
AF inverse monoids

Mark V Lawson

Heriot-Watt University

and the

Maxwell Institute for Mathematical Sciences, UK

Universidade Nova de Lisboa, 17 May 2021

In collaboration with Phil Scott (Ottawa)

1



The goal of this talk is to show how two different generalizations

of Boolean algebras are related to each other:

Boolean inverse monoids and MV-algebras.

In this talk, we shall need to distinguish between semigroups

and monoids, the latter being semigroups with an identity. Our

semigroups will usually have zeros.

In a Boolean algebra, the complement of an element e will be

denoted by ē.
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1. Revision of inverse semigroups

Inverse semigroups originated as abstractions of pseudogroups

of transformations.
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A semigroup S is said to be inverse if for each a ∈ S there exists

a unique element a−1 such that

a = aa−1a and a−1 = a−1aa−1.

Two key immediate examples:

1. Groups are the inverse semigroups with exactly one idempo-

tent.

2. Meet semilattices are the inverse semigroups in which every

element is idempotent.

4



Inverse semigroups come equipped with an internally defined or-

der.

Let S be an inverse semigroup. Define a ≤ b if a = ba−1a.

Proposition The relation ≤ is a partial order on an inverse

semigroup. In addition, if a ≤ b then a−1 ≤ b−1 and if also c ≤ d

then ac ≤ bd.

This order is called the natural partial order.
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Let S be an inverse semigroup. Elements of the form a−1a and

aa−1 are idempotents.

Denote by E(S) the set of idempotents of S.

Remarks

1. E(S) is a commutative subsemigroup or semilattice.

2. E(S) is an order ideal of S.
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Observation Suppose that a, b ≤ c. Then ab−1 ≤ cc−1 and

a−1b ≤ c−1c. Thus a necessary condition for a and b to have an

upper bound is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent. This is the com-

patibility relation.

A subset is said to be compatible if each pair of distinct elements

in the set are compatible.

Elements in inverse semigroups need to be compatible before

they are even eligible to have a join.
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An inverse semigroup is fundamental if the only elements that

centralize all idempotents are themselves idempotents.

For more on general inverse semigroup theory, see my book

M. V. Lawson, Inverse semigroups: the theory of partial symme-

tries, World Scientific 1998.

But if you are into that whole brevity thing, also see

M. V. Lawson, Primer on inverse semigroups I,

https://arxiv.org/abs/2006.01628.
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2. Boolean inverse monoids

• An inverse semigroup is called a meet-semigroup if it has all
binary meets.

• An inverse semigroup is said to have finite joins if each finite
compatible subset has a join.

• An inverse semigroup is said to be distributive if it has finite
joins and multiplication distributes over such joins.

• An inverse monoid is said to be a Boolean if it is distributive
and its semilattice of idempotents is a Boolean algebra (with
respect to the natural partial order).
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Let X be a non-empty set. Denote by I(X) the set of all partial

bijections of X. Then I(X) is a Boolean inverse monoid called

the symmetric inverse monoid.

If X is finite with n elements, then we denote the corresponding

symmetric inverse monoid by In.

An inverse monoid isomorphic to a finite direct product of finite

symmetric inverse monoids is said to be matricial. Matricial

inverse monoids are Boolean.
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Theorem [Paterson, Wehrung] Let S be a submonoid of a ring

with involution R such that S is an inverse monoid with respect

to the involution. Then there is a Boolean inverse monoid T

such that S ⊆ T ⊆ R.

The above result is significant when viewing inverse monoids in

relation to C∗-algebras.

Theorem [Lawson] Every inverse monoid can be embedded in

a universal Boolean inverse monoid.
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We view categories as 1-sorted structures: everything is an ar-

row. Objects are identified with identity arrows.

A groupoid is a category in which every arrow is invertible.

We regard groupoids as ‘groups with many identities’.

If G is a groupoid denote its set of identities by Go.

A subset A ⊆ G is called a local bisection if A−1A,AA−1 ⊆ Go.

Proposition The set of all local bisections of a groupoid forms

a Boolean inverse meet-monoid.
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Remarkably, the finite Boolean inverse monoids can be com-

pletely described.

Theorem [Lawson, Malandro]

1. The finite Boolean inverse monoids are isomorphic to the in-

verse monoids of local bisections of finite discrete groupoids.

Compare with the structure theory of finite Boolean algebras: here, finite

sets are replaced by finite groupoids.

2. The finite fundamental Boolean inverse monoids are precisely

the matricial inverse monoids.
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We regard Boolean inverse monoids as non-commutative Boolean

algebras.

Stone’s duality generalizes: Boolean inverse monoids are in du-

ality with étale topological groupoids whose space of identities

is a Boolean space. We call these Boolean groupoids.

Boolean inverse meet-monoids are in duality with Hausdorff Boolean

groupoids.

For more on Boolean inverse monoids see: F. Wehrung, Refine-

ment monoids, equidivisibility types, and Boolean inverse semi-

groups, Lecture Notes in Mathematics 2188, Springer, 2017.
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3. MV-algebras

See the book [CDM] R. L. O. Cignoli, I. M. L. D’Ottaviano,

D. Mundici, Algebraic foundations of many-valued reasoning,

Springer, 2000.

MV-algebras are another generalization of Boolean algebras aris-

ing from many-valued logic.
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An MV-algebra is a set A equipped with a binary operation ⊕, a unary oper-
ation ¬ and two constants 0 and 1 such that the following axioms hold:

1. ⊕ is associative.

2. ⊕ is commutative.

3. The identity is 0.

4. ¬¬x = x.

5. ¬0 = 1.

6. 1 is the zero.

7. ¬(¬x⊕ y)⊕ y = ¬(¬y⊕x)⊕x. This mysterious identity actually says that
x ∨ y = y ∨ x. See below.
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An element x of an MV-algebra is called an idempotent if and

only if x⊕ x = x.

The set of idempotents in an MV-algebra forms a Boolean alge-

bra (Corollary 1.5.4 of [CDM]).

Accordingly, an MV-algebra is a Boolean algebra if and only if

every element is idempotent (Corollary 1.5.5 of [CDM]).

All Boolean algebras are MV-algebras.
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The closed unit interval [0,1] is an MV-algebra when we define

¬x = 1− x and x⊕ y = max{1, x + y}.

For each n ≥ n, define

 Ln =

{
0,

1

n− 1
, . . . ,

(n− 2)

(n− 1)
,1

}
with the above operations. Then  Ln is a finite MV-algebra.

It is a theorem (Proposition 3.6.5 of [CDM]) that every finite

MV-algebra is a finite direct product of MV-algebras of the form

 Ln.
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Define x ≤ y if and only if x ⊕ z = y for some z. Then ≤
is a partial order (Lemma 1.1.2 of [CDM]) and gives the MV-
algebra the structure of a distributive lattice (Proposition 1.1.5
and Proposition 1.5.1 of [CDM]).

It can be proved that

x ∨ y = ¬(¬x⊕ y)⊕ y

and

x ∧ y = ¬(¬x ∨ ¬y)

by Proposition 1.1.5 of [CDM].

It can also be proved that

x⊕ y = x⊕ (¬x ∧ y)

where x ≤ ¬(¬x ∧ y).
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Boolean inverse monoids generalize Boolean algebras.

MV-algebras generalize Boolean algebras.

This raises the question of how Boolean inverse monoids and

MV-algebras are related.
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We shall show that the theory of MV-algebras is subservient to

the theory of Boolean inverse monoids.

We shall refer to our paper [LS] M. V. Lawson, P. Scott, AF

inverse monoids and the structure of countable MV-algebras,

Journal of Pure and Applied Algebra 221 (2017), 45–74.
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4. Foulis inverse monoids

An inverse monoid is said to be factorizable if each element is

below an element in the group of units.

The following result shows how the inverse monoid structure and

the Boolean algebra structure interact.

Lemma [Proposition 2.7 of [LS]] Let S be a Boolean inverse

monoid. Then S is factorizable if and only if eDf implies that

ēD f̄ .

Factorizable Boolean inverse monoids are Dedekind finite or com-

pletely semisimple meaning that eD f and e ≤ f imply that e = f .

In particular, D = J .
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Let S be a factorizable Boolean inverse monoid. Denote an

element of E(S)/D by [e]. Put  L(S) = E(S)/D.

Define a partial addition on  L(S) as follows: [e] + [f ] = [i ∨ j]

where iD e and j D f and ij = 0. Define ¬[e] = [ē]. Put 0 = [0]

and 1 = [1].

Assume that S also satisfies the lattice condition: S/J is a

(distributive) lattice. Define

[e]⊕ [f ] = [e] + (¬[e] ∧ [f ]) .
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A Foulis monoid is a factorizable Boolean inverse monoid satis-

fying the lattice condition.

Theorem [Section 2.2 of [LS]] Let S be a Foulis monoid. Then

( L(S),⊕,¬, 0, 1) is an MV-algebra.

An MV-algebra isomorphic to one of the form  L(S) where S is a

Foulis monoid is said to be coordinatizable.

24



Symmetric inverse monoids are factorizable if and only if they

are finite.

Finite symmetric inverse monoids are Foulis monoids as are ma-

tricial inverse monoids.

Theorem [Theorem 2.14 of [LS]] The finite MV-algebra  Ln+1

is coordinatized by In. More generally, every finite MV-algebra

is coordinatized by a matricial monoid.
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The proof of the following is given after Theorem 4.10 of [LS].

Theorem Every countable MV-algebra is coordinatizable.

The above theorem was generalized by Wehrung as Theorem

5.2.10 using different techniques.

Theorem Every MV-algebra is coordinatizable.

The above theorem therefore completely answers the question of

the nature of the relationship between MV-algebras and Boolean

inverse monoids.
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5. AF inverse monoids

We shall sketch out our result on the coordinatization of count-

able MV-algebras.

We first need to be explicit about what kind of substructures we

shall be dealing with.

Let S be a Boolean inverse monoid. Let T be an inverse sub-

monoid of S which is a Boolean inverse monoid in its own right.

We say that T is a subalgebra of S if E(T ) is a Boolean subalge-

bra of E(S) and compatible joins in T are the same as compatible

joins in S.
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Let S be a countable Boolean inverse monoid. We say it is AF
(Approximately Finite) if S =

⋃∞
i=1 Si where S1 ⊆ S2 ⊆ S3 ⊆ . . .

and where each Si is a matricial subalgebra of S. They are always
factorizable.

This definition is modelled after the definition of AF C∗-algebras
where finite direct products of finite symmetric inverse monoids
replace finite dimensional C∗-algebras.

The theory of AF C∗-algebras was introduced in: O. Bratteli,
Inductive limits of finite dimensional C∗-algebras, Transactions
of the AMS 171 (1972), 195–234.

The theory developed there relies a lot on matrix units which
form inverse semigroups.

Bratteli diagrams give rise to AF inverse monoids and conversely.
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In [DM] D. Mundici, Logic of infinite quantum systems, Interna-

tional Journal of Theoretical Physics 32 (1993), 1941–1955, we

have the following quote:

. . . AF C∗algebras should be regarded as sort of noncom-

mutative Boolean algebras . . .

We claim that the above quote actually applies more strongly to

AF inverse monoids since commutative AF inverse monoids are

Boolean algebras.

Theorem 3 from [DM] states that there is a bijection between

AF C∗-algebras whose Murray-von Neumann order is a lattice

and countable MV-algebras.

29



By modifying Mundici’s proof we actually proved the following:

Theorem [LS] Every countable MV-algebra can be coordinatized

by an AF inverse monoid satisfying the lattice condition.

The following is a nice introduction to our theory: Weiyun Lu,

Topics in many-valued and quantum algebraic logic, MSc Thesis,

University of Ottawa, 2016.

FIN
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