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Abstract

We show that David Rees’ 1948 paper on the structure of left cancella-

tive monoids stands at the threshold of the theory of self-similar group

actions, and in doing so correct an error in a paper by Nivat and Perrot.
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1 Introduction

In this note, I shall discuss Rees’ 1948 paper [10] dealing with a class of cancel-
lation (that is, cancellative) semigroups. This paper has been influential in the
development of the theory of inverse semigroups: together with Clifford’s 1953
paper [2], it provided one of the key ideas that led to the theory of 0-bisimple
inverse semigroups [11, 5, 6, 7, 4]. Rees’ paper was generalised by Nivat and
Perrot in 1970 [8]. However, their paper contains an important error. It was
whilst I was correcting this error that I realised that Rees’ paper could be viewed
as standing at the threshold of the theory of self-similar group actions [9]. The
goal of this note is to explain how. One of the corollaries of this paper is that
McAlister’s theory of 0-bisimple inverse semigroups can be viewed as a gener-
alisation of the theory of self-similar group actions [4]. Rees’ paper is divided
into three sections. For the rest of this introduction, I shall describe in more
detail the contents of the first two sections, and deal with the contents of the
third in Section 2.

His paper deals with left cancellative monoids S and their partially ordered
sets (posets) of principal right ideals P(S). Rees observes (Theorem 1.2 [10])
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that the posets that occur in this way are special in that for each principal right
ideal R the whole poset P(S) is isomorphic to the subposet of all principal right
ideals contained in R. Motivated by this, he defines an arbitrary poset P to be
uniform if every principal order ideal is order isomorphic to P . Thus the posets
P(S) are uniform. In fact, all uniform posets P arise in this way: define S(P ) to
be the semigroup of all order isomorphisms from P to its principal order ideals.
Then P is order isomorphic to P(S(P )) (Theorem 1.3 [10]).

Given a uniform poset P there are many semigroups S for which P(S) is
order isomorphic to P . To get some handle on these semigroups, Rees introduces
the following notion. Denote by G(S) the group of units of S. A subgroup N
of G(S) is said to be a right normal divisor of S if Ns ⊆ sN for all s ∈ S. It
is easy to check that N is a normal subgroup of S. The importance of right
normal divisors is that they can be used to construct quotient monoids: given
a left cancellative monoid S and a right normal divisor N , one can form a left
cancellative monoid S/N whose elements are the ‘right cosets’ of N , meaning
elements of the form sN where s ∈ S. The monoid S/N is a homomorphic image
of S and P(S/N) and P(S) are order isomorphic (Lemma 2.13 [10]). Define

M(S) = {g ∈ G(S): gs ∈ sG(S) ∀s ∈ S}.

Then M(S) is the greatest right normal divisor of S (Lemma 2.11 [10]). We
shall say that S is fundamental1 if M(G) = {1}. The semigroup S/M(S) is
fundamental as is S(P ). In addition, the semigroup S(P ) has the property that
if T is any semigroup such that P(T ) is order isomorphic to P then T/M(T )
is isomorphic to a submonoid of S(P ). Thus S(P ) is the ‘largest’ fundamental
semigroup whose poset of principal right ideals is order isomorphic to P .

2 Self-similar group actions

I shall now turn to the third and final section of Rees’ paper, and it is here that
we shall ultimately make contact with the theory of self-similar group actions.
Let S be a left cancellative monoid. Following Rees, we assume that the poset
of principal right ideals has the following structure:

S = R0 ⊃ R1 ⊃ R2 ⊃ . . .

Let a be a generator of R1. Then an is a generator of Rn (Lemma 3.3 [10]). It
follows that each element of S can be written uniquely in the form ang for some
n ≥ 0 and some g ∈ G(S). The following lemma is tacitly assumed in Rees’
paper. We prove it for reasons that will become clear later. We use the result
that uS = vS iff u = vg for some invertible element g.

Lemma 2.1 If g is invertible then ga = ah for a unique invertible element h.

1This is not a term used by Rees, but is adapted from its related usage in inverse semigroup

theory.
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Proof The principal right ideal gaS must be one of the Ri. It cannot be R0 = S,
because that would imply that a is invertible. Thus certainly gaS ⊆ R1 = aS.
That is aS ⊆ g−1aS. Given our assumption on the principal right ideals, there
are two possibilities: either g−1aS = S or g−1aS = aS. The former would
imply that a is invertible, thus aS = g−1aS, and so ga = ah for some invertible
element h, as required.

Define the function α: G(S) → G(S) by ga = aα(g). The function α is
an endomorphism of the group G(S). The proof of this uses the fact that
(gh)a = g(ha) combined with the uniquenes of the decomposition. We can
identify the submonoid of S generated by a with the monoid N under addition. It
follows that S is isomorphic to the set N×G(S) equipped with the multiplication
defined by

(m, g)(n, h) = (m + n, αn(g)h).

Remark Observe that there is a surjective monoid homomorphism from N ×
G(S) to N, and that the full inverse image of zero under this homomorphism is
the group of units of N × G(S), which is isomorphic to G(S).

This then is Rees’ structure theorem for left cancellative monoids whose
principal right ideals form a decreasing chain order isomorphic to the dual of
the usual ordering on the natural numbers. Although tangential to our main
interest, it is worth noting that such monoids are analogues of DVR’s. The
following result, due to Stuart Margolis (private communication), deepens this
analogy. First, we need a definition. A group G is said to be indicable if there
is a surjective homomorphism θ: G → Z. We shall call the full inverse image
under θ of the natural numbers (and zero!) the positive cone of G.

Proposition 2.2 The positive cones of indicable groups are precisely the can-
cellative monoids whose principal right ideals form a decreasing chain order
isomorphic to the dual of the usual ordering on the natural numbers.

Proof Let G be an indicable group and θ: G → Z its surjective homomorphism.
Put S = θ−1(N), the positive cone of G. It is easy to check that the group of
units of S is precisely the group θ−1(0), and that for all s, t ∈ S, we have that
sS = tS if and only if θ(s) = θ(t). Let a be a fixed element of S such that
θ(a) = 1, which exists by surjectivity. Now given s, t ∈ S, suppose that θ(s) ≤
θ(t). Then θ(saθ(t)−θ(s)) = θ(t), and so tS = saθ(t)−θ(s)S ⊆ sS. It follows that
S is a cancellative monoid whose principal right ideals form a decreasing chain
order isomorphic to the dual of the usual ordering on the natural numbers.

Conversely assume that S is a cancellative monoid whose principal right ide-
als form a decreasing chain order isomorphic to the dual of the usual ordering
on the natural numbers. From the theory developed by Rees described above,
there is a surjective homomorphism θ: S → N such that θ−1(0) is the group of
units of S. Now S satisfies the Ore conditions and thus has a group of fractions
G such that each element of G is of the form st−1 where s, t ∈ S. It is easy to
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see from the structure of groups of fractions that θ extends uniquely to a surjec-
tive function G to Z, proving that G is indicable and that S is its positive cone.

To understand how self-similar group actions can follow from the line of
argument pursued by Rees, we need to weaken Rees’ assumption on the structure
of the principal right ideals. Observe that the monoid N is the free monoid on
one generator and its poset of principal right ideals is the decreasing chain

N ⊃ 1 + N ⊃ 2 + N ⊃ . . . .

More generally, we shall assume that P(S) is order isomorphic to the infinite
tree of principal right ideals of the free monoid on n generators where n ≥ 2: the
infinite regular n-ary tree. This assumption was first explictly made by Nivat
and Perrot in [8]. However, their analysis of this case is flawed: they essentially
assume that the analogue of Lemma 2.1 holds. It does not. By analysing this
case correctly in the spirit of Rees’ paper we shall arrive at self-similar group
actions. Thus for the rest of this paper S will be a left cancellative monoid and
P(S) will be isomorphic to P(A∗

n) where An is a set with n elements and A∗

n is
the free monoid on An.

Our monoid S has n maximal proper principal right ideals which I shall
denote by a1S, . . . , anS. We denote the set of ai’s by A. The set A replaces
the single a in the case Rees considered. Let s be a non-invertible element of S.
Then sS is a proper principal right ideal. By our assumption on the principal
ideal structure of S, sS is contained in exactly one of the aiS. We suppose
that sS ⊆ x1S where x1 ∈ A. Thus s = x1s1. The element s1 is invertible iff
sS = x1S. If it is not invertible then sS ⊂ x1S. In this case, s1S ⊆ x2S for
some unique x2 ∈ A. Thus s1 = x2s3. This process can be continued and so we
obtain the following sequence of principal right ideals

sS ⊂ x1 . . . xiS ⊂ . . . ⊂ x1S.

By our assumption on the structure of the principal right ideals, this process
cannot be continued indefinitely. It follows that S = A∗G(S), where A∗ is the
submonoid of S generated by A. In fact, a stronger result is true.

Proposition 2.3 Each element of S can be written uniquely as a product of
an element of A∗ followed by an element of G(S), and the monoid A∗ is free.

Proof Suppose that
1 = x1 . . . xm

where m ≥ 1 and xi ∈ A. Then S = x1 . . . xmS ⊆ x1S and so x1 is invertible,
which is a contradiction. Now suppose that

x1 . . . xm = y1 . . . yn

where xi, yj ∈ A. By our result above, we can assume that m,n ≥ 1. Now
x1 . . . xmS = y1 . . . ynS ⊆ x1S, y1S. It follows that x1 = y1 and so, by left
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cancellation, x2 . . . xm = y2 . . . yn. This process can be repeated and because
either m < n or n < m would lead to a contradiction, namely that an element
of A is invertible, we must have that m = n and xi = yi. Thus A∗ is the free
monoid on A.

Suppose that xg = yh where x, y ∈ A∗, g, h ∈ G(S), and x = x1 . . . xm and
y = y1 . . . yn where xi, yj ∈ A. Arguing as before, xS = yS ⊆ x1S, y1S and so
x1 = y1. By left cancellation x2 . . . xmg = y2 . . . ynh. If m = n then we can
repeat this argument to get x = y and so g = h, by left cancellation. If m < n,
then we can easily deduce that ym+1 is invertible, which is a contradiction. A
similar argument shows that we cannot have n < m.

What we have done so far directly generalises Rees and was also broadly
found by Nivat and Perrot [8]. We can say that Rees considered the case when
the free monoid had only one generator whilst we are considering the case where
the free monoid has n generators.

The next step in our analysis uses the uniqueness of the decomposition ob-
tained in Proposition 2.2. Rees uses this uniqueness applied to the associativity
law to prove that α is a group endomorphism. We shall use the same approach
but in our more complex situation. By Proposition 2.2, for each x ∈ A∗ and
g ∈ G(S) there is a unique x′ ∈ A∗ and a unique g′ ∈ G(S) such that gx = x′g′.
We denote x′ by g · x and g′ = g|x. We call g · x ‘action’ and g|x ‘restriction’.
The following proposition lists their properties: in fact, these are simply special
cases of results known from the theory of Zappa-Szép products [1].

Proposition 2.4 The following properties hold where g, h ∈ G(S) and x, y ∈
A∗:

(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

(SS4) g · (xy) = (g · x)(g|x · y).

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) 1|x = 1.

(SS8) (gh)|x = g|h·xh|x.

Proof The proof follows by considering properties of the identity element and
different cases of the associativity law. From 1x = x, we deduce both (SS1) and
(SS7). From g1 = g, we deduce both (SS3) and (SS5). From (gh)x = g(hx),
we deduce both (SS2) and (SS8). Finally, from (gx)y = g(xy), we deduce both
(SS4) and (SS6).
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We therefore have, in particular, an action of G(S) on A∗. This action has
some extra important properties. The length of a string x is denoted by |x|. An
action of a group G on a free monoid A∗ is length preserving if |g · x| = |x| for
all x ∈ A∗. The prefix order on A∗ is defined by x ≤ y iff x = yz for some string
z. The action is prefix preserving if x = yz in A∗ implies that g · x = (g · y)z′

for some string z′. This means precisely that if x ≤ y then g · x ≤ g · y.

Lemma 2.5 The action of G(S) on A∗ is length preserving and prefix preserv-
ing.

Proof Prefix preserving follows from (SS4). We now prove that the action is
length preserving. Observe first that by (SS3), if x is the empty string so too is
g · x. Conversely, if g · x = 1 then x = g−1 · 1 = 1 by (SS3). Thus g · x is the
empty string iff x is. Let x ∈ X. Suppose that g ·x = yz where y is a letter and
z is a string, possibly empty. Then by (SS4), we have that

x = (g−1 · y)(g−1|y · z).

We know that g−1 · y cannot be empty and so has length at least one. Since the
leftthand side has length one and lengths add, we deduce that (g−1|y · z) has
length zero. Thus z is the empty string. It follows that letters are mapped to
letters. The result now follows by (SS4) and induction.

The action of G(S) on A∗ is closely connected to the greatest right normal
divisor M(S) of S.

Proposition 2.6 The action of G(S) on A∗ is faithful if and only if S is fun-
damental.

Proof Suppose the action is faithful. Let g ∈ M(S). Then gs ∈ sG for all
s ∈ S. Let x ∈ A∗. Then gx = xg′, but is also equal to (g · x)g|x. It follows
that g · x = x for all x ∈ A∗. But by assumption, the action is faithful and so
g = 1 and S is fundamental.

Conversely, suppose that S is fundamental and that g · x = x for all x ∈ A∗.
Let s ∈ S where s = xh. Then

gs = gxh = (g · x)g|xh = xgxh = xh(h−1g|xh) ∈ sG.

It follows that g ∈ M(S) and so g = 1 which proves that the action is faithful.

The mistake that Nivat and Perrot made in [9] was to assume that this
action is always trivial. It is trivial in the case of a free monoid with one
generator because of the length preserving property of the action, but this is no
longer true in the case of free monoids of more than one generator. In the case
where the action is trivial, the conditions (SS1)–(SS8) say precisely that there
is a homomorphism from A∗ into the group of endomorphisms of G given by
α(x)(g) = g|x just as in the case considered by Rees. Our next example shows
that the action of the group need not be trivial.
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Example 2.7 Centre the Sierpinski gasket at the origin, and consider the
monoid S of all similarities of the plane that map the gasket into itself. The
group of units of this monoid is just the six element group of symmetries of the
equilateral triangle. I shall now pick out certain important elements of S: a
clockwise rotation by 2π

3 denoted by ρ; a reflection in the vertical denoted by σ;
and three similarities denoted T , L and R which halve the size of the gasket and
then translate it to the top, left and right parts of the original gasket. It is not
hard to see that the monoid generated by these similarities is S and that the
submonoid of S generated by T , L and R is the free monoid on three generators.
Simple calculations show that

ρT = Rρ, ρL = Tρ, ρR = Lρ

and
σT = Tσ, σL = Rσ, σR = Lσ.

Thus every element of S can be written as a product of an element of a free
monoid and a group element. This representation is unique: if xg = yh where
g, h ∈ G(S) and x, y ∈ {T,L,R}∗ then x = yhg−1. However elements of
{T,L,R}∗ do not change the orientation of a triangle whereas non-identity el-
ements of G(S) do. Thus g = h and so x = y. It is now easy to check that S
is a monoid of the type considered in this section. In particular, the relations
above show that we have defined a non-trivial action of the group G(S) on the
free monoid on three generators generated by T , L and R that satisfies the
properties of Proposition 2.4.

We can now make the link with self-similar group actions. Before giving
the formal definition, I shall motiviate it by considering the behaviour of an
arbitrary automorphism θ of (A∗,≤), the free monoid regarded as a poset with
respect to its prefix ordering [9]. The automorphism θ is prefix preserving,
by assumption, and evidently length preserving. For each a ∈ A, we see that
ax ≤ a implies θ(ax) ≤ θ(a) and so θ induces an order isomorphism θ′ from the
principal order ideal aA∗ to the principal order ideal θ(a)A∗. There are order
isomorphisms λa: A∗ → aA∗ and λθ(a): A∗ → θ(a)A∗ which arise from the fact

that (A∗,≤) is a uniform poset. Define φ = λ−1
θ(a)θ

′λa, an order automorphism

of A∗. Then
θ(ax) = θ(a)φ(x),

where φ is uniquely determined by a and θ. This feature of automorphisms of
(A∗,≤) is used as the basis for the following definition.

A faithful group action of a group G on a free monoid X∗ is said to be
self-similar if for each g ∈ G and x ∈ X there exists a unique y ∈ X and h ∈ G
such that g · (xw) = y(h · w) for all w ∈ X∗. The proof of the following is now
immediate.

Theorem 2.8 Let S be a fundamental left cancellative monoid whose poset of
principal right ideals is order isomorphic to the poset of principal right ideals
of a free monoid A∗. Then there is a faithful action of G(S) on A∗ which is
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self-similar.

In fact, the converse is true and so there is a correspondence between fun-
damental monoids of the type we are considering and self-similar group actions.
This is proved in [3]. Rees’ structure theorem (Theorem 3.3 [10]) is then gen-
eralised by the use of Zappa-Szép products. Specifically, the left cancellative
monoids of the type we are considering are isomorphic to monoids of the form
A∗ × G(S) where the product is given by

(x, g)(y, h) = (x(g · y), g|yh).
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