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Inverse semigroup enlargements of inverse monoids
M V Lawson

Abstract

Let S be a fixed inverse monoid. We show how to construct, up to
isomorphism, all inverse semigroups T containing an idempotent e such that
S is isomorphic to e€Te and T = TeT. We also show how a class of such
semigroups T gives rise to a class of E-unitary covers of S over
semilattices. Finally, we interpret our construction in terms of categories
and establish connections with work of Grandis, and Morita equivalence of
categories.

1. Introduction

We shall assume that the reader is familiar with the basic definitions
of inverse semigroup theory. In general, we shall follow the notation and
definitions of Howie [3] and Petrich [9]. We simply highlight here one or
two pieces of notation. We denote the set of idempotents of a semigroup S
by E(S). f S is regular and x € S, then V(x) denotes the set of all
inverses of x in S, in the von Neumann sense. In an inverse semigroup, the
!, The natural partial
order in an inverse semigroup will be denoted by <. If (P,S) is a poset
then a subset Q of P will be called an order ideal if p < q € Q implies
that p e Q.

This paper concerns a class of extensions of an inverse semigroup
S defined as follows. Let S be an inverse subsemigroup of an inverse

unique inverse of an element x will be denoted by x

semigroup T. Then T is said to be an enlargement of S if the following
conditions hold:

(E1) S is an order ideal of T.

(E2) if x € T and x._x. xx! e E(S) then x € S.

(E3) For each e € E(T) there exists f € E(S) such that eDf.

Of course, we could make the definition more general and define an
enlargement in terms of an embedding of S in an inverse semigroup T. We
prefer, however, to avoid unnecessary notational  complications.  The
following was proved in [4].

Proposition 1.1. Let S be an inverse monoid. Then T is an enlargement of S
if, and only if there exists an idempotent ¢ € T such that T = TeT and
S = eTem

The situation represented by the above result, namely that a semigroup T
has an idempotent e such that T = TeT, is rather common in semigroup
theory. Our interest in this is motivated by the connection between the
theory of E-unitary covers over scmilattices of S and enlargements of S,
This connection is discussed in more detail in Section 3. The aim of this
paper is now readily stated. Let S be a fixed inverse monoid with identity
e. We shall show in this and the following section how to construct all
enlargements of S. Almost all the tools needed to solve this problem were
developed by McAlister in {5],[6] and [7]. In Section 4, we examine the
results of this paper from a categorical point of view. In the remainder of
this section, we prove some auxillary results.

An important role in the solution to our problem is played by a
special class of homomorphisms. A homomorphism :S > T is said to be a

local  isomorphism if the restrictions (0|eSe) are injective for all
e € E(S). The following was proved as Lemma 1.3 of [6].

Proposition 1.2, Let 0:S > T be a local isomorphism between regular
semigroups. Then for all x,y € S, the restrictions (8|xSy) are injective.u

Although we are only interested in inverse semigroups, we shall also need
to work with a rather more general class of regular semigroups. A regular
semigroup is said to be orthodox if the idempotents form a subsemigroup. We
refer the reader to Chapter VI of [3] for a discussion of orthodox, regular
semigroups. Let S be a regular semigroup. Then the minimum inverse
semigroup  congruence is denoted by Y. The following is proved as
Theorem VI1.1.12 of [3].

Proposition 1.3, Let S be an orthodox semigroup. Then (x)y) € ¥ if, and
only if, V(x) = V(y).m

A regular semigroup S is said to be locally inverse if eSe is inverse for
all idempotents ¢ € S. The following is proved as Proposition 1.4 of [6].

Proposition 1.4. Let S be a regular semigroup. Then <z"w > Sy is a local
isomorphism if, and only if, S is locally inverse and orthodox.u

Locally inverse orthodox semigroups are often called generalised inverse
semigroups. Orthodox semigroups which admit local isomorphisms onto inverse
semigroups are generalised inverse semigroups.




The following simple results are of fundamental importance for this
paper.

Proposition 1.5. Let S be regular, T inverse and 08 > T a surjective local
isomorphism.
@) For all x € S and X' € V(x), we have that 8(x") = 8(x)".
(i) For all x,y € S, B(xyx) = 0(x) implies that xyx = X.
(iii) For all ¢ € E(T), 8"'(e) < E(S).
Proof. (i) If x’ € V(x), then xx'x = x and x'xx” = X, and so
8(x)8(xHB(x) = 0(x) and B(xHO(X)B(X) = O(X").

But T is inverse. Thus 8(x) = 8(x)".
(ii) Let x" € V(x). Then

xx(xyx)x'x = xyx and xx'XX’x = X,
so that xyx,x € xx'Sxx. But 6(xyx) = 6(x). Thus by Proposition 1.2, we
have that xyx = x.
(iii) Let 6(x) = e. Then 6(x®) = 8(x)? = ¢* = e. Let x’ € V(x). Then

8(x) = 0(x") = B(X(XX)X).

THus by (ii) above, we have that Xt = x.m

Theorem 1.6. Let S be orthodox, T inverse, and ©:S » T a surjective local
isomorphism. Then ker@ = ¥.
Proof. Since y is the minimum inverse semigroup congruence we have that
v < ker. We now show that ker@ C v. Let (x,y) € ker®. Thus 6(x) = 6(y). By
Proposition 1.3, we need to show that V(x) = V(y). Let x" e V(x). Then
8(yx’y) = 8(y)8(x)0(y). But by Proposition 1.5(i), ax") = coc._. Thus

B(yxy) = 8(y)0(x)'6(y) = 8(x)8)"8(y),
since 0(x) = 0(y). It follows that O(yx'y) = 6(y), and S0 by
Proposition 1.5(ii), we have that yxy =y. Similarly, x'yx’ = x'.  Thus
x € V(y) and so V(x) € V(y). By symmetry, V(y) © V(x). Hence V(x) = V(y).»

[

The main result of this section is the following.

Theorem 1.7. Let S be a locally inverse, orthodox semigroup. Then, up to
isomorphism, S has a unique locally isomorphic inverse image.
Proof. By Proposition 1.4, %S » Siy is a locally
image. On the other hand, if 6:S > T is a surjective local isomorphism onto

an inverse semigroup T, then ker =y by Theorem 1.6, and so T is
isomorphic to S/y.e

isomorphic  inverse

e SRR

U DR

The following result will be needed in Section 3.

Proposition 1.8. Ler 0:S > T be a surjective local isomorphism where S is
orthodox and T is inverse. Then
G) Ler e € E(S) and 6(e)¢t. Then there exists s € S such that s¢e and
0(s) = t.
(i) Let ¢ € E(S) and O(e)Rt. Then there exists s € S such that sRe and
0(s) = t.
Proof. We shall prove (i), the proof of (i) is similar. Since 0 is
surjective, there exists u € S such that 6(u) = t. Put s = ue. Then
6(s) = B(ue) = B(u)Be) = 1B(e) = ¢,

since O(e)¢t. Let uw € V(). By Theorem 1.1(B), of Chapter VI of [3], we
have that ew’ € V(s). Thus sgeu’uve. But

B(cu’ue) = 6(e)8(u)"B(wB(e) = B(e)'18(e) = B(e)B(e)B(c) = 6(e).
By Proposition 1.5(1i), we have that ew'uve =e. Thus sfe and O(s) =t as
required.m

2, Normalised Rees matrix semigroups

Our main tool for constructing enlargements will be Rees matrix
semigroups of a rather special kind. We begin ‘E‘ reviewing the classical
definitions and properties we shall need. Let S be an (inverse) semigroup.
Let 1 be a set and let pIxI>S be a function; as usual we write
p(i,j) = P Put M=MSLp) =I xS xI equipped with the
multiplication given by

@siktl) = a.%_.wrc.

Then M is called a Rees matrix semigroup over S. The function p is called
the sandwich function. We put R = RM(S1Ip) the set of all regular
elements of M. The following is proved in [5]. .

Proposition 2.1. Ler S be an inverse semigroup. Then for any sandwich
function RM(S,Lp) is a regular, locally inverse semigroup.n

Let S be an inverse monoid with identity e. A sandwich function is said to
be normalised if the following conditions hold:

(S1) P, € E@) foralli e L

(S2) For some 1 € I, P,=¢

$3)p,; = ﬁ.‘.v., for all ij € L

SHpp, <0, for all ijk € L

The above conditions are special cases of conditions appearing in Lemma 22
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(i) For all i,j € 1, we have that p.p..

I
of [6]. A Rees matrix semigroup M = M(S,Lp) over an inverse monoid S with
identity ¢ is said to be normalised if p is a normal sandwich function.

Proposition 2.2. Let M = M(S,Lp) be a normalised Rees matrix semigroup.
Then
Py = Py and By =
(i) G,5,)) € E(M) if, and only if, s < P
(iii) R is orthodox.
(iv) (,5,) € R if, and only if, sls € P and ss' <
™) If (i,5)) € R then
R -1 o]

V(s = ((up, 5P ss° < PPy and s's < p. NP

i) If skl € R then

P

a,s)RE&.LY if, and only if, i = k and sRt.
vii) If (,5,).(kt]) € R then
s e.t)) if, and only if, j = 1 and sét.

Proof. (i) We prove the first equality, the proof of the second is similar.
By (S3) and (S4) we have that
P, ;.Ga.v. PP SP;

ij g
The result is now immediate.

@) G,sj) is an idempotent if, and only if, s= sp, S- But the latter

-1

implies that ss = mvrmm._. However sp., is an idempotent, and so we

have that (i,s,j) is an idempotent mm and only if, ss! = P, Thus
st = w._%.. and so s = v:,m._m, by (S3). But this is the case i, and
only if, s m P
(iii) Let (i,5.j),(k,t.])) € E(M). Then by (ii) above,

s < P, and t £ Py
Thus by (S4), we obtain mvtm < Py But then by (ii) again this implies
that (i,s,j)(k,tl) = @, sP, Zv is an anuoaa
(iv) Suppose ::: @,s.j) is regular. Then there exists
k.t) € V(,s.j). This mavznm that s = - mv_wﬁ_._m. Zoé.

=s mu_._ _.xav

wzw m P, % .re_
by (i) above. Thus
-1 -1

since P; is an idempotent by (81). wE ._v_.r
pSs= mmu* p,s=5s,

w:::ﬁ? ss ___
Gi,sj) is such that s's < P; and <p; Consider the element
Q_m._b. Then

and so s's< P Conversely, suppose  that

(56 D39 = G, s'p 8-
w.: %_..mw._vcm =s since s's< vaea ss' Sp.. Thus (s is

regular,

Bt

e s

v) Let (kt) € V(isj). Then s = %_.nerm and t = Gcmvbwr Thus
= (sp,,)(tp, )(sp, ) and 1, = (tp,) (s, )P, )»
and so p,; € ﬁ%..kv. m_.oB m mw_.wa_ 5 we ocSS Ewn
sls<p P and s’ < PP,
Similarly,
th<pp.
1 W -1 a1, vl
Thus from P, = A% v we obtain €:€:v v €c ,
and so = G V._ ._ch 1 .—.:o converse is easy to nronw.
(vi) Let Q.m&.?.rs € R. Suppose that i=k and that sRt. By
definition there exist elements a EE b such that sa=t and tb =s By
(iv) above, we have that sls < u._ and t't S Py Thus
p,2 = t and 6_._
But then

@G, ap,H = Gsp,p ap, D = GLD.
Similarly,
(L.LDAp, bp, ) = ([s.d).
Furthermore, by  (iv), both c%_.__%_._.c and a%:gt..w are  regular.
The converse is straightforward to check.

(vii) Similar to the proof of (vi) above.m

The above result shows that semigroups of the form RM(S,Ip) are locally
inverse orthodox semigroups.

Proposition 2.3. Let R = RM(S,Lp) be a normalised Rees matrix semigroup
over an inverse semigroup S with identity e. Put e = (1,e,1). Then
(i) R = ReR.
(ii) S is isomorphic to eRe.
Proof. (i) Observe that if (i,sj) € R then @i,s,1),(1,s m.: e R, and
4,5,4) = G.s,D(Le 11,8 m.._v.
(i) Define a function 6:5 » eRe by 6(s) = (1,5,1). It is easy to check
that © is an isomorphism.a

Proposition 2.4. Let R be a locally inverse, orthodox semigroup, and let e
be an idempotent of R. Suppose that R = ReR and S =c¢Re. Then S is
isomorphic to Ye)RA)ye) and Ry = RA)YENRA).

Proof. Observe first, that if @R » T is any surjective homomorphism, then
T = TO(e)T and 6(eRe) = 6(e)TO(e). By Proposition 1.4, <n is a local
isomorphism, since S is orthodox and locally inverse. This implies that eRe
and y(e)(RA)Y(e) are isomorphic. The result is now immediate.®
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By Proposition 2.3 and Proposition 2.4 we now have the following way of
constructing a class of inverse enlargements of S.

Theorem 2.5. Let S be an inverse semigroup with identity ¢ and let
R = RM(S,I,p) be a normalised Rees matrix semigroup over S. Put
e = (Le). Then S is isomorphic to Ye)RMY)Ye) and
R = RAYERN). Thus Rfy is an inverse enlargement of a local
submonoid isomorphic to S.s

That every inverse enlargement of S is obtained as above is the substance
of the following result.

Theorem 2.6. Let S be an inverse monoid with identity e and let T be an
inverse enlargement of S such that S = e¢Te. Then there exists a normalised
Rees matrix semigroup R = RM(S,Lp) over S such that T s isomorphic 1o
RA. «
Proof. Put I = E(T). For each idempotent i € E(T), pick an element X, € T
such that ?w._xm <e and xuxw._ =i ¥ i=e, then we choose X =e
If i,j € 1, then define

P = emv._x_,. .
It is clear that p,; € S. It is easy to check that p is a normalised
sandwich function. We now prove the remainder of the theorem. By
Theorem 2.4 [51, T is a locally isomorphic image of R = RM(S,Lp). By
Proposition 2.1 and Proposition 2.2, R is orthodox and locally inverse.
Thus by Theorem 1.7, R has a unique locaily isomorphic inverse image, and
so by Theorem 1.6, T is isomorphic to R/Y.a

From Theorems 2.5 and 2.6, it is evident that in order to construct all
inverse enlargements of an inverse monoid S it is necessary to construct
all normalised sandwich functions pI x I S. We discuss such functions
further at the end of Section 4.

3. Almost factorisable enlargements
In this section, we show how a class of E-unitary covers over
semilattices of an inverse semigroup S can be constructed by means of
normalissd Rees matrix semigroups. We first recall some definitions.
Elements x and y in an inverse semigroup S are said to be compatible,
written x ~y, if xy' and x'y are both idempotents. A subset A of § is
said to be compatible if any two elements are compatible. A compatible

ewenon qnmnd
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order ideal of S is said to be permissible. The set of all permissible
subsets of S is denoted by C(S). It is well-known (see [9]) that C(S) is an
inversc monoid under the usual product of subsets. The group of units of
C(S) is denoted ZX(S). An inverse semigroup S s said to be almost
factorisable if for each s € § there exists A € 3(S) such that s € A [4].

The minimum group congruence G on an inverse semigroup is defined by
(xy) € ¢ if, and only if, ex =ey for some idempotent e. An inverse
semigroup is said to be F-inverse if cach o-class contains a maximum
element. F-inverse semigroups arc automatically —monoids. An  F-inverse
semigroup P is said to be an F-inverse cover of an inverse monoid S if
there exists a surjective, idempotent separating homomorphism 0P » S.
Although every inverse monoid has an F-inverse cover, it is not known
whether every finite inverse monoid has a finite F-inverse cover. The
importance of almost factorisable semigroups stems from the following
result, proved in [4].

Proposition 3.1. A finite inverse monoid S has a finite F-inverse cover |f,
and only if, S has a finite almost factorisable enlargement.m

In view of the results of the previous section, it is natral to ask which
normalised sandwich functions into S yield almost  factorisable
enlargements. In the remainder of this section, we obtain some results
which may help in resolving this question.

Let R be an orthodox, locally inverse semgroup. We say that two
elements x,y € R are compatible, written x ~y, if, and only if, for all
X € V(x) and y’ € V(y) both X’y and xy’ arc idempotents. A subset A of R

is said to be compatible if any pair of elements are compatible. A
permissible subset is a compatible order ideal, where the order is the
usual Nambooripad order on a regular semigroup [8]. A global permissible
subset is a permissible subset A such that for each e € E(R) there exists
abe A such that for some a € V(@ and b e V(b) we have that

e=aa="bh. R is said to be almost factorisable if each element of R is
contained in a global, permissible subset.
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Proposition 3.2. Let 6R > S be a surjective, local isomorphism, where R is
orthodox and locally inverse, and S is inverse. Then
@) x ~ y in R if, and only if, 8(x) ~ 6(y) in S.
(i) x ~y if, and only if, for some x € V(x) and for some y € V(y) xy
and xy’ are idempotents.
(iii) If A is a global permissible subset of R then 0(A) € I(S).
v) If B € X(S) then o._ﬁwv is a global permissible subset of R.
(v) R is almost factorisable if, and only if, S is almost factorisable.
Proof. (i) Suppose that x ~y in R. Then x’y and xy’ are idempotents for
any inverses x' and y. Thus o(x’y) and 6(xy) are idempotents. But by
Proposition 1.5(),  8(x'y) = 6(x)"'8(y)  and 8(xy) = 6(x)0(y)".  Hence
a(x) ~ O(y). Conversely, suppose that 6(x) ~ 6(y) and that x’ € V(x) and
y € V(y). Then

B(x’y) = 8(x)'8(y) and 6(xy) = 8()B(Y)",
are both idempotents. But then by Proposition 1.5(iii), both x’y and xy’
are idempotents.
(ii) Suppose x’y and xy’ are idempotents for some x’ € V(x) and y & V(y).
Then 0(x) ~ 6(y) and so by (i), x ~ y.
(i) We show first that 6(A) is an order ideal of S. Let s < 6(r), where
re A. By Theorem 1.8 of i8], there exists te€ R such that t <r and
8(t) =s. But A is an order ideal, and so te A, Thus s e 0(A). Next, we
show that 6(A) is a compatible subset of S. Let 06(a),6(b) € 6(A) where
abe A Since a and b are compatible, it follows from (i) that 6(a) and
6(b) are compatible. Finally, we show that 8(A) is global in S. Let
e € E(S). By Lallement’s Lemma (Lemma IL4.6 of [3]), there exists f € E(R)
such that ©(f) = e But A is global in R and so there exist abe A and
ae V@ and b e V(b) such that aa’ =e=0bb  But then, by
Proposition 1.5(i), this implies that 6(A) is global.
(iv) We have to show that A = 0'B) is a global, permissible subset of R.
Firstly, A is an ‘order ideal. Suppose that ¢ < b e A. Then 6(c) < 6(b) € B.
But B is an order ideal, and so 0(c) € B, thus ¢ € A. Next, A is a
compatible  subset of R. Let abe A. Since 6(a)0(b) € B they are
compatible, and so by (), a~ b. Finally, A is global. Let ¢ € E(R). Then
6(e) € E(S). But B is global in S and so there exist u,v € B such that

u'u = 8(e) = wi

By Proposition 1.8(), there exists I € R such that r¢e and o) = u.
Similarly, there exists t € R such that tRe and O(t) = v. Thus 1t € A and
there exists I’ € V(1) and t' € V() such that rr=e=1t.
(v) Suppose that R is almost factorisable and s € S. Then O(1) = s for some

t e R. But, by assumption, there exists a global permissble subset A of R
such that t € A. But by (i) above, 0(A) € X(S) and s € 0(A). Thus A is
almost factorisable. Conversely, suppose that S is almost factorisable and
te R Then 9(t) € S and, since S is almost factorisable, there  exists
B e X(S) such that 6(t) € B. By (iv) above, o'(B) is a global permissible
subset of R containing t. Thus R is almost factorisable.m

The proofs of the following are now immediate.

Theorem 3.4. Let S be an inverse monoid.

(i) The inverse almost factorisable enlargements of S are isomorphic to the
semigroups RM(S.Lp)Y, where RM(S.Lp) are almost  factorisable,
normalised, Rees matrix semigroups.

(ii) A finite inverse monoid S has a finite F-inverse cover if, and only
if, there is a normalised sandwich function plI X1 > S where 1 is finite
and RM(S,1,p) is almost factorisable.n

4. A paper of Grandis

The aim of this section is to establish connections between the work
of Section 2 and a paper by Grandis [2] on the axiomatics of local
structures in differential geometry, as well as with Morita equivalence of
categories [1}. We do not as yet understand the significance of these
connections. We begin with some definitions from category theory.

In this paper, we are only interested in  categories as  algebraic
structures, so that all our categories will be small. Furthermore, we shail
treat categories as one-sorted  structures, where the role of objects is
played by the identities. We denote the set of identities of a category C
by Go. If x e C then d(x) is the right identity of x and r(x) is” the left
identity of x. The product xy is defined iff d(x) = r(y). The function
Co> Oo X Oo defined by X » r(x),d(x)1 is called the anchor \:E”:.ca. If e
and f are identities in a category C then the sets

hom(e,f) = {x € C: d(x) = ¢ and r(x) = f},
are called hom-sets and the sets end(e) = hom(e,e) are called end-sets. A
category C is said to be strongly connected if all hom-sets are non-empty.
Strongly connected categories give rise to semigroups in a natural way: let
C be strongly connected and let p:Cj X (S C be a cross-section of the
anchor function. Define a product o on C by
x o y = xp(d(x).r(y)y.
Then (C,e) is a semigroup obtained by consolidation from the category C.

10
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A category is said to be regular if for every morphism x there exists
a morphism y, called an inverse, such that xyx and yxy are defined and
x = xyx and y = yxy. A regular category in which each element has a unique
inverse is said to be inverse. We denote the unique inverse of an element x
in an inverse category by x’. The hom-sets of an inverse category come
equipped with a natural partial order: if x and y belong to the same
hom-set then x <y if, and only if, x= yx’x. Inverse categories enjoy
similar properties to those of inverse monoids.

Proposition 4.1. Let M(S,Ip) be a normalised Rees matrix semigroup over
the inverse monoid S. Define a partial product on R = RM(S,Lp) by
Qs = Gsth) if j=k Then this product is a restriction of
the wusual multiplication in R, and (R,) is a strongly connected inverse
category with set of identities the elements of the form Q%:b. In
addition, there exists an identity 2%_._.: in the category R  whose
endomorphism monoid is isomorphic to S, such that for each element (i,s,j)
in R there exist elements (i,u,1) and (1,v.j) satisfying

(@s.d) = G,V
Proof. The product (i,8)G.tD) = a.%arc in the semigroup R. But by

Proposition 2.2(iv), we have that mﬁ. = s Thus the product ‘.’ s the
restriction of the semigroup product. Next we show that the elements of the
form G%:b are the identities of the product ‘°. The product
(i.p, s1)(5.) (resp. (i,5.)G.p, ;) is just G,s.) by
Proposition 2.2(iv). ~Thus the elements Q%cb are certainly  identities,
and it easy to see that all identities are of this form. It is now clear
that (R,.) is a category. If (i,s,j) € R then a,w._.mv € R and

@5 = (sDGs DA

and

1]

(') = (" DAsHES" D).
Thus a,m._.c is an inverse of (i,sj). Furthermore, it is easy to check
that c,m._.c is the unique inverse of (isj). Thus (R,) is an inverse
category. It is strongly connected because of the existence of the elements
c.va&. It is clear that the identity :.F._.: has  endomorphism
monoid isomorphic to S. The last assertion follows from Proposition 2.3.m

We now follow Grandis [2] and define what is meant by a ‘manifold’ in an
inverse category. Let # be an inverse category, I a set and p¥Ix1-> ¢ a
function satisfying the following three conditions:

11

(M1) p*(@i,i) is an identity of ¥ for allie L
(M2) p*(jp*G.k) S p*Gk) for all ijk e L
M3) p*(i,j)’ = p*(.i) for all i,j € L

Then p* is called a manifold in ¢.

Proposition 4.2. Le¢ R = RM(S,1p) be regarded as an inverse category.
Define a function v*"Wo X wo > R by

. ﬂ*AAm.ﬁE.mv.Q.ﬁa.mvv = Am.vapmv.
Then p* is a manifold and a cross section of the anchor function.
Proof. It is clear from Proposition 4.1 that (Ml1) holds. To show that (M2)
holds. Observe that

ARG LY = (ip D) s
p*aiP*Gk) = (pGp, k) = Gp,p;, k).

By (S4), we have that p.p.. < Py Thus

ij jk
PiPix = Pl PP

Now
P, RGP, P KGR = (PP, PPy
Thus
@, K, P, K GP, P, k) = (p, P, K-
Hence

p*ADp*Gk) S p*ik). 7
Since (i.p, )’ = Gp,p) by (53), it follows that (M3) holds.m

The next result will enable us to connect our work with Morita equivalence
of categories.

Proposition 4.3. Let ¢ be an inverse category with  distinguished  identity
e. Then the following two properties are equivalent

@) For every identity f in % there exist elements u and v such that-f = uv
and d(u) = r(v) = e.

(i) For every x in § there exist elements u and v such that
d(u) = r(v) = ¢ and X = uv.

If @) or (ii) holds then # is strongly connected.

Proof. It is clear that (i) implies (i). Suppose that (i) holds. Let
x € 9, and suppose that d(x) =f and r(x) = f. Then by (i), there exist
elements u,v such that f=uv and d() = r(v) = e and elements w,z such
that £ =wz and dw) = r(@) =e. Now x = fxf = (wz)x(uv) = (wzxu)v where
d(wzxu) = r(v) = e. Thus (i) holds. Finally, to show that ¢ s strongly
connected. Let ff be any identities in ¢ By (i), there exist elements
wv,w and z such that f=uv and d) = r(v) =e¢ and f =wz and
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d(w) = r(z) = e. Thus wv is defined and dwv) = f and r(wv) = f. Hence
hom(f,f) is non-empty.m

We refer the reader to [1] for the definition of Morita equivalence of
categories. It follows from the penultimate paragraph of [1} that a
category $ is morita equivalent to an endomorphism monoid end(e) if, and
only if, condition (ji) (or equivalently (i)) in Proposition 4.3 holds.

We can now prove that all enlargements of an inverse monoid S are
obtained by embedding S as an endomorphism monoid of suitable inverse
categories.

Theorem 4.4. Let § be an inverse category which is Morita equivalent to
ende) = S for some identity e. Let v*“mo X uo > 3 be a cross-section which
is also a manifold in 3. Then (3,°), the consolidation of § with respect 1o
the cross-section p*, is a locally inverse, orthodox regular semigroup such
that S = eo%ee and § = Foeod. Hence (3,°)y is an enlargement of S, and
every enlargement of S is obtained in this way.
Proof. Observe first that x is an idempotent in (%) if, and only if,
x < p*(r(x),d(x)). To see this, suppose that xox = x. Then
xp*(d(x),r(x))x = x.
Observe that xp*(d(x),r(x)) is an idempotent in end(r(x)). We have that
X = x'(xp*(d(x),r(x))xx’,
and
xp*(d(x),rx))xx’ = xx'xp*(d(x),r(x)) = xp*(d(x),r(x)).
Thus x* = x'xp*(d(x),r(x)) and so x = p*(d(x),r(x))'x’x. Hence
x € pHdX),r(x)).

The converse is straightforward to check. Now let x and y be idempotents in
(#,0). Then

x < p*(r(x),d(x)) and y < p*(r(y),d(y)).
Thus -

xoy = xp*(d(X),r(y))y € pHr(x).dx)p*(A().r(y)p*r(y).d(y)).
But
PHr(x),d(x)p*(A(x),FYIP*r(y)d(y)) < p*r(x),d(y))-

Thus  xXey is an idempotent  in (%,0). ($,) is  regular, for
X = XX’k = xoX'ex. It is easy to check that § = e-¥oe. To show that
g = Joeof, let x € 5. Then x = uev for some u,v € 3 Thus x = uogov. It
follows from this that (%,0) is locally inverse, for any regular semigroup
T, having an idempotent f such that fTf is inverse and satisfying T = TIT,

must be locally inverse. By Proposition 2.4, we have that (%,°)/y is an
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enlargement of S. The converse follows from Theorems 2.5 and 2.6 and
Propositions 4.1 and 4.2.8

The above result suggests that there is a connection between enlargements
of an inverse monoid and Morita equivalence of categories. In particular,
the theory of F-inverse covers may ultimately be related to Morita
equivalence of categories.

To conclude this paper we show that normalised sandwich functions are
in correspondence with a class of manifolds in a suitable category. Let S
be an inverse category. The idempotent completion Sp(S) of S is the
category with elements of the form (e,x,f) where ef € E(S) and exf =x and
left and right identities defined by

rie.x.f) = (e,e.e) and diex,f) = (E5D).

It is an inverse category in which (ex,f)’ = Q.x.__nv.

Theorem 4.5. Let S be an inverse monoid with identity e.
() Lee pIx15>S be a normalised sandwich function. Define a function

pxI x 15 8pS) by p*Qj) = Gc%a.vav. ;m:e*_.mniaa_.\&&s
Sp(S) such that p*(1,1) = (ee.e) for some 1 € L w

(i) Let  p*1 x I » Sp(S) be a  manifold in Sp(S)  such  that
p*(1,1) = (eee) for some 1€ 1. Define a function pI x 1 Sp(S) by
pG.j) = au_u*a..a. where T, is the projection onto the second component.
Then p is a normalised sandwich function. Furthermore, the function taking
p to p* is a bijection.

Proof. (i) Observe first that p* is a well-defined function by
Proposition 2.2(i). (M1) holds by (S1). To show that (M2) holds we have to
show that in the inverse category Sp(S) we have that

@ P, PPy S PPy

1,

But
- (PP, 0P, )P, P, PP, )@, P, PP )
is just

P, Py PP PPy
But from the proof of Proposition 4.2, this is Qc%m ,wv_..x.vrwv. (M3)
holds by (§3). (S2) implies that p*(1,1) = (e.e.€).
(ii) (S1) holds: pG,i) = auv*ab. But p*(i,i) is an idempotent in  Sp(S)
and so is of the form (fff) where f is an idempotent in S. Thus p(i,i) is
an _EoBvoﬁi in 8. (S2) holds: by assumption, p*(1,1) = (ee.e) and so
p(1,1) =e. (S3) holds: pGJ = auv*a.w and p*Gij) = p*G.i). But then
from the form ‘taken by inverses in Sp(S) we have that p(@.j) = vc.s._.
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Finally, observe that if (ix,j) < (iyj) in Sp(S) then x < y in 8. Thus
(84) holds. The final part of the theorem is clear.s

The above result suggests that we may obtain a better understanding  of
enlargements  of  inverse monoids by investigating the application of
the categorical ideas on manifolds contained in [2].
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