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DISCLAIMER

This talk will concentrate on IDEAS rather
than TECHNOLOGY.
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1. Origins

All of our work is derived from the theory of pseudogroups of

transformations. We shall reverse history and define such pseu-

dogroups in terms of inverse semigroups.
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A semigroup S is said to be inverse if for each a ∈ S there exists

a unique element a−1 such that a = aa−1a and a−1 = a−1aa−1.

Two key immediate examples:

1. Groups are the inverse semigroups with exactly one idempo-

tent.

2. Meet semilattices are the inverse semigroups in which every

element is idempotent.
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Inverse semigroups come equipped with an internally defined order.

Let S be an inverse semigroup. Define a ≤ b if a = ba−1a.

Proposition The relation ≤ is a partial order. In addition, if

a ≤ b then a−1 ≤ b−1 and if also c ≤ d then ac ≤ bd.

This order is called the natural partial order.
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Let S be an inverse semigroup. Elements of the form a−1a and

aa−1 are idempotents. Denote by E(S) the set of idempotents

of S.

Remarks

1. E(S) is a commutative subsemigroup or semilattice.

2. E(S) is an order ideal of S.
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Observation Suppose that a, b ≤ c. Then ab−1 ≤ cc−1 and

a−1b ≤ c−1c. Thus a necessary condition for a and b to have an

upper bound is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent. This is the com-

patibility relation.

A subset is said to be compatible if each pair of distinct elements

in the set are compatible.

Elements in inverse semigroups need to be compatible

before they are even eligible to have a join.
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• An inverse semigroup is said to have finite (resp. infinite)

joins if each finite (resp. arbitrary) compatible subset has a

join.

• An inverse semigroup is said to be distributive if it has finite

joins and multiplication distributes over such joins.

• An inverse monoid is said to be a pseudogroup if it has infinite

joins and multiplication distributes over such joins.

• An inverse semigroup is a meet semigroup if has has all binary

meets.
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A pseudogroup of transformations is a pseudogroup of partial

bijective functions on a set.

The key example is the pseudogroup of all homeomorphisms

between the open subsets of a topological space.

Such pseudogroups played an important rôle in the work of

Charles Ehresmann.

If the topology on the set X is discrete we get the symmetric

inverse monoids I(X).
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A frame is a complete distributive lattice in which finite meets

distribute over infinite joins.

The open subsets of a topological space form a frame.

IDEA: Think of pseudogroups as non-commutative frames.

This idea motivates all our work and underpins this talk.
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This idea did not arise in a vacuum:

• J. Renault, A groupoid approach to C∗-algebras, Lecture

Notes in Mathematics, 793, Springer, 1980.

• A. Kumjian, On localizations and simple C∗-algebras, Pacific

J. Math. (1984), 11.

• J. Kellendonk, The local structure of tilings and their integer

group of coinvariants, Comm. Math. Phys. 187 (1997),

115–157.
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• A. L. T. Paterson, Groupoids, inverse semigroups, and their

operator algebras, Progress in Mathematics, 170, Birkhäuser,

Boston, 1998.

• D. H. Lenz, On an order-based construction of a topological

groupoid from an inverse semigroup, Proc. Edinb. Math.

Soc. 51 (2008), 387–406. A samizdat version of this paper

was available since 2002.

• P. Resende, Etale groupoids and their quantales, Adv. Math.

208 (2007), 147–209.
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Commutative Non-commutative

Frame Pseudogroup

Distributive lattice Distributive inverse semigroup

Boolean algebra Boolean inverse semigroup

Boolean inverse meet semigroup

Algebra Topology

Semigroup Locally compact

Monoid Compact

Meet-semigroup Hausdorff

In this talk, I will concentrate on Boolean inverse monoids.
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“The fox knows many things, but the hedgehog knows

one big thing.” — Archilochus

There is one idea driving this research:

think of inverse semigroups as non-commutative meet semilattices.
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Technical point.

In the more general setting, one sets up an adjunction between

a suitable category of pseudogroups and a suitable category of

étale groupoids.

From this adjunction, categorical dualities can then be derived

linking distributive inverse semigroups with what we term spec-

tral groupoids and Boolean inverse semigroups with locally com-

pact groupoids.

To do this, one needs a suitable notion of coherence for pseu-

dogroups.
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2. Boolean inverse semigroups

A distributive inverse semigroup is said to be Boolean if its semi-
lattice of idempotents forms a (generalized) Boolean algebra.

Symmetric inverse monoids are Boolean.

Theorem [Paterson, Wehrung] Let S be a subsemigroup of a
ring with involution R such that S is an inverse semigroup with
respect to the involution. Then there is a Boolean inverse semi-
group T such that S ⊆ T ⊆ R.

The above result is significant when viewing inverse semigroups
in relation to C∗-algebras.

Theorem [Lawson] Every inverse semigroup can be embedded
in a universal Boolean inverse semigroup.
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We view categories as 1-sorted structures: everything is an ar-

row. Objects are identified with identity arrows.

A groupoid is a category in which every arrow is invertible.

We regard groupoids as ‘groups with many identities’.

If G is a groupoid denote its set of identities by Go.

A subset A ⊆ G is called a local bisection if A−1A,AA−1 ⊆ Go.

Proposition The set of all local bisections of a groupoid forms

a Boolean inverse meet monoid.
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An inverse semigroup is fundamental if the only elements that

centralize all idempotents are themselves idempotents.

Closely related to aperiodicity in higher-rank graphs.

A closed ideal in a Boolean inverse semigroup is an ideal closed

under finite compatible joins.

A Boolean inverse semigroup is 0-simplifying if it contains no

non-trivial closed ideals.

A Boolean inverse semigroup is simple if it is both fundamental

and 0-simplifying.
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Theorem [Lawson, Malandro]

1. The finite Boolean inverse monoids are isomorphic to the in-

verse monoids of local bisections of finite discrete groupoids.

Compare with the structure theory of finite Boolean algebras:

finite sets replaced by finite groupoids.

2. The finite fundamental Boolean inverse monoids are precisely

the finite direct products of finite symmetric inverse monoids.

3. The finite simple Boolean inverse monoids are precisely the

finite symmetric inverse monoids.
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Examples: AF monoids

There is an analogy between finite symmetric inverse monoids

In of all partial bijections on a finite set with n elements and the

C∗-algebras Mn(C).

Accordingly, define a Boolean inverse monoid to be approxi-

mately finite or AF if it is a direct limit of finite direct products

of finite symmetric inverse monoids.

AF inverse monoids are fundamental Boolean inverse meet monoids.
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3. Non-commutative Stone duality

A topological groupoid is said to be étale if its domain and range

maps are local homeomorphisms.

Why étale? This is explained by the following result.

Theorem [Resende] A topological groupoid is étale if and only

if its set of open subsets forms a monoid under multiplication

of subsets with the identity of the monoid being the space of

identities.

Etale groupoids therefore have a strong algebraic character.
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A Boolean space is a compact Hausdorff space with a basis of
clopen subsets.

A Boolean groupoid is an étale topological groupoid whose space
of identities is a Boolean space.

If G is a Boolean groupoid denote by KB(G) the set of all compact-
open local bisections.

A subset A ⊆ S of a Boolean inverse monoid is called a filter if
a, b ∈ A implies that there is a c ∈ A such that c ≤ a, b, and if
a ∈ A and a ≤ b then b ∈ A. It is said to be proper if 0 /∈ A. A
subset A ⊆ S of a Boolean inverse monoid is called an ultrafilter
if it is a maximal proper filter.

If S is a Boolean inverse monoid denote by G(S) the set of
ultrafilters of S.
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Technical point.

Ultrafilters in a Boolean inverse monoid behave much like cosets
in a group.

If A is an ultrafilter then d(A) = (A−1A)↑, the elements above
those in A−1A, is also an ultrafilter and an inverse subsemigroup.
If A is an ultrafilter then r(A) = (AA−1)↑ is also an ultrafilter
and an inverse subsemigroup.

Let a ∈ A. Then

A = (ad(A))↑.

If A and B are ultrafilters define A ·B = (AB)↑ only when d(A) =
r(B). This provides us with a groupoid multiplication on the set
of ultrafilters.
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Theorem [Non-commutative Stone duality I, Lawson & Lenz]

1. If S is a Boolean inverse monoid then G(S) is a Boolean

groupoid, called the Stone groupoid of S.

2. If G is a Boolean groupoid then KB(G) is a Boolean inverse

monoid.

3. If S is a Boolean inverse monoid then S ∼= KB(G(S)).

4. If G is a Boolean groupoid then G ∼= G(KB(G)).
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There are many special cases of the above result. Here, I shall

mention just two.

Theorem [Non-commutative Stone duality II, Lawson & Lenz]

1. The groupoid G(S) is Hausdorff if and only if S is a meet

monoid.

2. S is a simple Boolean inverse monoid if and only if G(S) is

effective and minimal.
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4. Applications: Thompson-Higman type groups

Let An = {a1, . . . , an} be a finite alphabet with n ≥ 2 elements.
Denote the free monoid on An by A∗n.

A morphism between right ideals of A∗n is the analogue of a right
module morphism.

The polycyclic inverse monoid Pn is the inverse monoid of all bi-
jective morphisms between principal right ideals of A∗n together
with the empty partial function. This inverse monoid arises nat-
urally in connection with pushdown automata and context-free
languages.

The polycyclic distributive inverse monoid Dn is the inverse monoid
of all bijective morphisms between the finitely generated right
ideals of A∗n together with the empty partial function.
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Define ≡ on Dn by a ≡ b if and only if for all 0 < x ≤ b we have

that a ∧ x 6= 0 and for all 0 < y ≤ a we have that b ∧ y 6= 0.

This definition is due to Lenz.
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Theorem [Lawson]

1. Cn = Dn/ ≡ is a Boolean inverse monoid, called the Cuntz
inverse monoid, whose group of units is the Thompson group
Gn,1.

2. The map Pn → Cn is universal to those Boolean inverse
monoids which convert a1a

−1
1 , . . . , ana−1

n to a join equal to
1. This means that Cn is the tight completion of Pn.

3. The groupoid associated with the Boolean inverse monoid
Cn is isomorphic to the set of triples (xw, | x | − | y |, yw),
where x and y are finite strings and w is a right-infinite string,
with a groupoid product.
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The above theory generalizes to classes of higher-rank graphs

(work with A. Vdovina and, more recently, with both A. Vdovina

and A. Sims).

Non-commutative Stone duality computes the correct groupoids

in these cases.

This was one of the motivations of the theory: why invent the

wheel twice?
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5. Applications: MV algebras

In lieu of a definition: MV algebras are to multiple-valued logic

as Boolean algebras are to classical two-valued logic.

Denote by S/J the poset of principal ideals of S. If this is a

lattice we say that S satisfies the lattice condition. The following

is a semigroup version of a theorem of Mundici.

Theorem [Lawson-Scott] Every countable MV algebra is iso-

morphic to the ‘structure’ S/J where S is AF and satisfies the

lattice condition.
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Wehrung (2017) has generalized this result to arbitrary MV al-

gebras.

Example The direct limit of I1 → I2 → I4 → I8 → . . . is the

CAR inverse monoid whose associated MV algebra is that of the

dyadic rationals in [0,1].

31



6. Research question

There is, up to isomorphism, exactly one countable, atomless
Boolean algebra. We call it the Tarski algebra.

Under classical Stone duality, the Stone space of the Tarski al-
gebra is the Cantor space.

We define a Tarski monoid to be a countable Boolean inverse
meet monoid whose semilattice of idempotents is a Tarski alge-
bra.

Problem: classify the simple Tarski monoids.

The groups of units of such groups are analogues of the Thompson-
Higman groups.
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