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1 Introduction

The theory of self-similar group actions arose in the 1980’s by considering groups
generated by automata. Many of these groups have interesting properties, such
as the famous Grigorchuk group. Within this theory, it is known that self-
similar group actions give rise to monoids, the so-called ‘tensor semigroups’
of [23]. However the structure of such monoids and their exact connection
with the actions with which they are associated has not been pursued by the
group-theorists. In fact, these semigroups were studied much earlier and were
introduced by Perrot [25, 26] in the course of generalising some work of Rees.
So it is with Rees’ work that we must begin.

David Rees’ 1948 paper [29]1 deals with the structure of left cancellative
monoids. In particular, Rees isolates an important property of their partially

1This paper has been influential in the development of the theory of inverse semigroups:
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ordered sets (posets) of principal right ideals P(S). He observes that the posets
that occur in this way are special, in that for each principal right ideal R the
whole poset P(S) is isomorphic to the subposet of all principal right ideals
contained in R. Motivated by this, he defines an arbitrary poset P to be uniform
if every principal order ideal is order isomorphic to P . Thus the posets P(S) are
uniform. In fact, all uniform posets P arise in this way: define S(P ) to be the
semigroup of all order isomorphisms from P to its principal order ideals. Then
P is order isomorphic to P(S(P )). Uniformity is, of course, a notion of self-
similarity. The simplest kinds of uniform posets are those order-isomorphic to
the natural numbers with their dual ordering. Accordingly, Rees studies the left
cancellative monoids whose posets have this property. It is interesting to note
that such monoids are analogous to discrete valuation rings. More precisely, let
S be a left cancellative monoid in which the poset of principal right ideals has
the following structure:

S = R0 ⊃ R1 ⊃ R2 ⊃ . . .

Let a be a generator of R1. Then an is a generator of Rn. It follows that each
element of S can be written uniquely in the form ang for some n ≥ 0 and some
g ∈ G(S), the group of units of S. This uniqueness property has important
consequences for the structure of the monoid. In particular, if g is invertible
then ga = ah for a unique invertible element h. In the light of this result, define
α:G(S) → G(S) by ga = aα(g). Then α is an endomorphism of the group G(S),
the proof being a consequence of the fact that (gh)a = g(ha) combined with the
uniquenes of the decomposition. We can identify the submonoid of S generated
by a with the monoid N under addition. It follows that S is isomorphic to the
set N ×G(S) equipped with the multiplication defined by

(m, g)(n, h) = (m+ n, αn(g)h).

Rees therefore obtains a semidirect product decomposition of the class of left
cancellative monoids under consideration.

Perrot [25, 26] generalised Rees’ results. The first step was to generalise the
condition on the poset of principal right ideals. To explain how he did this we
shall need free monoids. The free monoid X∗ on a set X consists of all finite
sequences of elements of X called strings, including the empty string ε, usually
denoted by 1, with multiplication given by concatenation of strings. The monoid
N is the free monoid on one generator. The key observaton is that its poset of
principal right ideals is the decreasing chain

N ⊃ 1 + N ⊃ 2 + N ⊃ . . . .

Accordingly, Perrot introduced the more general class of left cancellative monoids
in which we assume that P(S) is order isomorphic to the infinite tree of prin-
cipal right ideals of the free monoid on n generators where n ≥ 2: the infinite

together with Clifford’s 1953 paper [5], it provided one of the key ideas that led to the theory
of 0-bisimple inverse semigroups [30, 19, 20, 21, 18]. One of the corollaries of this paper is that
McAlister’s theory of 0-bisimple inverse semigroups [18] can be viewed as a generalisation of
the theory of self-similar group actions.
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regular n-ary tree. The second step was to analyse this class of monoids in the
spirit of Rees’ paper.

For the rest of this section, S will be a left cancellative monoid and P(S)
will be isomorphic to P(A∗) where A is a set with n elements and A∗ is the free
monoid on A.

Our monoid S has n maximal proper principal right ideals which I shall
denote by a1S, . . . , anS. We denote the set of ai’s by A. The set A replaces the
single element a in the case Rees considered. Perrot shows that the submonoid
A∗ of S generated by the set A is free, that S = A∗G(S), and that each element
of S can be written uniquely as a product of an element of A∗ followed by an
element of G(S). This result is the direct generalisation of Rees’. However,
unlike the case considered by Rees, the further analysis is more complex. This
hinges on the fact that in general gx = xh does not hold.2 What we do have
is that for each x ∈ A∗ and g ∈ G(S) there is a unique x′ ∈ A∗ and a unique
g′ ∈ G(S) such that gx = x′g′. We follow Perrot and introduce some notation
for the elements x′ and g′, although ours differs from his. We denote x′ by g ·x,
and g′ by g|x, and we call g · x ‘action’ and g|x ‘restriction’. Thus

gx = (g · x)g|x.

Let xg and yh be elements of S where x, y ∈ A∗ and g, h ∈ G(S). Using the
definitions above we see that

(xg)(yh) = x(g · y)g|yh.

Thus the multiplication in S can be completely described in terms of action
and restriction. Perrot axiomatised the properties of these two operations, and
as a result was able to describe the multiplication in S purely in terms of the
action and restriction operations. In modern terminology, Perrot showed that
his monoids are precisely Zappa-Szép products of free monoids and groups,
where such products can be regarded as being two-sided semidirect products
and so once again generalise Rees’ construction.

The key point is this: the actions Perrot obtains are precisely the self-similar
group actions of [22], and as a consequence, Chapter 6 of Perrot’s thesis is an
independent discovery of self-similar group actions avant la lettre.

I shall not continue with this historical approach here. Instead, my goal is
to describe the correspondence between the class of left cancellative monoids
introduced by Perrot and the self-similar group actions of Nekrashevych using
any modern ideas that clarify the theory. However, the theory I describe is due,
in all essentials, to Perrot.

Sections 2,3 and 4 of this paper describe Perrot’s theory in modern dress.
Section 5 makes the link between Perrot’s work and the contemporary theory of
self-similar group actions. Sections 6 and 7 provide alternative characterisations
of self-similar group actions.

2This is the result stated in [24] and is wrong.
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2 Left Rees monoids

We begin with some definitions.
In a free monoid, the length |x| of a string x is the total number of elements

of X that occur in it. If x = yz then y is called a prefix of x. The prefix order
on X∗ is defined by x ≤ y iff x = yz for some string z.

Let S be a monoid with group of units G(S). A length function for S is a
surjective homomorphism λ: S → N such that λ−1(0) = G(S). Free monoids
have length functions: their usual length functions.

In a left cancellative monoid S, we have that aS = bS iff a = bg for some
unit g, and we say that a and b are associates; the relation of being associates
is an equivalence relation. We have that aS = S iff a is invertible.

A monoid S is said to be equidivisible if for all a, b, c, d ∈ S the fact that
ab = cd implies that either a = cu, ub = d for some u ∈ S or c = av, b = vd for
some v ∈ S.

Lemma 2.1 Let S be a left cancellative monoid. Then the following are equiv-
alent.

(i) Incomparable principal right ideals are disjoint.

(ii) S is equidivisible.

If either holds, then incomparable principal left ideals are disjoint.

Proof (i)⇒(ii). Suppose that ab = cd. Then aS ∩ cS 6= ∅. Thus aS ⊆ cS or
cS ⊆ aS. Suppose the former. Then a = cu for some u ∈ S. But ab = cd and
so cub = cd. By left cancellation, ub = d. Suppose the latter. Then c = av for
some v ∈ S. But ab = cd and so ab = avd. By left cancellation, b = vd. Thus
S is equidivisible.

(ii)⇒(i). This is immediate.
To prove the last assertion, suppose that Sb ∩ Sd 6= ∅. Then ab = cd for

some b, c ∈ S. The result now follows by equidivisibility.

A monoid S will be called a left Rees monoid3 if it satisfies the following
conditions:

(LR1) S is a left cancellative monoid.

(LR2) Incomparable principal right ideals are disjoint.

(LR3) Each principal right ideal is properly contained in only a finite number
of principal right ideals.

We define right Rees monoids dually.

Remark If a ∈ bS we say that b is a left factor of a. Thus (LR3) says that
each element has only a finite number of left factors upto associates. Condition

3They could, with equal justice, be called ‘left Perrot monoids’.
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(LR2) says that if a and b are both left factors of c then one of a and b is a left
factor of the other. Thus the definition of left Rees monoids is essentially an
arithmetical one.

Let aS and bS be two principal right ideals. A chain of length n from aS to
bS is a sequence

aS = a0S ⊂ a1S ⊂ a2S ⊂ . . . ⊂ anS = bS.

Lemma 2.2 Let S be a left cancellative monoid in which incomparable principal
right ideals are disjoint. Then the following are equivalent.

(i) Each principal right ideal is properly contained in only a finite number of
principal right ideals.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

Proof (i) ⇒ (ii). The set of all principal right ideals containing a is finite. Thus
there is a bound on the length of chains starting at aS and ending at S. Given
two such chains of maximum length they must be equal. To prove this, we show
that the two chains must agree term by term. We use the fact that if two ideals
have a non-empty intersection, then they must be comparable. Let

aS = a0S ⊂ a1S ⊂ . . . ⊂ amS = S

and
aS = b0S ⊂ b1S ⊂ . . . ⊂ bnS = S

be two such chains of maximum length. We claim that a1S = b1S. To see
why observe that they are comparable because both contain aS. Thus either
a1S ⊂ b1S or vice-versa. If the former we could refine the second chain, if the
latter we could refine the first chain. But neither refinement is possible since
each chain is of maximum length. Thus a1S = b1S. This process continues. If
m > n then we could use the first chain to refine the second. If n > m then we
could use the second chain to refine the first. So the two chains must have the
same length and the same terms.

(ii) ⇒ (i). All the distinct principal right ideals containing aS must be com-
parable so they will form a totally ordered set from aS to S. This will be a
chain of maximum length and so equal to the unique such chain assumed to
exist. Thus the set of all principal right ideals containing aS must be finite.

The next lemma provides us with a class of examples of left Rees monoids.

Lemma 2.3 Let S be a left cancellative monoid in which incomparable principal
right ideals are disjoint equipped with a length function. Then each principal
right ideal is properly contained in only a finite number of distinct principal
right ideals.

5



Proof Let aS ⊆ bS. Then a = bs and so λ(a) = λ(b)+λ(s). Thus, in particular,
λ(a) ≥ λ(b). Suppose, in addition, that λ(a) = λ(b). Then λ(s) = 0 and so s
is a unit. It follows that in this case, aS = bS. We deduce that aS = bS iff
λ(a) = λ(b).

Let aS be a fixed principal right ideal. By the above results, the distinct
principal right ideals containing aS correspond bijectively to the distinct natu-
ral numbers strictly less than λ(a). Thus there are only finitely many principal
right ideals containing aS.

Let S be a left Rees monoid. Let

aS = S0 ⊂ S1 ⊂ S2 . . . ⊂ Sn = S

be a chain of principal right ideals of maximum length. We define λ(a) = n.

Lemma 2.4 Let S be a left Rees monoid. Let

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

be a chain of maximum length joining bS to S. Then for any a ∈ S we have
that

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS.

Proof We show first that the inclusions really are distinct. Suppose that abiS =
abi+1S for some i. Then abi = abi+1g for some unit g. By left cancellation,
bi = bi+1g giving biS = bi+1S, which contradicts our assumption. Next we show
that the chain is of maximum length. Suppose not. Then we can interpolate a
principal right ideal somewhere

abiS ⊂ cS ⊂ abi+1S.

Let abi = cf for some f and c = abi+1d for some d. Thus by left cancellation,
bi = bi+1df . We therefore have

biS ⊆ bi+1dS ⊆ bi+1S.

Suppose that biS = bi+1dS. Then bi = bi+1dg for some unit g. By left cancella-
tion, it follows that g = f and is a unit. Thus abiS = cS, which is contradiction.
Suppose that bi+1dS = bi+1S. Then bi+1d = bi+1h for some unit h. By left
cancellation, d = h and so cS = abi+1S, which is a contradiction. However, we
now have

bsS ⊂ bi+1dS ⊂ bi+1S

which contradicts the fact that our original chain was of maximum length. It
follows that our new chain is of maximum length.
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Lemma 2.5 Let S be a left Rees monoid which is not a group. Then the func-
tion λ defined before Lemma 2.4 is a length function which sends an element to
1 if and only if it is irreducible.

Proof We show first that S has an infinitely descending chain of principal right
ideals. Let a ∈ S be non-invertible. Let aS ⊆ bS where bS is a maximal proper
principal right ideal. Then b is non-invertible. We therefore have an infinitely
descending sequence of ideals

bS ⊃ b2S ⊃ b3S ⊃ . . .

We show that this is a maximal such chain. Suppose that bn+1S ⊆ cS ⊆ bnS.
Then bn+1 = cx and c = bny. Thus bn+1 = bnyx giving b = yx. Thus bS ⊆ yS.
It follows that either bS = yS or y is invertible. Suppose the former. Then
b = yg for some invertible element g. It follows that x is invertible and so
cS = bn+1S. Suppose the latter. Then y is invertible and so cS = bnS. Thus
the chain is maximal. It follows that the function λ is surjective.

By Lemma 2.4, if

bS = b0S ⊂ b1S ⊂ b2S ⊂ . . . ⊂ bλ(b)S = S

is a chain of maximum length joining bS to S, then

abS = ab0S ⊂ ab1S ⊂ ab2S ⊂ . . . ⊂ abλ(b)S = aS

is a chain of maximum length joining abS to aS. Now glue this to a chain

aS = a0 ⊂ a1S ⊂ . . . ⊂ aλ(a)S = S

of maximum length. The resulting chain links abS to S and has maximum
length, and this length is λ(a) + λ(b). Thus λ is a homomorphism.

Those elements a of length 0 are precisely those where aS = S, which are
just the invertible elements.

The elements of length 1 are the irreducibles by construction.

We combine Lemmas 2.2, 2.3 and 2.5 in the following theorem.

Theorem 2.6 Let S be a left cancellative monoid, which is not a group, in
which incomparable principal right ideals are disjoint. Then the following are
equivalent.

(i) Each principal right ideal is properly contained in only a finite number of
principal right ideals.

(ii) For each a ∈ S there exists a unique chain of maximum finite length starting
at aS and concluding at S.

(iii) The monoid S is equipped with a length function in which generators of
maximal proper principal right ideals are mapped to 1.
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(iv) The monoid S is equipped with a length function.

One final ambiguity concerns the status of cancellative left Rees monoids.
Theoretically, they might not be right Rees monoids. We now show this cannot
happen.

Proposition 2.7 Let S be a cancellative monoid admitting a length function.
Then S is a left Rees monoid if and only if it is a right Rees monoid.

Proof Let S be a left Rees monoid. By Lemma 2.1, we know that if two prin-
cipal left ideals have a non-empty intersection then they are comparable. Thus
S is right cancellative and incomparable principal left ideals are disjoint. By
the left-right dual of Lema 2.3, each principal left ideal is properly contained in
only a finite number of distinct principal right ideals. Thus S is a right Rees
monoid. The converse follows by symmetry.

We define a monoid to be a Rees monoid if it is both a left Rees monoid and
a right Rees monoid. It follows by the above proposition, that cancellative left
Rees monoids are Rees monoids.

We conclude by describing some examples of left Rees monoids.

Examples 2.8

(i) From Theorem 2.6, Proposition 2.7 and Corollary 5.1.6 of [12] and the fact
that free monoids are left Rees monoids we deduce that free monoids are
precisely the left Rees monoids in which the group of units is trivial. This
is the first indication that we might be able to construct arbitrary left
Rees monoids from free monoids and groups.

(ii) Left Rees monoids provide natural examples of monoids defined in ‘homo-
logical’ terms. We recall some definitions first. An S-act or act (X,S) is
an action of a monoid S on a set X on the right. If S is a monoid then
(S, S) is an act by right multiplication. If Y ⊆ X is a subset such that
Y S ⊆ Y then we say that Y is an S-subact or just a subact. Right ideals
of S are subacts under right multiplication. If X and Y are acts then a
function θ from X to Y is an S-homomorphism or just a homomorphism
if θ(xs) = θ(x)s for all x ∈ X and s ∈ S. For a fixed S, we can form
the category consisting of S-acts and the homomorphisms between them.
The usual definitions from module theory can be adapted to the theory of
acts. In particular, we can define when an act is projective. A monoid S
is said to be right PP if all its principal right ideals are projective as right
S-acts, and right hereditary if all its right ideals are projective as right
S-acts. Dorofeeva [6] proved that a monoid S is right hereditary iff it is
right PP, incomparable principal right ideals are disjoint, and S has the
ascending chain condition for principal right ideals. Right PP monoids
with a single idempotent are precisely the left cancellative monoids. Thus
left Rees monoids are examples of right hereditary monoids with a single
idempotent.
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(iii) The idea for the following example comes from [28] where the similarity
semigroup of the Sierpinski gasket is defined. The proof uses some ideas
to be found in the next section. Centre the Sierpinski gasket at the origin,
and consider the monoid S of all similarities of the plane that map the
gasket into itself. The group of units of this monoid is just the six element
group of symmetries of the equilateral triangle. I shall now pick out certain
important elements of S: a clockwise rotation by 2π

3 denoted by ρ; a
reflection in the vertical denoted by σ; and three similarities denoted T , L
and R which halve the size of the gasket and then translate it to the top,
left and right parts of the original gasket. It is not hard to see that the
monoid generated by these similarities is S and that the submonoid of S
generated by T , L and R is the free monoid on three generators. Simple
calculations show that

ρT = Rρ, ρL = Tρ, ρR = Lρ

and
σT = Tσ, σL = Rσ, σR = Lσ.

Thus every element of S can be written as a product of an element of a free
monoid and a group element. This representation is unique: if xg = yh
where g, h ∈ G(S) and x, y ∈ {T,L,R}∗ then x = yhg−1. However
elements of {T,L,R}∗ do not change the orientation of a triangle whereas
non-identity elements of G(S) do. Thus g = h and so x = y. It is now
easy to check that S is a Rees monoid. In particular, the relations above
show that we have defined a non-trivial action of the group G(S) on the
free monoid on three generators generated by T , L and R that satisfies
axioms (SS1)–(SS8) of Section 2.

(iv) The class of left Rees monoids is a subclass of the class of all left cancellative
monoids. We shall now show how closely these two classes are related. We
shall use the theory of Rhodes-expansions described in [3] adapted to our
situation. Let S be a left cancellative monoid. We shall be interested in
finite sequences of elements of S

x = (x1, . . . , xn)

where xi+1 ∈ xiS but xi+1S 6= xnS and where x1 is a unit. We denote
by Ŝ the set of all such sequences. We shall now define a product on such
sequences. Let

x = (x1, . . . , xm) and y = (y1, . . . , yn).

Consider the sequence

x1, . . . , xm−1, xm, xmy1, . . . , xmyn.

Because y1 is a unit, we have that xmS = xmy1S. Clearly, xmy1S ⊂
xm−1S. Also from yi+1S ⊂ yiS we get xmyi+1S ⊆ xmyiS. Observe that
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if xmyi+1S = xmyiS then xmyi+1 = xmyig for some unit g. Thus by
left cancellation, yi+1 = yig implying that yi+1S = yiS, contradicting our
assumption. It follows that

xy = (x1, . . . , xm−1, xmy1, . . . , xmyn)

is a well-defined element of Ŝ. This defines a binary operation on Ŝ. The
fact that this is a semigroup follows from the general theory in [3]. It is easy
to check that it is a monoid with identity (1), and that left cancellation
in S is inherited by Ŝ. We claim that for each left cancellative monoid S,
the monoid Ŝ is a left Rees monoid. There is a surjective homomorphism
from Ŝ onto S. We now prove our claim. Suppose that x ∈ yŜ. Then

(x1, . . . , xm) = (y1, . . . , yn)(z1, . . . , zp).

Thus m ≥ n, y1 = x1, . . . , yn−1 = xn−1 and ynS = xnS. Conversely,
suppose that (x1, . . . , xm) and (y1, . . . , yn) are such that m ≥ n, y1 =
x1, . . . , yn−1 = xn−1 and ynS = xnS. For 0 ≤ i ≤ m − n define zi+1

by xn+i = ynzi+1. Observe that z1 is a unit. It is easy to check that
z = (z1, . . . , zp) is a well-defined element of Ŝ and that x = yz. Suppose

that xŜ ∩ yŜ 6= ∅. Then there is a z which has both x and y as left
factors. Let z = (z1, . . . , zp), x = (x1, . . . , xm), and y = (y1, . . . , yn).
Then p ≥ m,n and x1 = z1, . . . , xm−1 = zm−1, zmS = xmS and y1 =
z1, . . . , yn−1 = zn−1, znS = ynS. Without loss of generality, suppose that
m ≤ n. Then x1 = y1, . . . , xm−1 = ym−1 and xmS = zmS = ymS.
Thus y ∈ xŜ. From the above we can easily derive the criterion for
yŜ = xŜ: x and y have the same length, all the components are the same
except the rightmost ones which differ by a unit. Define ηS : Ŝ → S by
(x1, . . . , xn) 7→ xn. Then this is a surjective homomorphism. Observe that
restricted to the R-classes of Ŝ, this homomorphism is injective. Thus Ŝ
is a left Rees monoid.

3 Zappa-Szép products

Assumption We shall assume that our left Rees monoids are not groups. By
Lemma 2.5 this is equivalent to assuming that they are equipped with length
functions.

The goal of this section is to obtain a structural description of the class of left
Rees monoids. The tool we shall use goes under many names. Within the theory
of quantum groups, it is known as the ‘bicrossed product’ [10], within semigroup
theory as the ‘Zappa-Szép product’, the term I shall use. The paper by Matt
Brin [4] is a useful introduction and contains further references. However, I
shall prove almost everything from scratch here and so prior knowledge of this
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construction is not needed. The key result on the structure of left Rees monoids
is the following.

Proposition 3.1 Let S be a left Rees monoid. Let X be a transversal of the
generators of the maximal proper principal right ideals, and denote by X∗ the
submonoid generated by the set X. Then the monoid X∗ is free, S = X∗G(S),
and each element of S can be written uniquely as a product of an element of X∗

and an element of G(S).

Proof We show first that S = X∗G(S). Let s ∈ S \ G(S). Consider the set
of all proper ideals that contain s. This set contains a maximal element x1S,
which is necessarily a maximal proper principal right ideal, and x1 ∈ X. Thus
s = x1s1. If s1 is a unit or generates a maximal proper principal right ideal
the process stops. Otherwise, repeat this process with s1 to get s1 = x2s2 and
so on. Thus we can write s = x1 . . . xisi. To show that this process terminates
observe that

sS ⊂ x1 . . . xiS ⊂ . . . ⊂ x1S.

Thus termination follows from Lemma 2.2. It follows that we can write s =
x1 . . . xng where g is a unit.

Next we prove that X∗ is free. Suppose that

1 = x1 . . . xm

where m ≥ 1 and xi ∈ X. Then S = x1 . . . xmS ⊆ x1S and so x1 is invertible,
which is a contradiction and so m = 1 and x1 = 1.

Now suppose that
x1 . . . xm = y1 . . . yn

where xi, yj ∈ X. By our result above, we can assume that m,n ≥ 1. Now
x1 . . . xmS = y1 . . . ynS ⊆ x1S, y1S. It follows that x1 = y1 and so, by left
cancellation, x2 . . . xm = y2 . . . yn. This process can be repeated and because
either m < n or n < m would lead to a contradiction, namely that an element
of X is invertible, we must have that m = n and xi = yi. Thus X∗ is the free
monoid on X.

Finally, we prove the uniqueness of the decomposition. Suppose that xg = yh
where x, y ∈ X∗, g, h ∈ G(S), and x = x1 . . . xm and y = y1 . . . yn where
xi, yj ∈ X. Arguing as before, xS = yS ⊆ x1S, y1S and so x1 = y1. By left
cancellation x2 . . . xmg = y2 . . . ynh. If m = n then we can repeat this argument
to get x = y and so g = h, by left cancellation. If m < n, then we can easily
deduce that ym+1 is invertible, which is a contradiction. A similar argument
shows that we cannot have n < m.

The fact that each element of S can be written uniquely as a product of an
element from a free monoid and an element from the group of units we call the
uniqueness property.

Having proved our key result, we now come to our key definition. Let G be
a group and X∗ a free monoid on the set X. We suppose that there are two
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operations that link G and X∗. The first is defined by a function G×X∗ → X∗,
called the action, denoted by (g, x) 7→ g ·x. The second is defined by a function
G ×X∗ → G, called the restriction, denoted by (g, x) 7→ g|x. We require that
the following eight axioms hold:4

(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

(SS4) g · (xy) = (g · x)(g|x · y).

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) 1|x = 1.

(SS8) (gh)|x = g|h·xh|x.

The axioms (SS1)–(SS3) tell us that we have a left action G×X∗ → X∗ in
which the empty string is a fixed point; the axioms (SS5)–(SS7) tell us that we
have a right actions G ×X∗ → G in which the group identity is a fixed point;
and axioms (SS4) and (SS8) tell us how the two actions interact.

Proposition 3.2 With each left Rees monoid, we can associate an action sat-
isfying the axioms (SS1)–(SS8).

Proof We use the uniqueness property established in Proposition 3.1. The proof
follows by considering properties of the identity element and different cases of
the associativity law. From 1x = x, we deduce both (SS1) and (SS7). From
g1 = g, we deduce both (SS3) and (SS5). From (gh)x = g(hx), we deduce both
(SS2) and (SS8). Finally, from (gx)y = g(xy), we deduce both (SS4) and (SS6).

An action of a group G on a free monoid X∗ is length-preserving if |g ·x| = |x|
for all x ∈ X∗, and prefix-preserving if x = yz in X∗ implies that g ·x = (g · y)z′

for some string z′. This means precisely that if x ≤ y then g · x ≤ g · y.

Lemma 3.3 Let G act on X∗ in such a way that the axioms (SS1)–(SS8) hold.
Then the action is length-preserving and prefix-preserving.

Proof Prefix-preserving follows from (SS4). We now prove that the action is
length-preserving. Observe first that by (SS3), if x is the empty string so too is
g · x. Conversely, if g · x = 1 then x = g−1 · 1 = 1 by (SS3). Thus g · x is the
empty string iff x is. Let x ∈ X. Suppose that g ·x = yz where y is a letter and
z is a string, possibly empty. Then by (SS4), we have that

x = (g−1 · y)(g−1|y · z).

4Observe that we use 1 to denote both the identity of the group G and the empty string
of X∗.

12



We know that g−1 · y cannot be empty and so has length at least one. Since the
leftthand side has length one and lengths add, we deduce that (g−1|y · z) has
length zero. Thus z is the empty string. It follows that letters are mapped to
letters. The result now follows by (SS4) and induction.

We define Gx to be the stabiliser of x ∈ X∗ under the (left) action of G.

Lemma 3.4 Let G act on X∗ in such a way that the axioms (SS1)–(SS8) hold.

(i) (g|x)−1 = g−1|g·x.

(ii) (g−1|x)−1 = g|g−1·x.

(iii) The function φx: Gx → G given by g 7→ g|x is a homomorphism.

(iv) Let y = g · x. Then Gy = gGxg
−1 and

φy(h) = g|xφx(g−1hg)(g|x)−1.

Proof (i) By (SS7), 1 = 1|x. Thus 1 = 1|x = (g−1g)|x = (g−1|g·x)g|x using
(SS8). Hence (g|x)−1 = g−1|g·x.

The proof of (ii) follows of course from (i)
(iii) Let g, h ∈ Gx. Then

φx(gh) = (gh)|x = g|h·xh|x = g|xh|x = φx(g)φx(h),

using (SS8), as required.
(iv) We have that h ·y = y iff h ·(g ·x) = g ·x iff g−1hg ·x = x iff g−1hg ∈ Gx.

Hence iff h ∈ gGxg
−1. The proof of the second part is obtained by direct cal-

culation.

We shall now show how to construct left Rees monoids from actions satisfying
axioms (SS1)–(SS8). Let G be an arbitrary group, and M an arbitrary left
cancellative monoid (not necessarily free) equipped with a function G×M →M ,
denoted by (g,m) 7→ g·m, and a function G×M → G, denoted by (g,m) 7→ g|m,
satisfying the obvious generalisations of (SS1)–(SS8). On the set M ×G define
the binary operation by

(x, g)(y, h) = (x(g · y), g|yh).

The following is part of the general theory of Zappa-Szép products, but we prove
it anyway.

Proposition 3.5 With the above product, M ×G is a left cancellative monoid
containing copies of M and G such that M × G can be written as a unique
product of these copies.
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Proof We begin by proving associativity. We calculate first

[(x, g)(y, h)](z, k).

By (SS2), (SS8), and (SS6) we get

(x(g · y)g|y · (h · z), g|y(h·z)h|zk).

We now calculate
(x, g)[(y, h)(z, k)].

Using (SS4), we get the same result.
We now show that (1, 1) is the identity. We calculate

(1, 1)(x, g) = (1(1 · 1), 1|xg) = (x, g)

using (SS1) and (SS7). We calculate

(x, g)(1, 1) = (x(g · 1), g|11) = (x, g)

using (SS3) and (SS5). We have now used all the axioms (SS1)–(SS8).
Next we show that M ×G is left cancellative. Suppose that

(x, g)(y, h) = (x, g)(z, k).

Then
(x(g · y), g|yh) = (x(g · z), g|zk).

Left cancellation in M gives us g · y = g · z and so because this is an action
y = z. Hence h = k.

We now have to show that M and G are each embedded in M ×G. Define
ιM : M → M × G by x 7→ (x, 1). This is an injective homomorphism by (SS1)
and (SS7). Denote its image by M ′. Define ιG: G→M ×G by g 7→ (1, g). This
is an injective homomorphism by (SS3) and (SS5). Denote its image by G′.
Observe that (x, g) = (x, 1)(1, g). Thus M ×G = M ′G′. This decomposition is
evidently unique.

The monoid constructed in Proposition 3.5 is called the Zappa-Szép product
of M and G and is denoted M ./ G.

Proposition 3.6 Let S be a monoid. Suppose that S = MG uniquely where
M is a left cancellative monoid and G is a group. Then S is a left cancellative
monoid whose poset of principal right ideals is order isomorphic with that of M .
In particular, when M is a free monoid, the monoid S is a left Rees monoid.

Proof Observe that {1} = G ∩M . To see why if g ∈ G ∩M then g = 1g = g1
and so we would lose uniqueness. We use the notation gx = (g ·x)g|x. We prove
first that S is left cancellative. Let ab = ac where a = mg, b = nh, and c = pk.
Then mgnh = mgpk. Thus m(g · n)g|nh = m(g · p)g|pk. In the monoid M we
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have that m(g ·n) = m(g · p), and in the group G we have that g|nh = g|pk. By
left cancellation in M and properties of the group action we get n = p and so
h = k. Hence b = c, as required.

We now show that the posets of principal right ideals of M and S are order-
isomorphic. If a ∈ S then a = xg and so aS = xS. We prove that xS ⊆ yS iff
xM ⊆ yM . Suppose that x = yb for some b ∈ S. Let b = zu where z ∈ M and
u ∈ G. Then x = (yz)u. By uniqueness, u = 1 and so x ∈ yM . The converse is
clear.

Finally, when M is a free monoid, the monoid S will be a left Rees monoid
since it inherits the order on its principal right ideals from that on the principal
right ideals of M .

Remark It follows from the theory that the length functions of left Rees
monoids can always be chosen to restrict to the usual length function on the
free submonoid X∗.

Combining Propositions 3.1, 3.2, 3.5 and 3.6, we obtain the following impor-
tant theorem which is just a modern way of expressing Perrot’s original work.

Theorem 3.7 (Perrot) A monoid is a left Rees monoid (which is not a group)
if and only if it isomorphic to a Zappa-Szép product of a free monoid by a group.
Furthermore, Zappa-Szép products of free monoids by groups determine, and are
determined by, actions satisfying axioms (SS1)–(SS8).

In Section 5, I shall examine actions satisfying axioms (SS1)–(SS8) in more
detail.

4 Right normal divisors

In this section, we shall adapt some results from [29] to the case of left Rees
monoids. Throughout this section, S is a left Rees monoid and we fix a decom-
position S = X∗G which gives us the definitions of action and restriction.

Let S be a left Rees monoid. Define

K(S) = {g ∈ G(S): gs ∈ sG(S) for all s ∈ S}.

This is a normal subgroup of G(S). There is no agreed terminology for this
subgroup, but we suggest calling it the kernel of the left Rees monoid. Left
Rees monoids S for which K(S) = {1} are said to be fundamental.5

Lemma 4.1 K(S) =
⋂

x∈X∗ Gx.

5This is not a term used by Rees, but is adapted from its related usage in inverse semigroup
theory.
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Proof Let g ∈ K(S). Let x ∈ X∗. Then gx ∈ xG. Thus gx = xh for some h.
But gx = (g · x)g|x and so gx = (g · x)gx = xh. By uniqueness, g · x = x.

Conversely, let g ∈
⋂

x∈X∗ Gx. Let s ∈ S. Then s = xh. Thus

gs = g(xh) = (g · x)g|xh = (xh)h−1g|xh ∈ sG.

It follows that g ∈ K(S).

The following is now immediate and is the first step in linking the structure
of the left Rees monoid to the structure of the associated action, a link we
explore in more detail in [15].

Corollary 4.2 The action of G on X∗ is faithful iff K(S) = {1}. Thus funda-
mental left Rees monoids correspond to faithful actions satisfying axioms (SS1)–
(SS8).

Put K1 =
⋂

x∈X Gx. This is a normal subgroup of G and contains K.

Lemma 4.3 We have that g ∈ K(S) iff g|x ∈ K1 for all x ∈ X∗.

Proof Let g ∈ K(S), x ∈ X∗ and y ∈ X. By assumption, g(xy) ∈ xyG and so
(g ·x)(g|x ·y) = xy. By length considerations, g|x ·y = y and so g|x ∈

⋂
x∈X Gx.

Conversely, let g|x ∈
⋂

x∈X Gx for all x ∈ X∗. We prove that g ∈ K(S). Clearly
g fixes all elements of length zero and one. Assume that it fixes all elements of
length n. Let y be a string of length n+ 1. Then y = xv where x has length n
and v has length 1. Then g · y = (g · x)(g|x · v). By assumption g · x = x and
g|x · v = v. Thus g · y = y, as required.

Let S be a left Rees monoid with group of units G. A subgroup N of G is
said to be a right normal divisor if for all s ∈ S we have that Ns ⊆ sN . Clearly,
N is a normal subgroup of G.

Lemma 4.4 Let S be a left Rees monoid, and let N be a normal subgroup of
G(S). Then the following are equivalent.

(i) N is a right normal divisor.

(ii) N is a subgroup of the kernel

(iii) For all g ∈ N and x ∈ X we have that g · x = x and g|x ∈ N .

(iv) For all g ∈ N and x ∈ X∗ we have that g · x = x and g|x ∈ N .

Proof (i) ⇔ (ii). This is immediate from the definitions.
(i) ⇒ (iii). By (i), if g ∈ N and x ∈ X then gx = xk for some k ∈ G. But

gx = (g · x)g|x. Thus by uniqueness, x = g · x and g|x = k ∈ G. Hence (iii)
holds.
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(iii) ⇒ (iv). We prove this by induction. Suppose (iv) is true for all strings
of length n. Let x be a string of length n+ 1, and let g ∈ N . Let x = wy where
w has length n, and y has length one. Then gx = g(wy) = (g ·w)(g|w · y)g|w|y.
By the induction hypothesis g · w = w and g|w ∈ N . By (iii), we have that
gw · y = y and g|x = g|w|y ∈ N . It follows that g · x = x and g|x ∈ N , as
required.

(iv) ⇒ (i). Let s ∈ S. We calculate gs. Let s = xh. Then gs = g(xh) =
(g · x)gxh. By assumption g · x = x and g|x ∈ N . Thus gs = xh(h−1gxh) and
so gs = sk where k = h−1gxh ∈ N , since N is normal. Thus (i) holds.

The significance of right normal divisors is that we can use them to form
quotient monoids. Let S be a a left Rees monoid and let N be a right normal
divisor. Put S/N = {sN : s ∈ S}. Then we may define a multiplication on this
set by (sN)(tN) = stN . The following can be quickly deduced from Rees [29].

Proposition 4.5 Let S be a left Rees monoid isomorphic to X∗ ./ G, and N
a right normal divisor of S. Then S/N is a left Rees monoid isomorphic to
X∗ ./ G/N .

5 The work of Nekrashevych et al

The work of Sections 1 to 4 is a reformulation of Perrot’s thesis. In this section,
we introduce something new. Specifically, the goal of this section is to make
the connection between left Rees monoids and self-similar group actions, as
described in [22].

5.1 Self-similar group actions

Let G act on X∗ in such a way that axioms (SS1)–(SS8) hold. Because the
action of G on X∗ is length-preserving it restricts to an action on X. In verifying
that axioms (SS1)–(SS8) hold, it is essentially enough to know the action of G
restricted to X, and the function from G×X to G defined by (g, x) 7→ g|x. The
following lemma spells out the precise result.

Lemma 5.1 Let G act on X on the left, with the action denoted by (g, x) 7→ g·x.
We assume also that g · 1 is defined and equals 1. Let there be a function
G × X → X given by (g, x) 7→ g|x such that 1|x = 1 for all x ∈ X and
(gh)|x = g|h·xh|x. Then this data can be used to define a unique action of G on
X∗ extending the given data and satisfying axioms (SS1)–(SS8).

Proof Uniqueness follows from the fact that by using (SS4) and induction we
have that

g · (x1 . . . xn) = (g · x1)(g|x1
· x2) . . . (g|x1...xn−1

· xn)
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and by (SS6) we have that

g|y1...ym
= (. . . (g|y1

)|y2
. . . |ym

).

Thus given an action satisfying axioms (SS1)–(SS8) and knowing g · x and g|x
for all letters we have determined the action.

We now sketch out the existence proof. The function G×X → X given by
(g, x) 7→ g|x can be regarded as a function from X to the full transformation
monoid T (G) on the set G. Therefore this extends to a unique monoid homo-
morphism from the free monoid X∗ to T (G) where we write arguments on the
the left. Thus g|x now describes the effect of the string x on the element g. We
have therefore defined an action of X∗ on G on the right and axioms (SS5),
(SS6) and (SS7) are satisfied.

Now we extend the left action of G on X to the whole of X∗ by induction.
Assume that the action is defined on all strings of length n. Let z be a string
of length n + 1. We write z = xy where x has length n and y has length one.
Define g · z = (g · x)(g|x · y) which is well-defined since g|x is defined by the
previous paragraph and g|x ·y is defined since y has length one. The element g ·x
is defined by the induction hypothesis. We now have a function G×X∗ → X∗.
Observe that by construction the ‘action’ is length-preserving.

To finish off we then check that (SS8), (SS2) and (SS4) each hold.

We now shall show that our definition of a self-similar group action is the
same as the one given in Definition 1.5.6 of [22]. We use the same notation as
there. Let X = {x1, . . . , xd}.

Proposition 5.2 G acts on X∗ in such a way that axioms (SS1)–(SS8) hold if
and only if (G,X) is a self-similar group action in the sense of Definition 1.5.6
of [22].

Proof Let ψ: G→ SX oG be a homomorphism into the wreath product, where
SX is the permutation group on the set X. Thus for each g ∈ G we have

ψ(g) = α(g|x1
, . . . , g|xd

)

where α ∈ SX and (g|x1
, . . . , g|xd

) denotes the function from X to G. We write
α(x) = g · x. Let h ∈ G where

ψ(h) = β(h|x1
, . . . , h|xd

).

Then because ψ is a homomorphism we have that ψ(gh) = ψ(g)ψ(h). Put

ψ(gh) = γ(gh|x1
, . . . , gh|xd

).

Then we have that (gh) ·x = g · (h ·x) for all x ∈ X and (gh)|x = g|h·xh|x for all
x ∈ X. If we calculate ψ(1) then we find that 1 ·x = x and 1|x = 1 for all x ∈ X.
The conditions of Lemma 5.1 are satisfied and so the axioms (SS1)–(SS8) are
satisfied.
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Conversely, if we start with an action satisfying axioms (SS1)–(SS8), then
we can clearly define a homomorphism into a suitable wreath product and so
deduce that the action is self-similar in the sense of [22].

Remark In the light of the above result, it is now legitimate to call actions sat-
isfying axioms (SS1)–(SS8) self-similar group actions. Thus Theorem 3.7 can
now be phrased in the following way: left Rees monoids (which are not groups)
determine and are determined by self-similar group actions.

It remains to try to motivate the definition of self-similar group actions.
We begin with a lemma that characterises faithful actions satisfying axioms
(SS1)–(SS8).

Lemma 5.3 Let G act faithfully on the free monoid X∗ in a length-preserving
way and suppose that there is a function G×X∗ → G denoted by (g, x) 7→ g|x
such that g · (xy) = (g · x)(g|x · y). Then this determines an action satisfying
axioms (SS1)–(SS8).

Proof We are assuming that axioms (SS1), (SS2) and (SS4) hold. We prove
that the remaining axioms hold. From the fact that g·x = g·(1x) we deduce that
(SS3) and (SS5) hold. The proof of (SS7) follows from that fact that xy = 1·(xy).
The fact that (SS6) holds follows from the fact that g · (x(yz)) = g · ((xy)z).
Finally, (SS8) follows from the fact that (gh) · (xy) = g · (h · (xy)).

The key to faithful actions satisfying axioms (SS1)–(SS8) is thus the axiom
(SS4). We shall now show how this condition arises; we are here adapting ideas
to be found in [22].

We begin with an arbitrary automorphism θ of (A∗,≤), the free monoid
regarded as a poset with respect to its prefix ordering. The automorphism θ
is prefix-preserving, by assumption, and evidently length-preserving. For each
a ∈ A, we see that ax ≤ a implies θ(ax) ≤ θ(a) and so θ induces an order
isomorphism θ′ from the principal order ideal aA∗ to the principal order ideal
θ(a)A∗. There are order isomorphisms λa: A∗ → aA∗ and λθ(a): A

∗ → θ(a)A∗

which arise from the fact that (A∗,≤) is a uniform poset. Define φ = λ−1
θ(a)θ

′λa,

an order automorphism of A∗. Then

θ(ax) = θ(a)φ(x),

where φ is uniquely determined by a and θ. If we define θ ·x = θ(x) and θ|a = φ
then we have exactly axiom (SS4). It follows by Lemma 5.3 that the auto-
morphism group of the poset (A∗,≤) satisfies the axioms (SS1)–(SS8). Faithful
actions satisfying axioms (SS1)–(SS8) therefore correspond to subgroups of the
group of automorphisms of (A∗,≤) which are closed with respect to the restric-
tion structure.

Remark Perrot [25], having defined self-similar group actions, takes the first
steps in their theory although, as he says, the calculations are ‘souvent délicate’.
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He considers the case where |X| = 2 and obtains some information about those
groups which have faithful self-similar actions on X∗.

5.2 Tensor monoids

In this section, we shall prove that left Rees monoids are precisely ‘tensor
monoids’.6 In Chapter 2 of [22], the algebraic properties of self-similar group
actions are handled using covering bimodules. We show how to construct the
monoid associated with the self-similar group action from the covering bimodule.

Let X be a set and S and T monoids. We say that X is a (S, T )-biact if
X is a left S-act, a right T -act and if (sx)t = s(xt) for all s ∈ S, t ∈ T and
x ∈ X.7 If X and Y are (S, T )-biacts then a function θ: X → Y is called a
bihomomorphism if θ(sxt) = sθ(x)t for all s ∈ S, t ∈ T and x ∈ X. We shall be
interested in biacts where both acting monoids are the same and are groups.

Let S be a monoid with group of units G. Then under left and right multi-
plication S is also a (G,G)-biact.

Lemma 5.4 Let S be a left Rees monoid. Let M be the set of all generators of
the maximal proper principal right ideals of S. Then M is a (G,G)-biact under
left and right multiplication by G, and the right G-action is free.

Proof Let x be a generator of a maximal proper principal right ideal. Then
xS = xgS and so xg is a generator of a maximal proper principal right ideal.
Consider now gx. We prove that gxS is a maximal proper principal ideal. If it
is not maximal then there is a maximal proper principal right ideal yS such that
gxS ⊆ yS. Thus xS ⊆ g−1yS. Now xS is maximal and so either g−1yS = S
or gxS = yS. The former cannot occur because y is not invertible. Thus
gxS = yS. Thus gx is also a generator of a maximal proper principal right
ideal. Observe that by left cancellation, the right G-action is free.

Remark Let S = X∗ ./ G. In this case, the set M is M = X × G. Observe
that

(1, h)(x, g) = (h · x, h|xg) and (x, g)(1, h) = (x, gh).

Thus if we define left and right actions by G on M as follows: G×M → M is
given by h(x, g) = (h·x, h|xg), andM×G→M is given by (x, g)h = (x, gh) then
we get a (G,G)-biact. In [22], biacts such as this are called ‘covering bimodules’.

We define a covering biact to be a (G,G)-biact M where the righthand action
is free. In Lemma 5.4, we showed how to construct a covering biact M from a
left Rees monoid.

We shall now investigate the relationship between the original monoid S
and the covering biact M constructed from it. It is convenient to assume that

6The term ‘tensor semigroup’ is used in [23]).
7In [22], the term ‘commuting’ is used for the last condition.
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S = X∗G, uniquely. In this case, M = XG. Define ι: M → S by ι(xg) = xg.
Recall that S is a (G,G)-biact for left and right multiplication by G. The
function ι is a (G,G)-bihomomorphism: this is simply because M is a (G,G)-
subact of S. The relationship between M and S is characterised by the following
theorem.

Theorem 5.5 Let S be a left Rees monoid with group of units G. Let M be
the covering biact associated with S. Let T be a monoid with group of units G.
Let α: M → T be a (G,G)-bihomomorphism. Then there is a unique monoid
homomorphism ᾱ: S → T such that α = ᾱι and which is the identity on the
group of units of S.

Proof Define ᾱ by

ᾱ(x1 . . . xng) = α(x1) . . . α(xn)g.

It is clear that ᾱι = α. We need to prove that ᾱ is a homomorphism. Let
x = x1 . . . xmg and y = y1 . . . ynh be elements of S. Their product is

x1 . . . xm(g · y1)(g|y1
· y2) . . . (g|y1...yi

· yi+1) . . . (g|y1...yn−1
· yn)g|y1...yn

h.

We now calculate ᾱ(xy). This is equal to

α(x1) . . . α(xm)α(g·y1)α(g|y1
·y2) . . . α(g|y1...yi

·yi+1) . . . α(g|y1...yn−1
·yn)α(1, g|y1...yn

h).

We shall now use the fact that α is a bihomomorphism. Consider

α(g · y1)α(g|y1
· y2).

We write this as
α(g · y1)g|y1

(g|y1
)−1α(g|y1

· y2)

and now use the fact that α is a bihomomorphism and that

(g|y1
)−1|g|y1

·y2
= (g|y1y2

)−1

by Lemma 3.4 to get

α((g · y1)g|y1
)α(y2(g|y1y2

)−1)

which is equal to
gα(y1)α(y2)(g|y1y2

)−1.

We now consider the remaining product

(g|y1y2
)−1α(g|y1y2

· y3) . . . α(g|y1...yi
· yi+1) . . . α(g|y1...yn−1

· yn)α(g|y1...yn
h).

We now push the leftmost group element through the product using the fact
that

(g|y1...yi
)−1|g|y1...yi

·yi+1
= (g|y1...yi+1

)−1.
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The last term is
(g|y1...yn

)−1α(g|y1...yn
h) = h.

It follows that
ᾱ(xy) = ᾱ(x)ᾱ(y).

It remains to prove uniqueness. Let α′: S → T be another monoid homo-
morphism such that α′ι = α. Then ᾱ(xg) = α′(xg) for all x ∈ X and
g ∈ G. By definition ᾱ(x1 . . . xng) = α(x1) . . . α(xn)g. By assumption this
is equal to α′(x1) . . . α

′(xn)g. But α′ is a homomorphism and so this is equal to
α′(x1 . . . xng), as required.

Let M be an arbitrary covering (G,G)-biact. We may form the tensor
product M ⊗M whose elements we denote by x ⊗ y. The bihomomorphism
⊗: M ×M → M ⊗M has the property that xg ⊗ y = x ⊗ gy; such maps are
called bimaps. The tensor product is the universal such bimap. Observe that
a⊗ b = c⊗ d iff a = cg and b = g−1d. The theory of tensor products of monoid
acts is described in [9].

Define M⊗0 = G and M⊗n = M⊗n−1 ⊗M . For p, q > 0 there are isomor-
phisms φp,q: M

⊗p ⊗M⊗q → M⊗p+q which map (u, v) to u ⊗ v. Observe that
all tensor products are free right G-acts. Put S =

⋃∞
n=0M

⊗n. There is the
obvious embedding ι:M → S. The (G,G)-biact S becomes a monoid under
tensor products and left and right actions by G: we use the isomorphisms above
to define the multiplication. We call S the tensor monoid of the (G,G)-biact
M by analogy with the tensor algebra of a module [17].

More informally, the elements of S can be regarded as the elements of G
together with all formal products x1⊗. . .⊗xn where xi ∈M . The product of two
formal products u and v is just the formal product u⊗v and the product of g ∈ G
and a formal product x1 ⊗ . . .⊗xn is given by g(x1 ⊗ . . .⊗xn) = gx1 ⊗ . . .⊗xn

and (x1 ⊗ . . .⊗ xn)g = x1 ⊗ . . .⊗ xng.

Proposition 5.6 The tensor monoid of a covering (G,G)-biact is a left Rees
monoid.

Proof We essentially use Lemmas 2.1 and 2.3 to show that the tensor monoid
is a left Rees monoid. The group of units of S is G, and there is a surjective
homomorphism from S to N, in which the inverse image of 0 is G. Thus S is
equipped with a length function. Because the action is free on the right, it is
easy to check that if x⊗y = x⊗y′ in S then y = y′ and so S is left cancellative
(this works because lengths match). Thus S is left cancellative. We finish off
by showing that S is equidivisible Suppose that x⊗u = y⊗v. There are three
cases to consider depending on the relative lengths of x and y. We shall just
consider the case where the length of x is m, that of y is n and where m < n.
We therefore suppose that u = w⊗ z and that x⊗w has the same length as y.
Thus x ⊗ w = yg and z = g−1v. Thus y = x ⊗ (wg−1). Once the argument is
completed by the other two cases, it will follow that S is equidivisible.
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The following theorem can be proved using the universal properties of tensor
products.

Theorem 5.7 Let S be the tensor monoid of the covering (G,G)-biact M . Let
T be any monoid with group of units G, and let α: M → T be a bihomomor-
phism. Then there is a unique monoid homomorphism ᾱ: S → T such that
α = ᾱι and which is the identity on the group of units.

The results of this section can be placed in a categorical framework. We
fix a group G and consider the category whose objects are left Rees monoids
with G as their groups of units and whose morphisms are the monoid homomor-
phisms which are the identity on the groups of units and which map generators
of maximal proper principal right ideals to generators of maximal proper prin-
cipal right ideals. Then there is a forgetful functor from this category to the
category whose objects are the covering (G,G)-biacts and whose morphisms are
the (G,G)-bihomomorphisms. This functor has a left adjoint which associates
with a covering biact its tensor monoid.

6 Inverse monoids

Left Rees monoids can also be used to construct a class of inverse monoids —
which is precisely what Perrot did [25, 26]. This is a well-known procedure
forming part of the theory of 0-bisimple inverse semigroups so I shall simply
sketch out the theory as it applies to our case. For more details see [14]. For all
undefined terms from inverse semigroup theory see [13].

Let S be a left Rees monoid. The inverse monoid B(S) of all S-isomorphisms
between the principal right ideals of S together with the empty function is a
0-bisimple inverse monoid. There is a useful isomorphic representation of B(S).
Define an equivalence relation on the set of nonzero ordered pairs of elements
of S by (a, b) is equivalent to (au, bu) for all units u ∈ S. Denote by [a, b] the
equivalence class containing (a, b). Consider now the set of all such equivalence
classes together with a zero element. Define [d, c][b, a] to be zero if cS ∩ bS
is empty. If cS ∩ bS is not empty there are two possibilities. If c = bs for
some s then we define the product to be [d, as]. If b = cs for some s then we
define the product to be [ds, a]. It can be proved that the resulting structure
is isomorphic to B(S) and, from now on, we shall treat B(S) in this way. The
non-zero idempotents of B(S) are the elements [a, a]. The natural partial order
is given by [a, b] ≤ [c, d] iff (a, b) = (c, d)p for some p ∈ S. The idempotent
structure of B(S) is isomorphic to the semilattice of principal right ideals of S
together with the empty set. It follows that if e and f are idempotents of B(S)
and ef 6= 0 then e and f are comparable with respect to the natural partial
order. The identity of B(S) is [1, 1] and the L-class of the identity consists of
elements of the form [a, 1] and forms a left cancellative monoid isomorphic to
S.
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It follows from the general theory of 0-bisimple inverse semigroups that there
is a correspondence between the following two classes of monoids:

• Left Rees monoids.

• 0-bisimple inverse monoids with two properties: first, if e and f are idem-
potents and ef 6= 0 then e and f are comparable and second, there are
only a finite number of idempotents above any non-zero idempotent.

Under this correspondence, fundamental monoids of the first class correspond
to fundamental inverse monoids of the second. I shall call the inverse monoids
that arise in this way the associated inverse monoids.

If S is an inverse semigroup with zero, then S∗ = S \ {0}. A prehomomor-
phism θ from an inverse semigroup S to an inverse semigroup T is a function
θ: S∗ → T ∗ such that ab 6= 0 implies that θ(ab) = θ(a)θ(b). An inverse monoid
is said to be strongly E∗-unitary if it admits a prehomomorphism to a group
such that the inverse image of the identity consists only of idempotents. The
associated inverse monoid is strongly E∗-unitary if and only if the associated
monoid is cancellative [14].

The set of idempotents of an inverse semigroup is said to be 0-disjunctive if
whenever 0 < e < f then there exists a nonzero idempotent g such that g ≤ f
and ge = 0.

Lemma 6.1 If |X| > 1, then the set of idempotents of an associated inverse
monoid is 0-disjunctive.

Proof Let 0 < [a, a] < [b, b] in B(S). Then a = bp in S. Let a = xg, b = yh and
p = zk. Then xg = y(h · z)h|zk. Thus by uniqueness x = y(h · z) and g = h|zk.
If x = y then h · z is the identity and so z would be the empty string. This
would imply that [a, a] = [b, b]. It follows that y is a proper prefix of x. Let
x = yw where w has length at least one. Let q ∈ X different from the first let-
ter of w. Put c = yq. Then 0 < [c, c] ≤ [b, b], and [a, a][c, c] = 0 by construction.

Fundamental 0-bisimple inverse monoids with a 0-disjunctive set of indem-
potents are congruence-free (see page 181 of [27]). The following result follows
from Corollary 4.2: a self-similar group action is faithful if and only if the
associated left Rees monoid is fundamental.

Proposition 6.2 The inverse monoids associated with faithful self-similar group
actions on free monoids with at least two letters are congruence-free.

It is possible to write the elements of B(S) in a more straightforward form. If
x ∈ X∗ then x−1 denotes the reverse string of x. Observe that (xy)−1 = y−1x−1.
If z = xy then we define x−1z = y. We can identify the nonzero elements of
B(S) with the formal products xgy−1. The product of xgy−1 and whz−1 is
then: zero if neither y nor w is a prefix of the other; x(g · p)g|phz

−1 if w = yp;
and xg(h|h−1·p)(h

−1 · p)−1z−1 if y = wp. Monoids of the form B(X∗) are called
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the polycyclic monoids [24]. The form of the elements and product in B(S) just
described generalises the usual way in which polycylic monoids are described.

The axioms (SS1)–(SS8) can be modified to take account of zeros as de-
scribed by Kunze [11]: if S and T are arbitrary monoids with zero (T replacing
G and S replacing X∗) then we require that t · s = 0 iff t|s = 0 and we require
that 0 · s = 0 = t · 0 and 0|s = 0 = t|0. It is possible to write polycyclic monoids
and more generally the monoids B(S) as Zappa-Szép products with zero. Every
non-zero element xy−1 in the polycyclic monoid is evidently uniquely of the
form x ∈ X∗ times y−1 ∈ (X∗)−1 where the latter is just the dual of the free
monoid. Denote by S0 the semigroup S with a zero adjoined, and denote by
S the dual semigroup of S. Thus the polycyclic monoid on |X| generators is
isomorphic to X∗

0 ./ X
∗
0 More generally, if S = X∗G is a left Rees monoid then

B(S) = S0 ./ X∗
0 .

Finally, the inverse monoids defined here lead to Cuntz-Pimsner algebras
in the same way that the polycyclic monoids lead to Cuntz algebras. See Sec-
tion 13.2 of [1].

7 Other characterisations

In this section, we show how left Rees monoids are also related to Mealy ma-
chines and double categories.

7.1 Mealy machines

The connection between self-similar group actions and automata is well-known
[22]. However, in this section we shall describe a slightly different perspective
on this connection.

A (non-initial) (Mealy) machine A = (S,X, |, ·) consists of the following
information: a set of states S, an input/output alphabet X, a state transition
function S × X → S, denoted by (s, x) 7→ s|x, where x ∈ X and an output
function S × X → X, denoted by (s, x) 7→ s · x, where x ∈ X. Machines
are defined to process input and output letters, but can easily be extended to
process input and output strings in the following way. First, state transitions
for strings are defined by means of the following recursion:

• s|1 = s for all states s.

• s|ax = (s|a)|x where a is a letter and x a string.

Second, outputs are defined for strings by the following recursion:

• s · 1 = 1.

• s · (ax) = (s · a)(s|a · x) where a is a letter and x a string.
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Observe that these conditions are actually axioms (SS5), (SS6), (SS3), and
(SS4). A function θ: A → B is a homomorphism of Mealy machines if θ: S → T ,
θ(s|x) = θ(s)|x, and s · x = θ(s) · x. The composition of homomorphisms is a
homomorphism and the identity function on a set of states is the identity func-
tion on the Mealy machine. An isomorphism is just a bijective homomorphism.
We therefore have a category A whose objects are Mealy machines (over the
same input/output alphabet X) and whose morphisms are the homomorphisms
of Mealy machines.

This category is endowed with extra structure which we now describe. We
denote by I the machine with one state, and which simply outputs the input.
Next, given two machines A and B with sets of states S and T respectively, we
define a new machine A∗B as follows: the set of states is S×T ; the input/output
alphabet is X; the transition function is given by (s, t)|x = (s|t·x, t|x); and the
output function is given by (s, t) · x = s · (t · x). Intuitively, this machine is
constructed by taking the output of B and using it as the input to A and is called
the cascade product of A and B. Observe that underlying the construction of
A∗B is the product of sets, and that I has as underlying set the one-element set.
Now the category of sets is a monoidal category with respect to products of sets
and the one-element set as unit. Our homomorphisms are simply set functions
satisfying certain algebraic conditions. We therefore have the following.

Theorem 7.1 The category A of Mealy machines over a fixed input/output al-
phabet X is a monoidal category with respect to cascade product.

For each state s ∈ S, there is an initial Mealy machine As where s is the
distinguished initial state. An initial Mealy machine As computes a function
from X∗ to itself which maps x to s ·x. A homomorphism between initial Mealy
machines is required to map initial states to initial states. It can be shown that if
there is a homomorphism between two initial Mealy machines then they compute
the same function. If As is an initial Mealy machine computing f : X∗ → X∗

and Bt is an initial Mealy machine computing g: X∗ → X∗ then As ∗ Bt is an
initial Mealy machine computing fg, composing from right-to-left.

Theorem 7.2 Let G be a group and X a set. Then (G,X∗) is a self-similar
group action if and only if G is a Mealy machine with structure (G,X, |, ·), the
multiplication function in G given by G ∗G→ G is a homomorphism of Mealy
machines, and the function η: I → G which maps the single state of I to the
identity of the group G is a homomorphism of Mealy machines.

Proof Suppose first that (G,X∗) is a self-similar group action Let (g, h) be a
state in the Mealy machine G ∗G. Let x be an input letter. Then by definition
(g, h)|x = (g|h·x, h|x). Thus µ((g, h)|x) = (g|h·x)(h|x). On the other hand,
µ(g, h)|x = (gh)|x. These two are equal by axiom (SS8).

Let (g, h) be a state and x and input letter. Then (g, h) · x = g · (h · x) and
µ(g, h) · x = (gh) · x. These two are equal by axiom (SS2).

The fact that η is a homomorphism follows by axioms (SS1) and (SS7).
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The proof of the converse is straightforward. The information we are given
is that G is a Mealy machine with structure (G,X, |, ·), the multiplication func-
tion in G given by G ∗G→ G is a homomorphism of Mealy machines, and the
function η: I → G which maps the single state of I to the identity of the group
G is a homomorphism of Mealy machines. All of this information is the infor-
mation needed to apply Lemma 5.1 and so determines a (unique) self-similar
group action of G on X∗ extending the given data.

The theorem above says that every self-similar group action gives rise to a
monoid in the monoidal category (A, ∗, I) in the sense of Section 3 of Chap-
ter VII of [16].

7.2 Double categories

We now consider another interpretation of self-similar group actions involving
categories which is closely related to the Mealy machine interpretation. The
diagrams we draw were used, for example, in [2]. We adapt to our setting some
of the ideas to be found in [7] where full definitions can be found if required.
Let G be a group with a self-similar action on X. We define a double category
as follows. Its elements are squares of the form

g·x
//

g

��

g|x

��

x
//

We define horizontal multiplication as follows. Let

h·y
//

h

��

h|y

��

y
//

be another square such that g|x = h. Then their product is

(g·x)(h·y)
//

g

��

h|y

��

xy
//

This is well-defined because g · (xy) = (g · x)(g|x · y) = (g · x)(h · y), and
h|y = (g|x)|y = g|xy. We define vertical multiplication as follows. We suppose
now that x = h · y. Then their product is

g·x
//

gh

��

g|xh|y

��

y
//
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This is well-defined because (gh) · y = g · (h · y) = g · x, and (gh)|y = g|h·yh|y =
g|xh|y. It is easy to check that the interchange law holds, so we have defined a
double category from a self-similar group action. This double category has the
vertical structure of a group and the horizontal structure of a free monoid. The
following emulates Proposition 2.4 of [7].

Proposition 7.3 Let B be a double category in which the vertical structure is
a group G, the horizontal structure is a free monoid X∗, and such that the star
condition holds: every pair

g

��

x
//

can be uniquely completed to a square

g·x
//

g

��

g|x

��

x
//

where g ·x and g|x denote uniquely defined elements. Then there is a self-similar
group action of G on X∗.

Proof From horizontal multiplication we get that (SS4) and (SS6) hold, from
vertical multiplication we get that (SS2) and (SS8) hold. The remaining four
axioms hold by considering the horizontal and vertical morphisms in the double
category: squares of the form

x
//

1

��

1

��

x
//

are the horizontal morphisms and imply that axioms (SS1) and (SS7) hold,
squares of the form

1
//

g

��

g

��

1
//

are the vertical morphisms and imply that axioms (SS3) and (SS5) hold.

With each double category can be associated a bisimplicial complex. The
diagonal of this bisimplicial set is a simplicial set which is actually the nerve of
a category. In our case, this category is a monoid: its elements are diagrams of
the form

x
//

g

��
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and the product with
y

//

h

��

is given by
x

//

g

��

g·y
___

g|y
�

�

�

y
//

h

��

using the star condition of Proposition 3.5 and so is just

x(g·y)
//

g|yh

��

This monoid is just the monoid associated with the self-similar group action.
The argument of Proposition 2.6 of [7] therefore yields the following result.

Proposition 7.4 Let a self-similar group action be given. Then the classifying
space of the double category associated with the action is canonically homotopi-
cally equivalent to the classifying space of the monoid associated with the action.
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