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1. Motivation: the monoid case

Let X be a finite alphabet and let X∗ be the

free monoid on X.

We define what is meant by a self-similar group

action of the group G on X∗.

There are two maps

G×X∗ → X∗,

denoted by (g, x) 7→ g · x, and

G×X∗ → G,

denoted by (g, x) 7→ g|x, satisfying the following

eight axioms:
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(SS1) 1 · x = x.

(SS2) (gh) · x = g · (h · x).

(SS3) g · 1 = 1.

(SS4) g · (xy) = (g · x)(g|x · y).

(SS5) g|1 = g.

(SS6) g|xy = (g|x)|y.

(SS7) 1|x = 1.

(SS8) (gh)|x = g|h·xh|x.
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All of this data may be packaged into one

structure, a monoid, as follows.

On the set X∗×G define a binary operation as

follows.

(x, g)(y, h) = (x(g · y), g|yh).

Then we get a monoid X∗ ./ G, called the

Zappa-Szép product of X∗ and G.

We may exactly characterize the monoids that

arise in this way.
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A monoid S is said to be a left Rees monoid if
it satisfies the following three axioms

(LR1) S is a left cancellative monoid.

(LR2) Incomparable principal right ideals are
disjoint; that is, the monoid is right rigid.

(LR3) Each principal right ideal is properly con-
tained in only a finite number of principal
right ideals.

We shall usually assume that our left Rees
monoids are proper meaning that they are not
merely groups.

Theorem [Perrot 1972, Lawson 2008] There
is a correspondence between self-similar group
actions and left Rees monoids.

6



Let (G,X) be a self-similar group action. We

say the action is irreducible if the action of G

on X is transitive.

A left Rees monoid is said to be irreducible if

there is a maximum proper principal ideal.

Proposition The irreducible self-similar group

actions correspond to the irreducible left Rees

monoids.

Proposition A left Rees monoid is either irre-

ducible or a free product with amalgamation of

irreducible left Rees monoids having the same

groups of units.
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A necessary condition for a monoid to be em-

beddable in a group is that it be cancellative.

The following motivates this whole talk.

Theorem

1. Each irreducible Rees monoid may be em-

bedded in its universal group.

2. That group is an HNN-extension over a sin-

gle stable letter.

3. Every such group arises in this way.

Corollary Every Rees monoid is embeddable

in a group.
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Can we generalize Rees monoids in such a way

that we obtain the theory of graphs of groups

as a special case?

The short answer is in the affirmative; the long

answer is the contents of the rest of this talk.
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2. Equidivisible

A category C is said to be equidivisible if for ev-

ery commutative square c

��

a //

b
��

d
//

we either

have an arrow u making the following diagram

commute c

��

a //

b
��

d
//

u

??���������������

or one, v, making the

following diagram commute c

��

a //

b
��

v

����
��
��
��
��
��
��
�

d
//
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A non-invertible element a of a category C is

called an atom if a = bc implies either b or c is

invertible. We shall always assume that there

atoms.

A length functor is a functor λ:C → N from a

category C to the additive monoid of natural

numbers satisfying the following conditions:

(LF1) If xy is defined then λ(xy) = λ(x)+λ(y).

(LF2) λ−1(0) consists of all and only the in-

vertible elements of C.

(LF3) λ−1(1) consists of all and only the atoms

of C.
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A Levi category is an equidivisible category

equipped with a length functor.

A left cancellative Levi category is called a left

Rees category.

Example Left Rees categories with one iden-

tity are precisely left Rees monoids.

Theorem Left Rees categories are Zappa-

Szép products of free categories and groupoids.

Theorem Free categories are precisely the

Levi categories in which the invertible elements

are trivial.
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Let C be a Levi category. Denote the groupoid

of invertible elements by G and the set of atoms

by X.

There are two groupoid actions G × X → X

and X ×G→ X induced by multiplication.

The set X equipped with these actions is what

we call a (G,G)-bimodule or simply a bimodule.

Remark

• If C is left cancellative the action X ×G→
X is (right) free.

• If C is cancellative the action is bifree.
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Let X be an arbitrary (G,G)-bimodule. Define

T(X) =
∞⋃
n=0

X⊗n.

We shall call this the tensor category associ-

ated with the bimodule.

Theorem With the above definition, we have

the following:

1. T(X) is a Levi category and every Levi cat-

egory is constructed in this way.

2. Left Rees categories correspond to the case

where the bimodule is right free.

3. Rees categories correspond to the case where

the bimodule is bifree.
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3. Skeletal Rees categories

A category is skeletal if any invertible element
must belong to a local monoid.

Recall that a Rees category is a cancellative
Levi category and can be constructed from a
bifree bimodule.

Let G and H be groups. A partial isomorphism
from G to H is an isomorphism θ:G′ → H ′

where G′ is a subgroup of G and H ′ is a sub-
group of H.

If G = H we get a partial automorphism.

Remark HNN-extensions of a group are con-
structed from partial automorphisms of that
group.

We shall now explain how to construct bifree
bimodules from partial isomorphisms of groups.
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Let D be a directed graph. An edge x from the

vertex e to the vertex f will be written e
x→ f .

With each vertex e of D we associate a group

Ge, called the vertex group, and with each edge

e
x→ f , we associate a surjective homomor-

phism φx: (Ge)
+
x → (Gf)−x where (Ge)

+
x ≤ Ge

and (Gf)−x ≤ Gf .

In other words, with each edge e
x→ f , we as-

sociate a partial homomorphism φx from Ge to

Gf .

We call this structure a diagram of partial ho-

momorphisms. If all the φx are isomorphisms

then we shall speak of a diagram of partial iso-

morphisms.
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Theorem From each diagram of partial iso-

morphisms we may construct a bifree bimod-

ule over the groupoid G which is the disjoint

union of the vertex groups of the diagram.

Groupoids which are just disjoint unions of groups

are said to be totally disconnected.
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Idea of proof

First: from partial isomorphism to bimod-

ule

Let θ be a partial isomorphism from G to H

where θ:G′ → H ′. We shall construct a set X

and a (G,H)-bimodule G×X ×H → X.

On the set G×H define a relation ≡ as follows:

(g1, h1) ≡ (g2, h2) if and only if g−1
2 g1 ∈ G′ and

θ(g−1
2 g1) = h2h

−1
1 .

Denote the ≡-class containing (g, h) by [g, h].

Put X = (G×H)/ ≡.

Define g[g1, h1] = [gg1, h1] and [g1, h1]h = [g1, h1h].

Then X is a (G,H)-biset which is bifree. In

addition, G[1,1]H = X.
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Second: from bimodule to partial isomor-

phism

Let X be a (G,H)-bimodule which is bifree

and such that GxH = X. We show how to

construct a partial isomorphism from G to H.

Put

G′ = {g ∈ G: gx = xh for some h ∈ H}

and

H ′ = {h ∈ H: gx = xh for some g ∈ G}.

For each g ∈ G′ define

gx = xθ(g).

Then θ:G′ → H ′ is an isomorphism.
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4. The two main theorems

Theorem 1 From each diagram of partial iso-

morphisms we may construct a skeletal Rees

category, and every skeletal Rees category arises

in this way.

In particular, we may construct skeletal Rees

categories from graphs of groups.

In fact, there is a direct construction of the

Rees category from the diagram of isomor-

phisms using category presentations.
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Theorem 2

1. Every skeletal Rees category may be em-

bedded in its universal groupoid.

2. When the skeletal Rees category arises from

a graph of groups the universal groupoid is

the fundamental groupoid of the graph of

groups.

In addition, the Bass-Serre tree of the graph

of groups arises from the way the Rees cat-

egory is embedded in its universal groupoid.
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5. The inverse connection and further

work

We may construct inverse semigroups from skele-

tal Rees categories using a standard construc-

tion.

These inverse semigroups are strongly E∗-unitary.

The construction of the Bass-Serre tree can

be achieved using the Maximum Enlargement

Theorem.

It follows that the theory of graphs of groups

is related to the theory of E-unitary inverse

semigroups and the P -theorem.

Our theory can be viewed as a refinement of

the theory developed by Ph. Higgins, in that

we are replacing groupoids by ordered groupoids.
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