of D, is wholly contained within
the domain of D;. The domain of Dy D, is the same as the domain of Ds;
the range is described by wz which is obtained by ‘projecting forwards’
the range of D;.

Here is an example of this procedure. Let the elements of P> we wish to
multiply together be p~'pq and ¢ 'p respectively. Their respective diagrams

are

and




We now glue the diagrams together and, in this case, project back.

\

The diagram of the product is therefore

which corresponds to p~!p2.

The diagram notion for elements of P, has been introduced to make the
following definitions more transparent. If P; is strongly embedded in I(X) then
I can extend the diagram notation to describe elements of I(X) that are disjoint
unions of elements of P,.

Proposition 2.4 The element
a=p°p+ () 'pa+q7'q
is a well-defined bijection in I(X).

Proof The result can easily be checked algebraically. I shall show how an
extended diagram can be constructed for a.



The diagram for p~2p is

The diagram for ¢~'¢? is

10




The extended diagram for « is therefore

\
\

The significance of the bijection « is explained by the following result.
Theorem 2.5 For all f,g,h € I(X) we have that
afo(geh)a = (fog)®h

Proof This is a straightforward calculation from the definitions. The details
can be found in Theorem 14 of Section 9.3 of [6]. ]

Define
8=16&a.

It is clear that § is also a bijection. I leave it to the reader to construct an
extended diagram of S.

Theorem 2.6 For all f,g,h, k € I(X) we have that

Bfogehok)f =fa(goh) k).

Proof We use Theorem 2.5 and Theorem 2.3. ]

3 The Thompson group F.

Theorem 3.1 Given any strong representation of Py in I(X), the elements a
and B defined in Section 2 generate a subgroup of the symmetric group on X
isomorphic to the Thompson group F'.

Proof Define xg = a, x1 = 8 = 1®«, and, in general, x,, = 1@ x,,_1 for n > 2.
We first prove that
Xn = 'Xn 10

11



for n > 2. For n = 2, we have that y2 = 1® (1® «). Thus
axa '=a(le(lea)a ' =(1el)@a=10a=x.

For n > 3, the results can easily be proved by induction. It follows that the
group generated by a and [ is the same as the group generated by the x; where
1 € N. Next we prove that for all ¥ < n where n > 1 we have that

X;,anXk = Xn+1-

The claim is true for k£ = 0. To prove the general case, where kK > 1 and n > 1,
we verify that

Xan+1X;;1
is equal to x,. This follows from Theorem 2.5, and the fact that

1 times

——
xi=1®...616a

where I assume associativity to the right to avoid brackets.
From [2], we know that the Thompson group F' has a presentation

F = (Xo,X1,...: X7 ' Xpn Xy, = Xpy1 for k <n).

It follows that the group generated by a and 3 is a homomorphic image of F'.
It is known that every proper quotient of F' is abelian. So if we can prove that
the group generated by a and 3 is not abelian, we shall have proved that it is
isomorphic to F', as claimed.

I shall prove that aBa~'3~! is not the identity on X. Since the element
aBa~ 1871 is, by Lemma 2.1, a disjoint union of partial bijections of X, it is
enough to prove that one of the summands in this disjoint union is not an
idempotent. The elements o, 8, a~' and 8~ are, respectively:

e a=p2p+(gp)~'pqg+q >

e 3=p 'p+ (P*q) " pa + (qpg)~'pa® + ¢3¢
o o7l =p7p’ + () ap + 4720
e 87 =p7lp+ (pg)~'p2q + (pg*) lqpq + ¢3¢

where I have highlighted one summand from each element. Multiplying the
highlighted elements together in order we get

1= (a’p)"'r’q.
This is clearly not an idempotent, but I shall prove it nevertheless. Observe

that u2 = 0. If u = 0 then p = 0, but X # () and so this is false. Hence
1 is a non-zero element whose square is zero; it follows that p cannot be an

12



idempotent. [ |

The Thompson group arises in many different mathematical contexts. The
above theorem tells us that to obtain a copy of the Thompson group in some
context, we can try first to find a strong representation of P; in this context. An
isomorphic representation of the Thompson group will then come along from
free. The point is that finding a strong representation of P, in a given context
should not be difficult. The following examples illustrate this idea.

Examples 3.2
1. Let C be the Cantor set. Define

1
p: [O,E]QC—)bexl—H’):c

and 9
q: [g,l]ﬂC%bewHSaﬂ—?.

Then this gives us a strong representation of P, on the Cantor set. The
bijections a and 8 are homeomorphisms of the Cantor set, and so our
theory gives a representation of the Thompson group by homeomorphisms
of the Cantor set.

2. Let E and O be the sets of even and odd natural numbers respectively.
Define n
p:E—-Nbyn— 5

and 1
q:(O)—)ben»—)n2 .

Then this gives us a strong representation of P> on the set of natural
numbers. Thus we get a representation of the Thompson group by per-
mutations of the natural numbers.

3. This example is a little more complex. Let I = [0, 1]. Define
1
p: [0, 5] —[0,1] by z — 2z

and 1
q: [5,1] —[0,1] by z — 2z — 1.

A dyadic rational in I is a rational number that can be written in the
form 2; for some natural numbers a and b. Let I’ be the unit interval
with the dyadic rationals removed. The maps p and ¢ and their inverses
map dyadic rationals to dyadic rationals. We may therefore define

1
p': [0, 5]' —10,1] by z — 2z

13



and

1
q: [5,1]' —=10,1] by z — 22— 1

where the primes on the intervals mean that dyadic rationals have been
removed. It follows that we get a strong representation of P, on I’. The
maps « and (3 are bijections defined on I'. Define functions A and B on
I as follows:

z forogxgi

_ 1 1
2r—1 for § <zx<1

and

T forOSmS%
g4+l forl<azp<s
— 2 T 1 2>t >3
B(z) w—% for%ﬁmﬁ%
2z — 1 forggmgl

It can be checked that A restricted to I’ is a;, and B restricted to I’ is 3.
Thus the Thompson group is also isomorphic to a group of bijections of
the unit interval, the bijections being piecewise affine.
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