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1. Background

The starting point for this work were the following two papers:

• J.-C. Birget, The groups of Richard Thompson and com-

plexity, IJAC 14 (2004), 569–626.

• M. V. Lawson, The polycyclic inverse monoids Pn and the

Thompson groups Vn,1, Comms. Alg. 35 (2007), 4068–

4087.
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My paper has been substantially generalized in two steps. First,

to 1-vertex higher rank graphs, and then to higher rank graphs

with a finite number of vertices:

• M. V. Lawson, A. Vdovina, Higher dimensional generaliza-

tions of the Thompson groups, AM 369 (2020), 107191.

• M. V. Lawson, A. Sims, A. Vdovina, Higher dimensional gen-

eralizations of the Thompson groups, via higher rank graphs,

In Preparation.

Accordingly, free monoids are generalized first to a class of can-

cellative monoids and then to a class of cancellative categories.
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The goal of this talk is to return to my 2007

paper but develop the theory there in the light

of my work with Sims and Vdovina.

This has been written up as the following paper:

The polycyclic inverse monoids and the Thomp-

son groups revisited, arXiv:2006.15338.
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2. Free monoids

Let An = {a1, . . . , an} be a finite alphabet where n ≥ 2. The set

of all finite strings over An is denoted by A∗n. This is a monoid

under concatenation of strings with the empty string ε as the

identity. In fact, A∗n is the free monoid on An. The key property

of the free monoid that we shall need is the following. This is

an arithmétic property.

Lemma The free monoid A∗n is singly aligned. This means that

for any strings x and y we have that xA∗n ∩ yA∗n is either empty

or again a principal right ideal.
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Aside on prefix codes

Let u and v be strings. We say that they are prefix comparable

if uA∗n ∩ vA∗n 6= ∅, else they are prefix incomparable.

A finite subset X of A∗n is called a prefix code if its elements are

pairwise prefix incomparable.

A prefix code X is called a maximal prefix code if every element

of A∗n is prefix comparable with some element of X.

6



Important properties of the free monoid

• It is cancellative.

• It is conical, meaning that its group of units is trivial.

• The intersection of any two finitely generated right ideals is

a finitely generated right ideal.

• Every finitely generated right ideal is generated by a prefix

code.
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3. The polycyclic inverse monoid Pn

Fix a free monoid A∗n. Let x and y be any strings. Denote by

xy−1 the partial bijection with domain yA∗n, codomain xA∗n which

does the following: yu 7→ xu.

Thus y−1 ‘pops y’, and x ‘pushes x’.

The set of all such partial functions together with the empty

partial function forms an inverse monoid called the polycyclic

inverse monoid on n letters.

It was introduced by Nivat and Perrot in 1970.
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4. The inverse monoid Dn

Let R1 and R2 be right ideals of A∗n. A function θ : R1 → R2 is

called a morphism if θ(rx) = θ(r)x for all r ∈ R1 and x ∈ A∗n.

Define Dn to be the set of all bijective morphisms between the

finitely generated right ideals of A∗n.

Theorem Dn is a distributive inverse ∧-monoid and the distribu-

tive completion of Pn.

We now unpack what this theorem says.
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An inverse monoid is distributive if it has all binary compatible

joins and multiplication distributes over such joins.

A morphism of distributive inverse monoids is a homomorphism

that preserves compatible joins.

An inverse ∧-monoid is an inverse monoid with all binary meets.

A distributive inverse monoid D is said to be the distributive

completion of the inverse semigroup S if there is a monoid ho-

momorphism δ : S → D such that if α : S → T is any homomor-

phism to a distributive inverse monoid T then there is a unique

morphism β : D → T such that βδ = α.
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5. How to get a group from Dn

Let S be any inverse monoid with zero.

A non-zero idempotent e in S is said to be essential if ef 6= 0 for

all non-zero idempotents f .

An element a of S is said to be essential if both a−1a and aa−1

are essential.

Define Se, the essential part of S, to consist of all essential

elements of S. It is an inverse monoid (without zero).
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Let T be any inverse semigroup. The congruence σ is defined

on T by a σ b if and only if there exists an element c such that

c ≤ a, b.

Then T/σ is a group and if ρ is any congruence on T such that

T/ρ is a group then σ ⊆ ρ.

Thus σ is the minimum group congruence on T .
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The following is now a reinterpretation of what Birget did.

Theorem Let n ≥ 2. Then Gn = De
n/σ is the Thompson group

Gn,1 or Vn,1.

De
n is the set of all bijective morphisms between the finitely gen-

erated right ideals generated by maximal prefix codes.

The above construction can be generalized to finitely aligned

small categories with only a finite number of identities. The

issue is what one can say about the group. This requires extra

structure, such as that provided by higher rank graphs.
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6. The group Gn as a group of units

A distributive inverse monoid is said to be Boolean if its semi-

lattice of idempotents is a Boolean algebra.

We shall now show how to realize the group Gn as a group of

units of a Boolean inverse monoid.

This will enable us to connect the groups Gn with étale groupoids.
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We shall need a definition from the following paper:

D. Lenz, An order-based construction of a topological groupoid

from an inverse semigroup, Proc. Edinb. Math. Soc. 51 (2008),

387–406.

Let S be an inverse semigroup with zero. We shall define a

congruence ≡ on S which we call the Lenz congruence.
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Define ≡ on S as follows: s ≡ t if and only if the following two

conditions hold:

1. If 0 < x ≤ s then there exists a non-zero element x′ such that

x′ ≤ x, t.

2. If 0 < y ≤ t then there exists a non-zero element y′ such that

y′ ≤ y, s.

The relation ≡ is a congruence and 0-restricted meaning that

a ≡ 0 implies that a = 0.
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How can we understand ≡? Denote by Vs the set of ultrafilters

in S that contain the element s.

Lemma If ≡ is idempotent-pure then s ≡ t if and only if Vs = Vt.

A congruence ρ is idempotent-pure if and only if a ρ e, where e is

an idempotent, implies that a is an idempotent.

The above is rather abstract.

17



In the concrete example of the inverse monoid Dn, it can be

proved that the congruence ≡ is determined only by the fact

that

a1a
−1
1 ∨ . . . ∨ ana−1

n ≡ 1A∗n.

The idempotent on the lefthand side is the identity function on

the set A∗n \ {ε}.

The apparently tiny difference difference between the identity

function defined on the set A∗n and the identity function defined

on the set A∗n \ {ε} drives the theory.
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Our key theorem is the following.

Theorem The inverse monoid Dn/ ≡ is a Boolean inverse

monoid whose group of units is Gn.

Put Cn = Dn/ ≡. We call it the Cuntz inverse monoid.

Under non-commutative Stone duality, the Boolean inverse monoid

has a Stone groupoid G(Cn) whose topological full group is iso-

morphic to Cn.

From work of Matui, it is known that the group Cn and the étale

groupoid G(Cn) determine each other up to isomorphism.
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7. The group Gn as a group of automorphisms

We shall now use some ideas from the following papers:

• G. Higman, Finitely presented infinite simple groups, Notes

on Pure Mathematics, No. 8 (1974). Department of Pure

Mathematics, Department of Mathematics, I.A.S. Australian

National University, Canberra, 1974. vii+82 pp.

• R. Statman, Cartesian monoids, Electronic Notes in Theo-

retical Computer Science 265 (2010), 437–451.
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We define a class of universal algebras.

An n-ary Cantor algebra is a structure (X,α1, . . . , αn, λ), where

α1, . . . , αn are unary operations and λ is an n-ary operation, sat-

isfying the following two laws:

CA1 (xα1, . . . , xαn)λ = x for all x ∈ X.

CA2 (x1, . . . , xn)λαi = xi where 1 ≤ i ≤ n.

Given such an algebra, we may define a bijection β : X → Xn by

xβ = (xα1, . . . , xαn) for each x ∈ X. Conversely, every bijection

from X to Xn defines an n-ary Cantor algebra.
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Let Mn be the monoid (not inverse, but it is a restriction semi-

group) constructed from the free monoid A∗n consisting of all

surjective morphisms between finitely generated right ideals to-

gether with the empty partial function. Thus Dn ⊆Mn.

Each non-zero element of Mn can be regarded as a tree whose

leaves are labelled by elements of the free monoid.

We may easily extend the definition of the Lenz congruence and

we then define Cn = Mn/ ≡.
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Define Tn to be the submonoid of Cn consisting of total maps.

Each non-zero element of Tn can be represented by a tree which

is a maximal prefix code whose leaves are labelled by elements

of the free monoid.

Denote by ρa the function ‘multiply on the right by a’. Denote

by ρ−1
a the partial function ‘erase a on the right’.

On the set Tn, define an n-ary operation λ by

(f1, . . . , fn)λ = f1ρ
−1
a1
∪ . . . ∪ fnρ−1

an

and define n unary operations α1, . . . , αn by

(f)αi = fρai.
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Lemma The universal algebra (Tn, α1, . . . , αn, λ) is an n-ary Can-

tor algebra.

Theorem The n-ary Cantor algebra (Tn, α1, . . . , αn, λ) is the free

n-ary Cantor algebra on one generator.

Theorem The automorphism group of the n-ary Cantor algebra

Tn is the Thompson group Gn.
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Our aim is to extend these results to a class of generalizations

of the Thompson groups.

But the really interesting question is what is the connection be-

tween this work and logic?

Thank you!
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