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The work of Don McAlister has been an inspiration to all of us interested in

semigroups. In 1974, Don published two papers which had a decisive impact on

the subsequent development of semigroup theory. In these papers, two major

theorems were proved: the ‘covering theorem’ and the ‘P -theorem’. In this paper,

we shall take the latter as the starting point for some excursions through our own

and others’ work.

1. A primer on categories and inverse semigroups

In this section, we shall review the basic definitions and results about cate-

gories and inverse semigroups we shall need, and indicate one way in which

inverse semigroups give rise to categories.
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There are two equivalent definitions of ‘category’ in the literature. We

shall give the ‘arrows only’ definition first, and then briefly indicate how

the other definition works. Let C be a set equipped with a partially defined

binary operation. An identity is any element e such that if ea is defined

then ea = a, and if ae is defined then ae = a. If e is an identity and ae is

defined then e is called a right identity of a, and if ea is defined then e is

called a left identity of a. A category C is a set equipped with a partially

defined multiplication such that each element has a unique left identity,

called its source, and a unique right identity, called its target; the product

ab is defined iff the source of a is equal to the target of b; the product is

associative when it is defined; and finally, the source of ab is equal to the

source of b, and the target of ab is equal to the target of a.

The other definition of a category is the ‘objects and arrows’ one. This

starts with a directed graph whose vertices are called objects and whose

directed edges are called arrows. In addition, for each object v there is

a unique arrow 1v which forms a loop at v. We now require a partial

multplication to be defined on the arrows in which the loops of the form 1v

are the identities and the above axioms for a category hold.

Apart from these two variations on the definition of a category, the

reader should also be aware that the product of two arrows ab is sometimes

instead defined iff the target of a is equal to the source of b. Our first defini-

tion of multiplication models composition of functions when the arguments

are written on the right, whereas our second definition models composition

of functions when the arguments are written on the left.

In a category, the set of all arrows with source and target equal to a given

identity e is a monoid called the the local monoid at e. A category with a

single identity is therefore just a monoid. For us categories are algebraic

structures in the usual way generalising monoids. The morphisms between

categories are called functors.

A groupoid is a category in which for each element a there is an element

b such that ab and ba are identities. Thus a groupoid with one identity is a

group. A category is said to be connected if for each pair of identities e and

f there is an arrow with source e and target f . Connected groupoids can be

described in terms of groups. If G is a group and I is a set then I × G × I

becomes a connected groupoid when the product of triples is defined by

(i, g, j)(j, h, k) = (i, gh, k) and undefined otherwise. The identities in this

case are the elements of the form (i, 1, i). Groupoids constructed in this way

are often known as Brandt groupoids. Given a connected groupoid, choose

an identity e and fix it, and denote the set of identities of the groupoid by I.
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For each identity f , pick an arrow af from e to f , which is possible because

the groupoid is connected. The local monoid at e is in fact a group, which

we shall denote by G. Define a function from the connected groupoid to

the Brandt groupoid I ×G× I by g maps to (j, a−1

j gai, i) if g has source i

and target j. It is straightforward to check that we have proved that every

connected groupoid is isomorphic to a Brandt groupoid. We say that the

isomorphism is defined by ‘co-ordinatising’ the original groupoid.

A semigroup S is said to be inverse if for each element s there exists a

unique element t such that the following two equations hold:

s = sts and t = tst.

The uniquely defined element t is called the inverse of s and is denoted

s−1. This is a generalisation of the definition of inverse used in group

theory. However, the elements s−1s and ss−1 are not identites in general,

even if the semigroup is a monoid, but retain one feature possessed of

identities in that they are idempotents, where an idempotent is an element

e such that e2 = e. Remarkably, it can be proved that the product of two

idempotents is an idempotent, and so the set of idempotents, E(S), forms

a subsemigroup, which is also commutative.

On every inverse semigroup, we can define a relation ≤ by

s ≤ t iff s = te for some idempotent e.

This relation is a partial order, called the natural partial order. It inter-

twines nicely with the algebraic structure of the inverse semigroup in the

sense that if s ≤ t then s−1 ≤ t−1, and if s ≤ t and s′ ≤ t′ then ss′ ≤ tt′.

With respect to the natural partial order the set of idempotents is a meet

semilattice when we define e ∧ f = ef . For this reason, we often refer to

the semilattice of idempotents of an inverse semigroup.

The natural partial order can be used to define an important congruence

on every inverse semigroup. Define the relation σ by

s σ s′ ⇔ t ≤ s, s′ for some t.

Then σ is a congruence, S/σ is a group, and σ is the smallest group con-

gruence. In this paper, G(S) = S/σ will be called the universal group of S.

The natural map from S to G(S) is denoted by γ.

The natural partial order plays an important role in the structure of

inverse semigroups. Define a partial operation ◦ on S as follows:

s ◦ t is defined iff s−1s = tt−1
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in which case set s◦t = st. The structure (S, ◦) is a groupoid. The groupoid

product and the natural partial order together determine the semigroup

product since

st = (se) ◦ (et),

where e = s−1stt−1, and se ≤ s and et ≤ t.

The representation of the multiplication of an inverse semigroup in terms

of a groupoid multiplication is the first clue that categories may well play

a role in studying inverse semigroups — they do in a number of different

ways as we shall see throughout this paper.

Finally, we define one further relation on an inverse semigroup. The

compatibility relation ∼ is defined by

s ∼ t iff s−1t, st−1 are both idempotents.

This relation is reflexive and symmetric, but not transitive in general. More

on inverse semigroups can be found in [17].

A good example of an inverse semigroup is the symmetric inverse

monoid on the set X, denoted I(X), which consists of all bijections be-

tween subsets of X (partial bijections) with the operation of composition

of partial functions. In this inverse semigroup, the idempotents are the

identity functions on subsets, the natural partial order is the usual order-

ing of partial functions, the groupoid product of elements is only defined

when the domain of the first matches exactly the image of the second, and

a pair of partial bijections are compatible iff their union is another partial

bijection. Every inverse semigroup can be embedded in a symmetric inverse

semigroup, a result known as the Vagner-Preston representation theorem.

2. The P -theorem

The P -theorem centres on the class of E-unitary inverse semigroups. These

semigroups were introduced by Saito in 1965 [52] who called them proper

inverse semigroups. The ‘p’ of ‘proper’ explains the ‘p’ in ‘P -theorem’.

As we shall see, there are many, equivalent definitions of E-unitary inverse

semigroups, each giving a different way of thinking about them. Perhaps the

simplest is the following. An inverse semigroup is E-unitary if an element

above an idempotent, in the natural partial order, is also an idempotent.

Why is this a good class of semigroups to study? Well, mainly because

we can find so many interesting examples of them. For example, free inverse

monoids are E-unitary, so we are off to a flying start. But here are some

other reasons to study them:
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(1) The inverse monoid generated by the Möbius transformations on

the complex plane is E-unitary. Its universal group is the Möbius

group [16].

(2) The inverse monoid of all right ideal isomorphisms between essential

finitely generated right ideals of the free monoid on two generators

is E-unitary. Its universal group is the Thompson group V [1].

(3) The linear clause monoids over operator domains having a single

operation are E-unitary [27]. These monoids are closely related to

the group theory of Patrick Dehornoy.

(4) A further connection between groups and E-unitary inverse semi-

groups is the M&M expansion of X-generated groups to X-

generated E-unitary inverse semigroups [30].

(5) Kellendonk’s topological groupoid constructed from an inverse semi-

group is T1 in general, but Hausdorff when the inverse semigroup is

E-unitary [17].

(6) For every inverse semigroup S there is an E-unitary inverse semi-

group T and a surjective homomorphism θ : T → S which induces

an isomorphism between E(T ) and E(S). This is the ‘covering the-

orem’ [32]. There is sadly no space to say more about this theorem.

We can do no more than refer you to McAlister’s papers [36, 37, 39,

40, 41, 42] and those of Lawson [8, 10, 11, 12, 13].

(7) One disadvantage of E-unitary inverse semigroups is that if they

have a zero then they are necessarily semilattices, because every

element lies above the zero. This rather disappointing result is

rectified in the definition of E∗-unitary and strongly E∗-unitary

inverse semigroups. For more on these see [24].

One striking feature of E-unitary inverse semigroups is that they can

be characterised in a wide variety of ways. Proofs and references can be

found in [17].

Theorem 2.1. The following are equivalent for an inverse semigroup S.

(i) S is E-unitary.

(ii) The homomorphism γ : S → G(S) is idempotent pure meaning

that γ(s) = 1 implies that s is an idempotent.

(iii) The homomorphism γ : S → G(S) is L-injective, meaning that γ

restricted to each L-class is injective.

(iv) The function from S to E(S) × G(S) that maps s to (s−1s, σ(s))

is injective.
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(v) σ(e) = E(S) for each idempotent e.

(vi) The compatibility relation is transitive.

(vii) The compatibility relation is equal to σ.

Both groups and semilattices are E-unitary. So the idea arises that

maybe groups and semilattices could be used as building blocks for con-

structing all E-unitary inverse semigroups. A very nice heuristic which

leads to the P -theorem is described in [42].a Essentially, one observes that

semidirect products of semilattices by groups are E-unitary; that inverse

subsemigroups of semidirect products of semilattices by groups needn’t be

semidirect products of semilattices by groups; and that inverse subsemi-

groups of E-unitary inverse semigroups are also E-unitary. If you have

very good intuitions about inverse semigroups, you then come up with the

following construction. Note that partially ordered sets will be abbreviated

to posets. An order ideal in a poset is a subset that contains all elements

beneath each element of the subset. A McAlister triple (G,X, Y ) consists of

a group G, a poset X, and an order ideal Y of X that is a meet semilattice

under the induced order, such that G acts on X by order automorphisms

satisfying the following two conditions:

(MT1) G · Y = X.

(MT2) g · Y ∩ Y 6= ∅ for each g ∈ G.

Put

P = P (G,X, Y ) = {(y, g) ∈ Y × G : g−1 · y ∈ Y }.

Define a binary operation on P by

(y, g)(y′, g′) = (y ∧ g · y′, gg′)

where the meet always exists, is defined in the poset X, and belongs to Y .

It can be checked that P is an E-unitary inverse semigroup with semilat-

tice of idempotents isomorphic to Y and universal group G. Semigroups

of the form P (G,X, Y ) are called P -semigroups. If Y = X then we get

back semidirect products of semilattices by groups. But the construction,

although it looks like a semidirect product, isn’t. The partially ordered

set X is a crucial ingredient even though it seems to stand aloof from the

proceedings. It also turns out that it cannot in general be replaced by a

semilattice. The ‘P -theorem’ can now be stated.

aA paper which is neither random, nor rambling, but is about inverse semigroups.
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Theorem 2.2. Each E-unitary inverse semigroup is isomorphic to a P -

semigroup.

There are many different proofs of this theorem. For example:

(1) Don’s own proof 1974 [33]. See Section 6.

(2) Boris Schein’s proof 1975 [53]. See Section 3.

(3) Norman Reilly and Douglas Munn’s proof 1976 (using free inverse

semigroups) [51].

(4) Douglas Munn’s proof 1976 [49]. See Section 3.

(5) The maverick alternative: ‘the Q-theorem’ by Mario Petrich and

Norman Reilly 1979 [50]. See Section 3.

(6) Stuart Margolis and Jean-Eric Pin’s proof 1987 (using the derived

category) [29]. See Section 5.

(7) Mark V Lawson’s proof of 1990 [6]. See Section 4.

(8) Helen James and Mark V Lawson’s proof of 1999 [19]. See Section 6.

(9) Ben Steinberg’s proof 2003 (using Schützenberger graphs) [56].

In subsequent sections, we shall look at the proof of the P -theorem from

a number of different points of view each of which will provide a partial

answer to the following question: what does the P -theorem mean?

3. Partial group actions

We shall begin with the most concrete way of thinking about E-unitary

inverse semigroups. By the Vagner-Preston representation theorem, every

inverse semigroup is isomorphic to an inverse semigroup of partial bijec-

tions. Accordingly, let S be an E-unitary inverse subsemigroup of a sym-

metric inverse monoid I(X). Looking at our list of characterisations of a

semigroup being E-unitary in Theorem 2.1, there are three that we want

to highlight now: (v), (vi) and (vii). An element g of the universal group

G(S) is a σ-class and so by (vii) a set of pairwise compatible elements of S.

We may therefore form the union, fg, within I(X), of the elements of g to

obtain a well-defined partial bijection of X. If 1 ∈ G is the identity element

then f1 is an idempotent by (v). The idempotents in I(X) are the identity

functions defined on subsets of X. It is no loss in generality to assume that

the domain of definition of f1 is the whole of X, since if it isn’t we can

embed S in I(X ′) where X ′ is the domain of f1. If g ∈ G and x ∈ X then

the element x need not belong to the set dom(fg), but if it does then we

define

g · x = fg(x).
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We therefore have a partial function G×X → X that defines what we call

a ‘partial action’ of G on X. We now make this precise. A partial function

G×X → X which maps (g, x) to g ·x is said to define a partial group action

[25] if the following three axioms hold.

(PGA1) 1 · x is always defined and equals x.

(PGA2) If g · x is defined then g−1 · (g · x) is defined and equals x.

(PGA3) If g · (h · x) is defined then (gh) · x is defined and they are equal.

Observe that (PGA3) is the crucial difference with ‘global’ group ac-

tions. If S is an E-unitary inverse semigroup of partial bijections of the set

X then G(S) acts partially on X. This leads us to think that there may

be some connection between the structure of E-unitary inverse semigroups

and partial group actions.

Partial group actions can easily be constructed. Let G × X → X be a

global group action and X ′ ⊆ X. Then G acts partially on X ′. In fact,

every partial group action arises in this way. The following theorem, known

as the ‘Globalisation Theorem’, although formally proved by Johannes Kel-

lendonk and Mark V Lawson, has been around in one form or another for

a long time.

Theorem 3.1. Let G act partially on the set X. Then there is a set X̄,

essentially unique, such that G acts on X̄, X̄ contains X, the restriction of

the action of G to X is equal to the original partial action, and G ·X = X̄.

We say that the action of G on X̄ is the globalisation of the partial ac-

tion of G on X. We already see parallels with the definition of a McAlister

triple: indeed, if (G,X, Y ) is a McAlister triple then G acts partially on Y

and since G ·Y = X it follows that the action of G on X is the globalisation

of the partial action of G on Y . The only difference is that the sets and

actions have extra structure. Can we use the Globalisation Theorem to

prove the P -theorem? The answer is ‘yes’ in two different ways.

Schein’s proof Let S be an E-unitary inverse semigroup. Then by The-

orem 2.1(iv), there is an embedding κ : S → E(S) × G(S) which maps s

to (s−1s, σ(s)). Let A be the image of κ. The semigroup S is isomorphic

to an inverse subsemigroup of I(A) by the Vagner-Preston representation

theorem. The globalisation of the partial action of G(S) on A turns out

to be B = E(S) × G(S), where G(S) acts on B by left multiplication on

the second component. In other words, the globalisation can be explicitly

described and has nice properties. The ingredients for the McAlister triple
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corresponding to S can now be read off from the globalisation we have con-

structed.

Munn’s proof and the ‘Q-theorem’ Let S be an E-unitary inverse

smeigroup. Then by Theorem 2.1(iii), γ : S → G(S) is L-injective. Thus

given g ∈ G(S) and e ∈ E(S) there is at most one element s ∈ S such that

s−1s = e and γ(s) = g. Define a partial action of G = G(S) on the set

E = E(S) by

g · e = ss−1

if s−1s = e and γ(s) = g. The set of elements of E on which G acts forms

a non-empty order ideal of E. The partial action is order preserving, when

this makes sense. The data of the partial action of G on E is equivalent to

the semigroup S (this is the substance of the ‘Q-theorem’). The construc-

tion of the globalisation will be found to be a poset; the details are exactly

Munn’s proof of the P -theorem.

Is the P -theorem equivalent to the globalisation theorem? Almost. We

shall clarify this later when we talk about ‘enlargements’. Globalisations of

partial group actions are interesting and widespread in mathematics. For

example, the globalisation in the case of the Möbius group is the Riemann

sphere [25]. Ben Steinberg has looked at partial group actions on cell com-

plexes and poses a number of interesting questions about their applications

[55]. In particular, he suggests that Bass-Serre theory might be developed

from the point of view of partial group actions.

4. Ordered groupoids

There are three ways of proving the P -theorem using category theory: Mar-

golis and Pin’s proof [29], Lawson’s proof [6], and the proof of James and

Lawson [19]. In this section, we shall discuss Lawson’s proof, in Section 5

the proof of Margolis and Pin, and in the final section the proof due to

James and Lawson.

In the 1950’s, Charles Ehresmann developed the theory of ordered

groupoids motivated by questions in differential geometry. Since inverse

semigroups can be regarded as ordered groupoids the question arose of

the implications of Ehresmann’s work for inverse semigroup theory. The

P -theorem provided the key for understanding these implications. The pa-

pers [6, 7, 9, 14, 15] developed the ordered groupoid approach to inverse

semigroups motivated by the desire to combine Ehresmann’s ideas [2] with
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those of McAlister. In this section, we shall explain how the proof of the P -

theorem looks when viewed from the perspective of ordered groupoids. We

shall also say something about the connection between ordered groupoids

and partial group actions. We shall finish off by sketching out how the

P -theorem can be viewed from the vantage-point of a sort of generalised

homotopy theory.

An ordered groupoid is a groupoid whose set of arrows is also a poset

satisfying a number of additional conditions: the order intertwines nicely

with respect to taking inverses and with respect to products, just as the

natural partial order for inverse semigroups; if e is an identity less than

the source of an arrow g then there exists a unique element, denoted (g|e),

which is less than g and whose source is e — the element (g|e) is called

the restriction of g to e. Functors between ordered groupoids are ordered

preserving functors and are termed ordered functors. The set of identities

of an ordered groupoid is a poset. If this poset is also a meet semilattice

then the ordered groupoid is called, for historical reasons, an inductive

groupoid. Inverse semigroups can be regarded as inductive groupoids when

one considers them with respect to their groupoid product and their natural

partial order. Groupoids are ordered groupoids when ordered by equality,

and posets are ordered groupoids when viewed as groupoids of idempotents.

The fact that posets can be viewed as ordered groupoids is promising when

thinking about the mysterious poset X in the P -theorem.

The starting point for understanding how ordered groupoids can shed

light on the P -theorem is Theorem 4.12 of [37]:

Theorem 4.1. An inverse semigroup is isomorphic to a semidirect product

of a semilattice by a group iff the homomorphism γ to its universal group

is L-bijective.

Henceforth, we shall call L-injective maps immersions, and L-bijective

maps coverings. The difference between arbitrary E-unitary inverse semi-

groups, and those which are semidirect products of semilattices by groups

now resides in the difference between immersions and coverings.

Can we convert our immersion to a covering? Well, yes and no. It

can be extended to a covering but the covering will be from an ordered

groupoid. There are two ideas on which the ordered groupoid proof of the

P -theorem is based.

The first idea requires us to think about group actions in terms of

groupoids. Let G be a group acting on the set X. This action can be

regarded as a groupoid: in fact when we draw pictures of group actions
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with points representing the elements of X and arrows showing us how

elements of G move the points of X around, we are precisely thinking of

the action as a groupoid. Now let G be a group acting by order automor-

phisms on the poset X. Our groupoid becomes an ordered groupoid. Thus

given an action of the group G on the poset X by order automorphisms,

we define the semidirect product of X by G, denoted P (G,X), to be the

ordered groupoid whose arrows are pairs (x, g) which start at (g−1 · x, 1)

and terminate at (x, 1). We define (x, g) ≤ (x′, g′) iff g = g′ and x ≤ x′.

The projection from P (G,X) to G is an ordered covering functor.

Theorem 4.1 can be generalised from inverse semigroups to arbitrary

ordered groupoids.

Theorem 4.2. An ordered groupoid is isomorphic to a semidirect product

of a poset by a group iff it admits a surjective ordered covering functor to

a group.

The second idea we need is that of an ‘enlargement’. An enlargement

is a particular kind of relationship between an inverse semigroup and an

inverse subsemigroup or, more generally, between an ordered groupoid and

an ordered subgroupoid. The idea, which can be justified, is that an in-

verse semigroup (or ordered groupoid) and its enlargement are very similar

in structure: the enlargement being a sort of expanded version of its sub-

structure. The definition arose by combining ideas to be found in both

Ehresmann and McAlister. In particular, in the case of inverse semigroups,

it is McAlister’s notion of a ‘heavy’ inverse subsemigroup combined with

an extra notion mentioned in a remark on page 208 of [37]. It also recurs in

McAlister’s work on the local structure of regular semigroups [43, 44, 45,

46, 47, 48]. Enlargements play an important role in [15, 20, 21, 22].

Let G be an ordered subgroupoid of an ordered groupoid H. We say

that H is an enlargement if the following three conditions hold.

(E1) G is an order ideal of H.

(E2) If the source and target of an arrow of H belong to G then the arrow

belongs to G.

(E3) Each idempotent of H is connected by an arrow to an idempotent

of G.

The ordered groupoid version of the P -theorem can now be stated.

Theorem 4.3. The P -theorem is equivalent to the following statement. Let

S be an E-unitary inverse semigroup. Then the immersion γ : S → G(S)
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can be factorised θ = ιΘ where ι : S → S̄ is an inclusion of S into an

ordered groupoids S̄ which is an enlargement of S, and Θ: S̄ → G is a

covering.

We shall call this process the ‘enlargement of an immersion to a cover-

ing’.

This proof of the P -theorem looks quite different from the partial group

action proofs described in the previous section. However, as we shall now

show, they are really just different sides of the same coin. Recall that a

group G acting on a set X can be repackaged as a groupoid equipped with

a covering to G. It is easy to show that a group G acting partially on a

set X can be repackaged as a groupoid equipped with an immersion to

G. Theorem 4.3 above can be generalised: any surjective immersion from

an ordered groupoid to a group can be enlarged to a covering. The above

result is equivalent to the globalisation theorem for groups acting partially

by order automorphisms on posets.

We therefore arrive at one answer to our question about the meaning of

the P -theorem:

“Globalisations and the P -theorem are both aspects of one and the

same problem.”

The theory of enlargements above has wide-ranging generalisations;

more information can be found in [17]. But this is not quite the end of

the story. Ben Steinberg looked afresh at the work on the maximum en-

largement theorem through Rhodes-tinted spectacles [54]. Steinberg’s work

in turn led to a fully-fledged homotopy theory of ordered groupoids (and

so of inverse semigroups) [23]. If you put all this together, you get another,

quite-different looking interpretation of the P -theorem.

“The P -theorem is an analogue (in some sense) of the well-known

result in topology that states that every continuous function can be

factorised into a homotopy equivalence followed by a fibration.”

5. Extensions of semilattices by groups, the derived

category and global semigroup theory

In this section, we take a look at the next categorical proof of the P -theorem

due to Margolis and Pin [29], chronologically the first using categorical

methods. This had ramifications beyond inverse semigroup theory in that

it led to the introduction of methods from the algebraic theory of categories
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into semigroup theory. This has had a major influence on subsequent devel-

opments in semigroup theory and also provides a strong connection between

the work of Don McAlister and John Rhodes’ notion of Global Semigroup

Theory.

The starting point for this approach is the important role played in both

group theory and semigroup theory by wreath products. We mention just

two examples. First, the theorem of Krasner and Kaloujnine [5] states that

if f : G → H is a morphism of groups, then G embeds into the wreath

product N oH where N = Ker(f). Thus every finite group G embeds into

the wreath product of its Jordan-Hölder factors, arising from a composition

series for G. Second, the Krohn-Rhodes Theorem [3] shows that every finite

semigroup S dividesb a wreath product of subgroups of S and the three

element monoid consisting of two right zeroes and an identity element. By

the Krasner and Kaloujnine Theorem we can further decompose the groups

into their simple divisors.

How do these ideas relate to the P -theorem? Characterisation (ii) of

an E-unitary inverse semigroup in Theorem 2.1, the one characterisation

we have yet to use, says that an inverse semigroup S is E-unitary if and

only if it is an extension of its semilattice E(S) by its universal group

G(S). Suppose we could find a generalisation of the Krasner-Kaloujnine

Theorem that would, given a homomorphism f : S → T , obtain S from T

via the wreath product and something playing the role of Ker(f). Then

we could apply such a construction to the case where S is an E-unitary

inverse semigroup and T is its universal group to try to obtain a proof

of the P -Theorem as well as to problems arising from the Krohn- Rhodes

Theorem.

For this program to work, an appropriate notion of the kernel of a

semigroup morphism f : S → T has to be found. We know that the image

of a morphism is the quotient of S by the congruence relation associated

to f . The first approach to the problem was given by Bret Tilson [58]

who defined the derived semigroup of a morphism to be essentially a partial

action of S on the collection of congruences classes of f . The innovation was

that the derived semigroup was only locally inside S and not a subsemigroup

as in the case of groups. This was successful enough to help prove (along

with the notion of the Rhodes expansion) the difficult and fundamental

theorem of Rhodes complexity theory which states that if S and T are

finite semigroups and f is injective on subgroups of S, then the group

bThat is, is a homomorphic image of a subsemigroup.
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complexity of S is equal to that of T [58].

However, the derived semigroup fails to do the job precisely in cases like

that of the morphism between an E-unitary semigroup and its universal

group. Even a cursory look at the definition of the derived semigroup

[58] shows that it has a category like multiplication with an externally

adjoined zero to take care of products that are not defined. In the case of

the morphism between an E-unitary semigroup and its universal group, the

derived semigroup is an inverse semigroup, but its semilattice is a 0-disjoint

union of |G(S)| copies of the semilattice of S, whereas we want the “kernel”

to have semilattice E(S).

This problem was solved in [29] by discarding the offending zero and

treating the derived object as a category. This was motivated by corre-

sponding uses of groupoids in the theory of groups as exposed by Philip

Higgins [4] and others. In this way, the derived category of the morphism

between an E-unitary semigroup and its universal group is a category D(γ)

such that each local monoid is a semilattice. The following gives an outline

of the use of the derived category to prove the P -Theorem. It is convenient

to assume that S is a monoid. This presents no problem, as an inverse

semigroup S is E-unitary if and only if the monoid S1 obtained by ad-

joining an identity to S is E-unitary. Let γ : S → G(S) be the map from

the E-unitary monoid S to its universal group G(S). The derived category

D(γ) has objects G(S) and for each g, h ∈ G(S), the set of morphisms from

g to h is {(g,m, h)|g(γ(m)) = h}. There is an obvious Brandt-groupoid-like

composition that turns this into a category. The local monoid at any object

g is a semilattice isomorphic to E(S). The group G(S) acts on the category

D(γ) by left multiplication. This action is transitive on the objects. Thus

the quotient D(γ)/G(S) is a one object category, better known as a monoid!

The monoid D(γ)/G(S) is canonically isomorphic to S and the map from

D(γ) to D(γ)/G(S) is a covering of categories [4]. The P -structure of S

can be recovered from D(γ). As expected, the group in the McAlister triple

is G(S) and the semilattice is E(S). Pleasantly, the “mysterious” partially

ordered set turns out to be the partially ordered set of J -classes of D(γ).

Here we view D(γ) as a partial associative structure and then Green’s re-

lations have the same definition and analogous properties as in the case of

semigroups. In fact, they are the restriction of Green’s relations to D(γ) on

the semigroup obtained by adding an external zero to D(γ). As mentioned

above, this semigroup is what Tilson defined to be the derived semigroup

of γ.

This was just the beginning of the use of the derived category and
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related algebraic categories in the decomposition theory of semigroups and

its applications to various disciplines. In fact, the idea goes back to what

is called the Grothendieck construction. Bret Tilson made fundamental

and deep contributions to this area and put it at the centre of semigroup

theory. In particular, he showed that the construction is, in a precise sense,

adjoint to the construction of semidirect products: another connection to

the P -Theorem. See his paper [59] and the later joint work with Benjamin

Steinberg [57].

Finally we give a connection between the McAlister Theorems and

Rhodes’ notion of global semigroup theory. We would like to study an

arbitrary inverse semigroup S as an extension of its universal group G(S).

If S has a zero element, then except for semilattices this approach is doomed

from the start, since G(S) is easily seen to be the trivial group. In global

semigroup theory, one looks for an “expansion” of S to remove the ob-

struction that 0 presents. An expansion is intuitively a semigroup that

maps onto S, is close to S in its structure and has nicer properties; in our

case, it would be E-unitary and thus we could build the expansion from its

universal group and its semilattice via the P -Theorem. McAlister’s Cover-

ing Theorem gives exactly this. Every inverse semigroup is an idempotent

separating image of an E-unitary inverse semigroup (finiteness can be pre-

served). This means that the covering semigroup has the same semilattice

as S in particular. Thus the two McAlister Theorems can be considered to

be an early example of the methods and philosophy of Global Semigroup

Theory.

6. Cancellative categories

In this section, we shall describe the remaining categorical proof of the P -

theorem due to James and Lawson [19]. It is appropriate that we describe

it last of all because it in fact takes us back to Don’s original proof of the

P -theorem, as we shall see.

The starting point is the class of bisimple inverse monoids. An inverse

semigroup is bisimple if it consists of a single D-class. It is a classical

theorem of Clifford that bisimple inverse monoids are determined by the

R-class containing the identity: this is a right cancellative monoid in which

the intersection of any two principal left ideals is again a principal left

ideal. We shall call such monoids division monoids for short. Furthermore,

from each (abstract) division monoid we can construct a bisimple inverse

monoid. Recall that a (right) cancellative monoid is right reversible if for
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all elements s and t in the monoid, elements p and q can be found such

that ps = qt. It is a classical theorem of Ore, that each right reversible

cancellative monoid can be embedded in a group in such a way that each

element of the group is of the form a−1b where a and b are elements of

the monoid. It is interesting that Rees proved Ore’s embedding theorem

using, once again, E-unitary inverse semigroups. You can find his proof

on pages 68 and 69 of [17]. Don McAlister and Bob McFadden proved the

following result in Section 3 of [35].

Theorem 6.1. Let S be a bisimple inverse monoid. Then S is E-unitary if

and only if its associated division monoid is cancellative. In the E-unitary

case, the McAlister triple describing S can be recovered easily from the

embedding of the division monoid into its group of fractions.

In [19], this argument is generalised to an arbitrary E-unitary inverse

monoid. The role of the R-class containing the identity is taken by the

division category C(S) of S in the sense of Leech [28]. This is a right

cancellative category. The existence of least common left multiples is gen-

eralised to the condition that each pair of arrows with a common source

has a pushout. It’s proved that an inverse monoid S is E-unitary if and

only if its division category is cancellative. When S is E-unitary the divi-

sion catgeory C(S) can be embedded in a connected groupoid, its groupoid

of fractions, in a way that directly generalises the Ore embedding theo-

rem. The McAlister triple describing S can be recovered easily from this

embedding.

McAlister’s original proof of the P -theorem can be obtained from the

above proof by ‘choosing coordinates’. The starting point is the result

we mentioned in Section 1: connected groupoids are isomorphic to Brandt

groupoids, the isomorphism being defined by ‘co-ordinatising’ the groupoid.

If this result is applied to the proof above then we get exactly the first ever

proof of the P -theorem.

Again, this is not the end of the story. Leech’s categorical description

applies to inverse monoids. How can it be generalised to inverse semigroups?

McAlister’s papers [31, 34, 38] provided the clues, and the theory was

worked out in [18, 26].
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