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The main idea

The most succesful branch of semigroup the-

ory has been finite semigroup theory.

Why?

Because there are close links between such

semigroups and automata theory and the the-

ory of regular languages.

These links have helped guide the theory, sug-

gested problems and unified it.
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Inverse semigroup theory has been successful

but has apparently lacked the unifying guiding

principles of finite semigroup theory.

My aim in this talk will be to propose just such

a guiding principle.
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Inverse semigroup theory can be traced back

to the work of three mathematicians

• Ehresmann

• Wagner

• Preston

All three were motivated by the desire to alge-

braicize the concept of a pseudogroup of trans-

formations.

In fact, both Ehresmann and Wagner were dif-

ferential geometers.

Ehresmann, together with his student Bénabou,

are also credited with the introduction of a

lattice-theoretic approach to studying topolog-

ical spaces called frame theory.
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A frame is a complete infinitely distributive lat-

tice.

The open subsets of a topological space form

a frame.

points −→ topological spaces

open sets −→ frames

Johnstone’s book Stone spaces develops this

idea.

The key point is that Ehresmann arrived at the

notion of a frame through his algebraicization

of the notion of a pseudogroup.

Ehresmann’s work can be phrased in terms of

inverse semigroups.
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Main idea

Inverse semigroup theory should be viewed as (part

of) non-commutative frame theory. This approach

provides natural connections with the theories of

topoi, quantales and C∗-algebras.

The goal of this talk is to provide one illustra-

tion of this idea.
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The main idea was motivated in general by

a growing body of work in which inverse semi-

groups are used to construct C∗-algebras (Exel,

Paterson, Renault, Resende etc)

It was motivated in particular

• by work of Kellendonk on tiling semigroups

and topological groupoids carried out in

1997.

• by work of Lenz, motivated by the above,

carried out in 2002 though only published

in 2008.

• by work of Birget on constructing the Thomp-

son groups from polycyclic inverse monoids

published in 2004.
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1. Definitions

A semigroup S is said to be inverse if for each

s ∈ S there exists a unique s−1 ∈ S such that

s = ss−1s and s−1 = s−1ss−1.

An inverse semigroup S is equipped with two

important relations.

s ≤ t is defined if and only if s = te for some

idempotent e. Despite appearances ambidex-

trous. Called the natural partial order. Com-

patible with multiplication.

s ∼ t if and only if st−1 and s−1t both idem-

potents. Called the compatibility relation. It

controls when pairs of elements are eligible to

have a join.
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Lattices need not have 1’s but always have 0’s.

If they have 1’s they will be called unital.

Thus: distributive lattices vs. unital distribu-

tive lattices; Boolean algebras vs. unital Boolean

algebras.
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A distributive inverse semigroup is one which

has joins of compatible pairs of elements and

multiplication distributes over such joins.

A Boolean inverse semigroup is a distributive

inverse semigroup with a Boolean algebra of

idempotents.

A Boolean inverse ∧-semigroup is a Boolean

inverse semigroup with the additional property

that all pairs of elements have a meet.
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A vanilla distributization.

Theorem [Schein] Let S be an inverse semi-

group. There is a distributive inverse semi-

group D(S) and a map δ:S → D(S) which is

universal for maps from S to distributive in-

verse semigroups.
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Let P be a poset with zero 0.

A subset F ⊆ P is a filter if it is downwardly

directed and upwardly closed.

It is proper if 0 /∈ F ; all filters will be proper.

An ultrafilter is a maximal proper filter.

A filter F is prime if a∨b ∈ F implies that a ∈ F

or b ∈ F .
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2. Non-commutative Stone dualities

A groupoid G is a (for us, small) category with

every arrow invertible. The set of identities (or

objects) of G is denoted by Go. The ‘o’ stands

for ‘objects’.

If a groupoid G carries a topology making the

multiplication and inversion continuous, it is

called a topological groupoid.

The most important class of topological groupoids

are the étale groupoids. We use Resende’s

characterization to define them.

A topological groupoid G is étale if Go is an

open set and the product of any two open sets

in G is an open set.

N.B. Hausdorffness is not assumed.
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A topological space is said to be sober if each

point of the space is uniquely determined by

the open sets that contain it (plus a bit more.)

A topological space X is said to be spectral

if it is sober and has a basis of compact-open

sets that is closed under finite non-empty in-

tersections.

We do not assume that X is compact.
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An étale groupoid is called spectral if its space

of identities is a spectral space.

A étale groupoid is called Boolean if its space

of identities is Boolean.
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To avoid piling on definitions, morphisms will

be kept in the background throughout this talk

— they can be defined so that things work.

17



Classical theorems.

Theorem [Stone duality for distributive lat-

tices] The category of distributive lattices and

their proper homomorphisms is dually equiv-

alent to the category of spectral spaces and

their coherent continuous maps.

A Hausdorff spectral space is called a Boolean

space.

Theorem [Stone duality for Boolean algebras]

The category of Boolean algebras and their

proper homomorphisms is dually equivalent to

the category of Boolean spaces and their co-

herent continuous maps.
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The starting point of our work.

Theorem [Stone duality for distributive inverse

semigroups] The category of distributive in-

verse semigroups is dually equivalent to the

category of spectral groupoids.

Theorem [Stone duality for Boolean inverse

semigroups] The category of Boolean inverse

semigroups is dually equivalent to the category

of Boolean groupoids.

Theorem [Stone duality for Boolean inverse ∧-

semigroups] The category of Boolean inverse

∧-semigroups is dually equivalent to the cate-

gory of Hausdorff Boolean groupoids.
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Proof sketch

Let G be a spectral groupoid.

A local bisection A of a groupoid G is a subset

such that A−1A,AA−1 ⊆ Go. The set of all

compact-open local bisections is a distributive

inverse semigroup.

Let S be a distributive inverse semigroup.

Let P be a prime filter. Define d(P ) = (P−1P )↑

and r(P ) = (PP−1)↑. Define the partial prod-

uct P · Q to be (PQ)↑ iff d(P ) = r(P ). In

this way, the set of prime filters becomes a

groupoid GP (S).

Let s ∈ S. Define Xs to be the set of all prime

filters that contain s. These sets form the basis

of a topology on GP (S).
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Higher level proof

A pseudogroup is an inverse semigroup with ar-

bitrary non-empty compatible joins and infinite

distributivity.

There is an adjunction between the dual of the

category of pseudogroups and the category of

étale groupoids due to Resende (without mor-

phisms) and Lawson/Lenz (with morphisms).

The duality for distributive inverse semigroups

results from this duality by restricting using co-

herence.

We are therefore in the world of non-commutative

frame theory.
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3. Examples

Let G be a finite discrete groupoid. The set

of all local bisections of G is a finite Boolean

inverse ∧-semigroup I(G) and all finite inverse

∧-semigroups are of this form.

Write G =
⊔m
i=1Gi where the Gi are the con-

nected components of G. Then

I(G) ∼= I(G1)× . . .× I(Gm).

Let G be a finite connected discrete combina-

torial groupoid and put Go = X. Then I(G) ∼=
I(X), a finite symmetric inverse monoid.

The fundamental finite Boolean inverse

∧-semigroups are therefore of the form

I(X1)× . . .× I(Xm).

Call these semisimple.

May construct AF inverse monoids from Brat-

teli diagrams and injective morphisms between

semisimple inverse monoids.
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4. Constructing distributive inverse

semigroups

Let S be an inverse semigroup. Let a ∈ S and

b1, . . . , bm ≤ a. We say that the set of elements

{b1, . . . , bm} is a (tight) cover of a if for each

0 6= x ≤ a there exists bi such that 0 6= z ≤ x, bi
for some z.

A tight filter is a filter A such that if a ∈ A and

{b1, . . . , bm} covers a then bi ∈ A for some i.

A semigroup homomorphism θ:S → T to a

distributive inverse semigroup is said to be a

tight map if for each element a ∈ S and tight

cover {a1, . . . , an} of a we have that θ(a) =
∨n
i=1 θ(ai).
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Intuitive idea

The idea is to present distributive inverse semi-

groups by means of generators and relations.

The generating set is in fact an inverse semi-

group S.

The relations are given by the tight covers —

if {b1, . . . , bm} is a (tight) cover of a, then THINK

a =
m
∨

i=1

bi.
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Theorem [Tight completions] Let S be an in-

verse semigroup.

1. There is a distributive inverse semigroup

Dt(S) and a tight map δ:S → Dt(S) which

is universal for tight maps from S to dis-

tributive inverse semigroups.

2. There is an order isomorphism between the

poset of tight filters in S and the poset of

prime filters in Dt(S) under which ultrafil-

ters correspond to ultrafilters.

We call the distributive inverse semigroup Dt(S)

the tight completion of S.
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If the tight completion of an inverse semigroup

is actually Boolean we say that the semigroup

is pre-Boolean.

It can be proved that every ultrafilter is a tight

filters.

Theorem An inverse semigroup is pre-Boolean

if and only if every tight filter is an ultrafilter.
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5. The key example

The polycyclic monoid Pn, where n ≥ 2, is de-

fined as a monoid with zero generated by the

variables a1, . . . , an, a
−1
1 , . . . , a−1

n subject to the

relations

a−1
i ai = 1and a−1

i aj = 0, i 6= j.

Every non-zero element of Pn is of the form

yx−1 where x and y are elements of the free

monoid on {a1, . . . , an}.

The product of two elements yx−1 and vu−1

is zero unless x and v are prefix-comparable in

which case

yx−1 · vu−1 =

{

yzu−1 if v = xz for some z

y(uz)−1 if x = vz for some z
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The polycyclic monoids are interesting in them-

selves.

But I now argue that they become even more

interesting when viewed as generating an as-

sociated Boolean inverse monoid.
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The polycyclic monoid Pn is a pre-Boolean in-

verse monoid.

The set {a1a
−1
1 , . . . , ana−1

n } is a tight cover of

the identity, and in some sense, determines all

other tight covers.

Theorem The Boolean completion of Pn is

called (here) the Cuntz inverse monoid CIn.

1. This monoid is congruence-free.

2. Its group of units is the Thompson group

Vn,1.

3. Its associated groupoid is the groupoid also

associated with the Cuntz C∗-algebra Cn.
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O. Bratteli, P. E. T. Jorgensen, Iterated func-

tion systems and permutation representations

of the Cuntz algebra, Memoirs of the A.M.S.

No. 663, (1999) is, in fact, a study of tight

maps from Pn to I(X).
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• All Thompson-Higman groups Vn,r can be

constructed in a similar way.

• Self-similar groups actions give rise to gen-

eralizations of the polycyclic inverse monoids

which are also pre-Boolean.

• Finite directed graphs can be used to con-

struct pre-Boolean inverse semigroups.

• AF inverse monoids are generated by pre-

Boolean inverse monoids.

31



Our theory can be used to construct interest-

ing groups of the Thompson-Higman variety.

Intuively, the elements of the group are ob-

tained by glueing together partial bijections.

Thus our theory can be used to construct in-

teresting groups from inverse semigroups.
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