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Background

Interesting papers are appearing in which groups
are constructed as topological full groups of
étale groupoids.

Examples

• H. Matui, Homology and topological full
groups of étale groupoids on totally discon-
nected spaces, Proc. London Math. Soc.
104 (2012), 27–56.

• H. Matui, Topological full groups of one-
sided shifts of finite type, J. reine angew.
Math. 705 (2015), 35–84.

• V. Nekrashevych, Simple groups of dynam-
ical origin, Ergod. Th. & Dynam. Sys.,
published online 2017.

2



These papers are interested in constructing in-

finite simple groups (amongst other things).

The origins of the ideas they develop lie in the

theory of dynamical systems, such as work by

Giordano, Putnam and Skau and going back

to the late 50s early 60s and papers by Dye.
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The goal of this talk

To describe the setting from which topo-

logical full groups emerge, rather than to

focus on interesting results about such

groups, per se.
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1. Etale groupoids

We shall regard groupoids as algebraic struc-
tures with a subset of identities. If G is a
groupoid, its set of identities if Go.

Philip Higgins adopted just such an approach
in his applications of groupoid theory to group
theory.

Examples

1. Groups are the groupoids with exactly one
identity.

2. Equivalence relations can be regarded as
principal groupoids; the pair groupoid X ×
X is a special case.

3. From a group action G × X → X we get
the transformation groupoid G nX.
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A topological groupoid is a groupoid G equipped

with a topological structure in which both mul-

tiplication and inversion are continuous.

A topological groupoid is said to be étale if the

domain map is a local homeomorphism.

WHY ETALE?
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If X is a topological space, denote by Ω(X)

the lattice of all open sets of X.

Theorem [Resende, 2006] Let G be a topo-

logical groupoid. Then G is étale if and only if

Ω(G) is a monoid.

• Etale groupoids are topological groupoids

with an algebraic alter ego.

• Etale groupoids should be viewed as gen-

eralized spaces (Kumjian, Crainic and Mo-

erdijk . . . .)
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2. Classical Stone duality

A Boolean space is a 0-dimensional, compact
Hausdorff space.

Theorem [Stone, 1937]

1. Let S be a Boolean space. Then the set
B(S) of clopen subsets of S is a Boolean
algebra.

2. Let A be a Boolean algebra. Then the set
X(A) of all ultrafilters of A can be topol-
ogized in such a way that it becomes a
Boolean space. It is called the Stone space
of A.

3. If S is a Boolean space then S ∼= XB(S).

4. If A is a Boolean algebra then A ∼= BX(A).

8



Examples

1. Up to isomorphism, there is exactly one

countable, atomless Boolean algebra. It is

innominate so I call it the Tarski algebra.

The Stone space of the Tarski algebra is

the Cantor space.

2. The Stone space of the powerset Boolean

algebra P(X) is the Stone-Čech compacti-

fication of the discrete space X.
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3. Non-commutative Stone duality

A Boolean groupoid is an étale groupoid whose

space of identities is a Boolean space.

A Boolean inverse monoid is an inverse monoid

satisfying the following conditions:

1. The set of idempotents forms a Boolean

algebra under the natural partial order.

2. Compatible pairs of elements have a join.

3. Multiplication distributes over the compat-

ible joins in (2).

If only (2) and (3) hold, have a distributive

inverse monoid.
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Recall that . . .

A semigroup S is said to be inverse if for each
s ∈ S there exists a unique s−1 ∈ S such that

s = ss−1s and s−1 = s−1ss−1.

An inverse semigroup S is equipped with two
important relations.

s ≤ t is defined if and only if s = te for some
idempotent e. Despite appearances ambidex-
trous. Called the natural partial order. Com-
patible with multiplication.

s ∼ t if and only if st−1 and s−1t both idem-
potents. Called the compatibility relation. It
controls when pairs of elements are eligible to
have a join.

Example Symmetric inverse monoids I(X) are
also the prototypes of Boolean inverse monoids.
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Let G be a groupoid. A partial bisection is a

subset A ⊆ G such that A−1A,AA−1 ⊆ Go.

Let G be a Boolean groupoid. The set of

compact-open partial bisections of G is de-

noted by B(G).

Let S be a Boolean inverse monoid. The set

of ultrafilters of S is denoted by G(S).
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Theorem [Lawson & Lenz, Resende]

1. Let G be a Boolean groupoid. Then B(G)

is a Boolean inverse monoid.

2. Let S be a Boolean inverse monoid. Then

G(S) is a Boolean groupoid, called the Stone

groupoid of S.

3. If G is a Boolean groupoid then G ∼= GB(G).

4. If S is a Boolean inverse monoid then S ∼=
BG(S).
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The topological full group of the Boolean

groupoid G is just the group of units of

its associated Boolean inverse monoid.

Boolean inverse monoids are ‘ring-like’ with

the partial join operation being analogous to

the addition in a ring.

Wehrung (2017) proved they form a variety

and have a Mal’cev term.

Thus topological full groups arise as groups of

units of ring-like algebraic structures.
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Dictionary

Algebra Geometry
Countable Second countable

Fundamental Effective
0-simplifying Minimal
Binary meets Hausdorff

Fundamental means the only elements central-

izing the idempotents are idempotents.

0-simplifying means it has no, non-trivial order

ideals closed under compatible joins.

Effective if the interior of the isotropy groupoid

is the space of identities.

Minimal means there are no, non-trivial open

invariant subsets.
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Proposition A Boolean inverse monoid is sim-

ple if and only if it is fundamental and 0-simplifying.

Theorem [The Tarski dichotomy] Let S be

a countable, simple Boolean inverse monoid.

Then it is either finite, and isomorphic to a

finite symmetric inverse monoid, or it is infi-

nite and atomless and so its Boolean algebra

of idempotents is a Tarski algebra.

Proposition The Stone groupoid of the fi-

nite symmetric inverse monoid I(X) is the pair

groupoid X ×X.

Thus topological full groups are morally (infi-

nite) generalizations of finite symmetric groups.
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A Tarski monoid is a countably infinite, atom-

less Boolean inverse monoid.

A Boolean inverse monoid is said to be a meet

monoid if it has all binary meets.

The following is a version of Matui’s spatial

realization theorem.

Theorem Let S and T be simple Tarski meet

monoids. Then the following are equivalent:

1. S and T are isomorphic.

2. The Stone groupoids of S and T are iso-

morphic.

3. The groups of units of S and T are isomor-

phic.
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Remarks

Neither Matui nor Nekrashevych mention in-

verse semigroups, but both carry out calcu-

lations in the Boolean inverse monoid associ-

ated with a Boolean groupoid, since the fol-

lowing are synonyms for compact-open local

bisection:

• Matui refers to compact open G-set.

• Nekrashevych refers to bisection.
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Here is an argument from Matui rendered into

Boolean inverse monoid language. A non-zero

element is called an infinitesimal if a2 = 0. Put

e = aa−1 ∨ a−1a. Then g = a ∨ a−1 ∨ ē is an

involution, called a special involution.

Define Sym(S) to be ths subgroup of the group

of units of S generated by the special involu-

tions.

Theorem Let S be a simple Tarski meet monoid.

Then each element s ∈ S can be written

s =
m∨

i=1

giei

where the ei are idempotents and gi ∈ Sym(S).
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4. From groupoids to groups

The origins of this theory lie in a specific com-

putation first carried out in 2004.

Mark V. Lawson, The polycyclic monoids Pn

and the Thompson groups Vn,1, Communica-

tions in algebra 35 (2007), 4068–4087.

The polycyclic inverse monoid Pn, where n ≥
2, is defined by the following inverse monoid

presentation

Pn = 〈a1, . . . , an|a−1
i ai = 1, a−1

i aj = 0 for i 6= j〉.
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The Cuntz monoid Cn, where n ≥ 2, is a simple

Tarski meet monoid whose group of units is the

Thompson group Vn.

In modern terminology, Cn is constructed from

Pn by completing Pn to a distributive inverse

monoid and then factoring out by the relation

1 =
n∨

i=1

aia
−1
i .

But in the above paper, this was accomplished

by manipulating prefix codes and maximal codes.

Bleak & Quick: V2,1 = Sym(Cn).
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