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1. Old results: setting the scene
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Introduction: the background story

The Thompson groups Gn,r are constructed

from free monoids and their free actions.

My original motivation for studying self-similar

group actions came from trying to generalize

free monoids to obtain generalizations of the

Thompson groups.

The monoids that arose were left Rees monoids,

described in this talk.

It turned out that they could be constructed

from self-similar group actions.

In addition, I discovered that they had been

introduced in 1972 in Perrot’s thesis.

Thus self-similar group actions were first dis-

covered within semigroup theory.
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What is a self-similar group action?

Let X be a finite alphabet. Let X∗ be the free

monoid on X; we shall think of this as being

ordered by the prefix ordering.

Let Xω be the set of all right-infinite strings

over X. We may regard Xω as the set of in-

finite paths from the root of the |X|-ary tree

determined by X∗.

Let θ be an automorphism of Xω.

We show how the self-similarity structure of

Xω leads to a recursive method for computing

θ.
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Let w′ = xw where x is a letter and w is infinite.

By assumption, any string beginning with x will

be mapped to a string beginning with the same

letter. We denote this letter by θ(x).

We have that w′ ∈ xXω and θ(w′) ∈ θ(x)Xω.

It follows that θ restricts to an isomorphism

between xXω and θ(x)Xω. Let’s call this iso-

morphism θ′.

There are are self-similarities λx:Xω → xXω

and λθ(x):X
ω → θ(x)Xω.

It follows that

θx = λ−1
θ(x)

θ′λx

is another automorphism and, crucially,

θ(xw) = θ(x)θx(w).
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A faithful action of G on X∗ is said to be self-

similar if for each x ∈ X and w ∈ X∗ we have

that

g · (xw) = (g · x)(g|x · w)

where gx ∈ G is uniquely determined by g and

x.

Remarks

1. Such actions can also be interpreted in terms

of automata-theory.

2. The self-similarity properties of Xω are the

subject of Rees (1948), and led to the con-

cept of uniform posets which form the basis

of the theory of 0-bisimple inverse monoids

to be found in McAlister (1974) and which

ultimately lie behind Perrot’s work.
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Why are such groups interesting?

See Nekrashevych’s book (2005). But, for ex-

ample, the Grigorchuk group is self-similar; this

group is an infinite, finitely generated torsion

group of intermediate growth.
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Generalizations

The definition of a self-similar group action

requires the action to be faithful. We shall now

construct a definition that does not require this

assumption.

We shall arrive at this definition from a differ-

ent direction.
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Zappa-Szép products

Let S be a monoid and let A and B be sub-

monoids. Assume that S = AB and that every

element of S can be written uniquely as an el-

ement of A mutiplied by an element of B. We

say that S can be uniquely factorized.

It follows that

ba = a′b′

where a′ and b′ are uniquely determined by a

and b. To signal this, we write

a′ = b · a and b′ = b|a.

We therefore have two maps

B ×A → A where (b, a) 7→ b · a

and

B ×A → B where (b, a) 7→ b|a.
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To work out the properties satisfied by these

maps we use the associative and identity laws

in varous cases. Here is an important example.

We have that

b(a1a2) = (ba1)a2.

But

b(a1a2) = [b · (a1a2)]b|ba1a2

and

(ba1)a2 = (b · a1)(b|a1 · a2)(b|a1)|b2.

We now use the uniqueness of the factorization

to deduce that

b · (a1a2) = (b · a1)(b|a1 · a2)

and

b|a1a2 = (b|a1)|a2.

The first equation provides the link with self-

similar group actions.
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Eight properties arise by continuing in this way.

(SS1) 1 · a = a.

(SS2) (b1b2) · a = b1 · (b2 · a).

(SS3) b · 1 = 1.

(SS4) b · (a1a2) = (b · a1)(b|a1 · a2).

(SS5) b|1 = b.

(SS6) b|a1a2 = (b|a1)|a2.

(SS7) 1|a = 1.

(SS8) (b1b2)|a = b1|b2·ab2|a.
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Conversely, if A and B are monoids with a pair

of actions satisfying the above axioms we may

define a binary operation on A×B by

(a1, b1)(a2, b2) = (a1(b1 · a2), (b1|a2)b2.)

In this way, we obtain a monoid A ⊲⊳ B called

the Zappa-Szép product of A and B. It may

be uniquely factorized by isomorphic copies of

A and B.
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Self-similar group actions

We suppose that the monoids above are A =

X∗, the free monoid on X, and B = G, a group.

Then we say that there is a self-similar group

action of G on X∗ if the axioms (SS1)—(SS8)

are satisfied.

Remark If the action is faithful then we obtain

the classical definition of a self-similar group

action.

What about the monoid X∗ ⊲⊳ G?
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Theorem The monoid X∗ ⊲⊳ G satisfies the

following three axioms:

(LR1) S is a left cancellative monoid.

(LR2) Incomparable principal right ideals are

disjoint; that is, the monoid is right rigid.

(LR3) Each principal right ideal is properly con-

tained in only a finite number of principal

right ideals.

Every monoid satisfying these axioms, which

is not a group, is isomorphic to a Zappa-Szép

product of a free monoid by a group.

A monoid, not a group, satisfying the above

three axioms, is called a left Rees monoid. If

it is also right cancellative we say that it is a

Rees monoid.
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Remark Left Rees monoids may be used to

construct unambiguous, 0-bisimple inverse monoids

in which there are only a finite number of idem-

potents above every non-zero idempotent. We

call these Perrot monoids. The self-similar

group action is faithful iff the Perrot monoid is

fundamental iff the Perrot monoid is congruence-

free.
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2. New results
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Some definitions

Let S be a monoid. An atom in S is an ele-

ment a such that if a = bc then either b or c is

invertible.

A length function on a monoid S is a function

λ:S → N such that λ(ab) = λ(a)+λ(b); λ−1(0)

is the group of units of S; λ−1(1) is the set of

atoms of S.

The monoid S is said to be equidivisible if if

for all a, b, c, d ∈ S we have that ab = cd implies

a = cu and ub = d for some u ∈ S or av = c

and b = vd for some v ∈ S.

The following theorem is well-known and we

include it to set the scene.

Theorem A monoid is free if and only if it is

an equidivisible monoid with a length function

having a trivial group of units.
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Irreducible left Rees monoids

A left Rees monoid is said to be irreducible

if there is a maximum proper principal ideal.

The proof of the following uses a result due to

N. Bourbaki.

Theorem Let S1, . . . , Sm be any set of irre-

ducible left Rees monoids where G = G(Si) for

all i. Suppose in addition that Si ∩ Sj = G

whenever i 6= j. Then the free product with

amalgamation S1 ∗G S2 ∗G . . . ∗G Sm is a left

Rees monoid with group of units G and irre-

ducible components isomorphic to the Si.

Every left Rees monoid is either irreducible or a

free product with amalgamation of irreducible

left Rees monoids having the same groups of

units.
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Thus irreducible left Rees monoids are the build-

ing blocks of all left Rees monoids.

My goal is to show you two methods for build-

ing all irreducible left Rees monoids.

20



Partial endomorphisms

The following construction is fundamental to

our work.

Let S be a left cancellative monoid. Let s ∈ S.

Define

G+
s = {g ∈ G: gs ∈ sG} and G−

s = {g ∈ G: sg ∈ Gs}.

By left cancellation, if gs = sg′ = sg′′ then

g′ = g′′. We may therefore write

gs = sφs(g).

In fact,

φs:G
+
s → G−

s

is a surjective homomorphism between two sub-

groups of G.

A partial endomorphism (G,φ) is any surjective

homomorphism φ between two subgroups of G.

21



G-bisets

Let A be a set on which G acts both on the left

and the right in such a way that the actions are

compatible. Then we say that S is a G-biset.

If there is an element a ∈ A such that A = GaG

we say that the biset is irreducible.

If the righthand G-action is free we say that A

is a covering bimodule.

Lemma Let S be a left Rees monoid. Let A

be the set of atoms of S. Then A is a covering

bimodule which is irreducible iff S is irreducible.
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The following construction is due to Nekra-

shevych.

Let φ:H → G be a partial endomorphism of G.

On the set G × G define (g1, h1) ≡ (g2, h2) if

and only if g−1
1 g2 ∈ H and φ(g−1

1 g2) = h1h
−1
2 .

≡ is an equivalence relation. Denote the equiv-

alence class containing (g1, h1) by [g1, h1]. Write

B = B(G,φ) = (G × G)/ ∼ and define two ac-

tions G × B × G by g[g1, h1] = [gg1, h1] and

[g1, h1]g = [g1, h1g].

This gives us an irreducible covering bimodule

where the righthand action is free.

Theorem Every irreducible covering bimodule

is constructed in this way.
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Let S be an irreducible left Rees monoid with

group of units G.

Let s be an atom. Then we may construct a

partial endomorphism (G,φs).

Lemma Any two partial endomorphisms con-

structed as above are essentially the same.

We may therefore speak of the partial endo-

morphism associated with an irreducible left

Rees monoid.
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Tensor monoids

Let M be an arbitrary (G,G)-biset. Put

T(M) =
∞⋃

n=0

M⊗n

with the obvious multiplication. Then it is a

monoid called the tensor monoid, associated

with the G-biset M .
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Theorem

1. Tensor monoids are precisely the equidi-

visible monoids equipped with length func-

tions.

2. The left cancellative tensor monoids are

precisely the left Rees monoids.

3. From each partial endomorphism φ of G

we may construct an irreducible left Rees

monoid whose associated partial endomor-

phism is essentially φ.
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Generalized HNN extensions

Given a partial endomorphism φ:A → B of G

we have shown how to construct an irreducible

left Rees monoid. We now show that there is a

direct way of doing this. It is a generalization

of an HNN extension.

Theorem Let (G,φ) be a partial endomor-

phism where φ:A → B. Let

M = Mon〈G, x: ax = xφ(a) for all a ∈ A〉

be the monoid with generators G∪{x} and re-

lations all those that hold in G together with

the relations explicitly stated. Then M is a

left Rees monoid isomorphic to the one con-

structed from the partial endomorphism.

27



Let S be an irreducible left Rees monoid de-

termined by the partial endomorphism (G,φ).

Lemma S is also right cancellative, and so

cancellative, iff φ is injective.

Theorem The universal groups of irreducible

Rees monoids are HNN extensions of their groups

of units and every HNN extension arises in this

way. In addition, such monoids may be em-

bedded in their universal groups.

Using this result, we may also prove directly

the following.

Theorem A left Rees monoid may be embed-

ded in a group iff it is right cancellative.
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3. Further work

• The connection between irreducible Rees

monoids and HNN extensions of groups raises

the question of whether such monoids and

their generalizations intervene in an anlo-

gous way in the general theory of graphs

of groups.

• Monoids equipped with length functions are

examples of monoids in which Green’s re-

lations are determined by units; connected

algebraic monoids are particularly well-known

members of this class of semigroups.
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• There is a connection between self-similar

group actions and strong representations

of the polycyclic monoids.

• Associated with a self-similar group action

is a double category of squares. This seems

to underlie work of Burger and Mozes and

their successors.
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