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I. COMMUTATIVE STONE DUALITY
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1. Commutative (= classical) Stone duality

Classical Boolean algebras will be called unital Boolean algebras.

Generalized Boolean algebras will be called Boolean algebras.

A Boolean space is a 0-dimensional locally compact Hausdorff

space; we are often interested in the compact case.
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Stone’s theorem

Theorem [Commutative Stone duality, Stone 1937 and Doctor
1964] The category of Boolean algebras (resp. unital Boolean
algebras) and proper homomorphisms (resp. homomorphisms
) is dually equivalent to the category of Boolean spaces (resp.
compact Boolean spaces) and proper continuous functions (resp.
continuous functions).

The locally compact Boolean space corresponding to a Boolean
algebra is constructed by topologizing the set of ultrafilters. We
call the topological space constructed in this way its Stone space.

The Boolean algebra corresponding to a locally compact Boolean
space is constructed by taking the set of all compact-open sub-
sets.
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II. NON-COMMUTATIVE STONE DUALITY
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2. Motivation

We generalize classical Stone duality to a non-commutative set-

ting in the following way:

• Boolean spaces are generalized to Boolean groupoids.

• Boolean algebras are generalized to Boolean inverse semi-

groups.
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3. Etale topological groupoids

For background on étale groupoids, read Section I.1 of Resende’s

lecture notes.

We view categories as 1-sorted structures: everything is an ar-

row. Objects are identified with identity arrows.

A groupoid is a (small) category in which every arrow is invertible.

We regard groupoids as groups with many identities. The set of

identities of the groupoid G is denoted by Go.

A subset A ⊆ G of a groupoid G is called a local bisection if

g, h ∈ A and g−1g = h−1h ∈ A (resp. gg−1 = hh−1) implies g = h.
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Boolean groupoids

We work with topological groupoids.

A topological groupoid is said to be étale if its domain and range
maps are local homeomorphisms.

Why étale? This is explained by the following result.

Theorem [Resende] A topological groupoid is étale if and only
if its set of open subsets forms a monoid under multiplication
of subsets with the identity of the monoid being the space of
identities.

A Boolean groupoid is an étale topological

groupoid whose space of identities is a Boolean

space.
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Aside on étale groupoids

Etale groupoids are intrinsically interesting; they play a pivotal

rôle in the study of étendues (a class of toposes).

But more general kinds of groupoids are also important in the

theory of operator algebras: such as open groupoids. See, for

example,

Dana P. Williams, A Tool kit for groupoid C∗-algebras, AMS,

2019.

This is all we need to know about groupoids.
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4. Boolean inverse semigroups

For background on inverse semigroups, see my Primer.

A semigroup S is said to be inverse if for each a ∈ S there exists

a unique element a−1 such that a = aa−1a and a−1 = a−1aa−1.

Elements of the form a−1a and aa−1 are idempotents.

Let X be a non-empty set. Denote by I (X) the set of all partial

bijections of X to itself equipped with the usual product of partial

functions. This is called the symmetric inverse monoid on X.

Idempotents in symmetric inverse monoids are the identity func-

tions on subsets.
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The natural partial order

Inverse semigroups come equipped with an internally defined or-

der. Let S be an inverse semigroup. Define a ≤ b if a = ba−1a.

Proposition The relation ≤ is a partial order. In addition, if

a ≤ b then a−1 ≤ b−1 and if also c ≤ d then ac ≤ bd.

This order is called the natural partial order.

In the symmetric inverse monoid, the natural partial order is

subset-inclusion of partial functions.
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The compatibility relation

To talk about joins in inverse semigroups, we have to be careful.
Suppose that a, b ≤ c. Then ab−1 ≤ cc−1 and a−1b ≤ c−1c. Thus
a necessary condition for a and b to have an upper bound is
that a−1b and ab−1 be idempotent. This leads to the following
relation.

Define a ∼ b if a−1b and ab−1 are idempotent. This is the com-
patibility relation.

A subset is said to be compatible if each pair of distinct elements
in the set is compatible.

In order that a pair of elements is eligible to have a join, they
must be compatible.
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Boolean inverse semigroups

An inverse semigroup is said to be distributive if it has finite

compatible joins and multiplication distributes over such joins.

A Boolean inverse semigroup is a distributive in-

verse semigroup whose set of idempotents forms

a Boolean algebra.

Boolean algebra operations may be generalized to Boolean in-

verse semigroups. Let b ≤ a in a Boolean inverse. Define

a \ b = a(a−1a \ b−1b).

Morphisms of Boolean inverse semigroups preserve compatible

joins.
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Finite Boolean inverse monoids

The following theorem should be compared with the structure

of finite Boolean algebras.

Theorem [Lawson, Malandro] The finite Boolean inverse monoids

are isomorphic to the inverse monoids of all local bisections of

finite discrete groupoids.

The finite symmetric inverse monoids I (X) are Boolean inverse

monoids. The finite discrete groupoids in this case are X ×X.
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5. Non-commutative Stone duality

A subset A ⊆ S of a Boolean inverse monoid is called a filter if

a, b ∈ A implies that there is a c ∈ A such that c ≤ a, b, and if

a ∈ A and a ≤ b then b ∈ A . It is said to be proper if 0 /∈ A .

A subset A ⊆ S of a Boolean inverse semigroup is called an

ultrafilter if it is a maximal proper filter.

If S is a Boolean inverse semigroup denote by G(S) the set of

ultrafilters of S; this can be made into a groupoid.

If G is a Boolean groupoid denote by KB(G) the set of all compact-

open local bisections.
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Theorem I

Theorem [Non-commutative Stone duality I, Lawson & Lenz]

1. If S is a Boolean inverse semigroup then G(S) is a Boolean
groupoid, called the Stone groupoid of S. If S is a monoid
then the identity space of G(S) is compact.

2. If G is a Boolean groupoid then KB(G) is a Boolean inverse
semigroup. If the identity space of G is compact then KB(G)
is a monoid.

3. If S is a Boolean inverse semigroup then S ∼= KB(G(S)), and
if G is a Boolean groupoid then G ∼= G(KB(G)).
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Additive ideals

Let S be a Boolean inverse semigroup. A subset I of S is called
an additive ideal if it is a semigroup ideal closed under finite
compatible joins.

Let θ : S → T be a homomorphism between Boolean inverse semi-
groups. Then the kernel of θ is an additive ideal.

Let I be an additive ideal in a Boolean inverse semigroup S.
Then we may define a congruence ≡I on S by a ≡I b if and only
if there exists c ≤ a, b such that a\c, b\c are in I. Denote S/ ≡I by
S/I. The natural map S → S/I is a morphism of Boolean inverse
semigroups. The morphisms of Boolean inverse semigroups of
this form are precisely those which are weakly-meet-preserving
meaning that if t ≤ θ(a), θ(b) then there exists c ≤ a, b such that
t ≤ θ(c); this result is due to Ganna Kudryavtseva.
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Theorem II

A homomorphism θ : S → T between Boolean inverse semigroups

is called callitic if it is proper (meaning that every element of T

lies beneath a finite join of images) and weakly-meet-preserving.

A continuous functor α : G→ H between étale groupoids is said

to be coherent if the inverse images of compact-open subsets

are compact-open.

Theorem [Non-commutative Stone duality II, Lawson & Lenz]

There is a dual equivalence between callitic morphisms and co-

herent continuous covering functors.
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Application of Theorem I

Theorem [Booleanization]

1. Let S be an inverse semigroup with zero. Then there is a

Boolean inverse semigroup B(S) and an embedding β : S →
B(S) which is universal for maps to the category of Boolean

inverse semigroups.

2. The Stone groupoid of B(S) is Paterson’s universal groupoid

Gu(S) of S. The groupoid Gu(S) is constructed from all

proper filters of S with the ‘patch topology’.
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III. ABSTRACT CUNTZ-KRIEGER
RELATIONS
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6. Covers

We shall now describe an application of non-commutative Stone

duality.

We motivate our definition of covers by the following example.

We work in an arbitrary inverse semigroup S.

Let a ∈ S and suppose that a =
∨n
i=1 ai. Thus A = {a1, . . . , an} ⊆

a↓, where a↓ is the set of all elements below a.

Suppose that 0 < x ≤ a. Then it can be proved that x =∨n
i=1 ai ∧ x.

We deduce that ai ∧ x 6= 0 for some i.
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Definition of covers

Let S be an inverse semigroup. Let a ∈ S. A finite subset non-

empty A ⊆ a↓ is said to be a cover of a, denoted by A→ a, if for

every 0 < x ≤ a there exists a ∈ A such that a ∧ x 6= 0.

It follows that covers of a are ‘join-wannabes’.

Let T be a Boolean inverse semigroup. A homomorphism θ : S →
T is called a cover-to-join map if for every a ∈ S and every A→ a

we have that θ(a) =
∨
θ(A).

Thus every ‘join-wannabe’ is converted into an ‘honest-to-goodness

join’.
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The tight completion

Let S be an inverse semigroup. Let a ∈ A and let A → a. Then

A is a compatible subset. Thus A has a join a in B(S). Let I

be the ideal in B(S) generated by the elements a \ a; these are

the abstract Cuntz-Krieger relations. Put T(S) = B(S)/I and let

τ : S → T(S) be the natural map.

Theorem The map τ : S → T(S) is a cover-to-join map and is

universal for such maps. We call T(S) the tight completion of S.

We now identify the Stone groupoid of T(S).
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The tight groupoid

Let S be an inverse semigroup. A proper filter A is said to be

tight if a ∈ A and A→ a implies that A ∩A 6= ∅.

The tight groupoid Gt(S) of S, introduced by Ruy Exel, is the

restriction of the universal groupoid Gu(S) to the subset of tight

filters.

Theorem Let S be an inverse semigroup. The Stone groupoid

of the tight completion of S is the tight groupoid of S.
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7. Example: whence Cuntz-Krieger?

Let An = {a1, . . . , an} be a finite alphabet with n ≥ 2 elements.

Denote the free monoid on An by A∗n. Denote the free semigroup

on An by A+
n .

A morphism between right ideals of A∗n is the analogue of a right

module morphism.

The polycyclic inverse monoid Pn is the inverse monoid of all

bijective morphisms between principal right ideals of A∗n together

with the empty partial function.

The non-zero elements of Pn are of the form xy−1 meaning: first

‘pop y’ and then ‘push x’. The identity 1 of Pn is simply εε−1.
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Enter the Cuntz relations . . .

Observe that aia
−1
i is the identity function on the set aiA

∗
n.

Thus the union a1a
−1
1 ∪ . . . ∪ ana−1

n is the identity on the free

semigroup A+
n , but it is not the identity on the free monoid A∗n.

THIS LOOKS TRIVIAL BUT IS VITAL.

However, we do have that {a1a
−1
1 , . . . , ana−1

n } → 1.
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Origins

Theorem [Lawson] The tight completion of Pn is the Boolean

inverse monoid Cn we call the Cuntz inverse monoid.

The group of units of Cn is the Thompson group Gn,1.

The Stone groupoid of Cn is isomorphic to the set of triples

(xw, | x | − | y |, yw), where x and y are finite strings and w is a

right-infinite string, with a groupoid product. This is the usual

groupoid associated with the Cuntz C∗-algebra.

FIN: but see following references

27



References to our papers

• Finite and semisimple Boolean inverse semigroups, arXiv:2102.12931.

• The polycyclic inverse monoids and the Thompson groups revisited, arXiv:2006.15338.

• The universal Boolean inverse semigroup presented by the abstract Cuntz-Krieger re-
lations, with A. Vdovina, accepted by the J. Noncommut. Geom.

• Higher dimensional generalizations of the Thompson groups, with A. Vdovina Adv.
Math. 36 (2020), 107191.

• The Booleanization of an inverse semigroup, Semigroup Forum 100 (2020), 283–314.

• Recent developments in inverse semigroup theory, Semigroup Forum 100 (2020), 103–
118.

• Tarski monoids: Matui’s spatial realization theorem, Semigroup Forum 95 (2017),
379–404.

• A perspective on non-commutative frame theory, with G. Kudryavtseva, Adv. Math.
311 (2017), 378–468.

28



• AF inverse monoids and the structure of countable MV-algebras, with P. Scott, J. Pure
Appl. Algebra 221 (2017), 45–74.

• Subgroups of the group of homeomorphisms of the Cantor space and a duality between
a class of inverse monoids and a class of Hausdorff étale groupoids, J. Algebra 462
(2016), 77–114.

• Invariant means on Boolean inverse monoids, with G. Kudryavtseva, D. H. Lenz, P.
Resende, Semigroup Forum 92 (2016), 77–101.

• Graph inverse semigroups: their characterization and completion, with D. Jones, J.
Algebra 409 (2014), 444–473.

• The étale groupoid of an inverse semigroup as a groupoid of filters, with S. W. Margolis
and B. Steinberg, J. Aust. Math. Soc. 94 (2014), 234–256.

• Pseudogroups and their etale groupoids, with D. Lenz, Adv. Math. 244 (2013), 117–
170.

• Non-commutative Stone duality: inverse semigroups, topological groupoids and C*-
algebras, Internat. J. Algebra Comput. 22, 1250058 (2012), 47pp.

• Compactable semilattices, Semigroup Forum 81 (2010), 187–199.

29



• A non-commutative generalization of Stone duality, J. Aust. Math. Soc. 88 (2010),
385–404.

• The polycyclic monoids Pn and the Thompson groups Vn,1, Comm. Algebra 35 (2007),
4068–4087.

• Orthogonal completions of the polycyclic monoids, Comm. Algebra 35 (2007), 1651–
1660.

30



Non-commutative Stone duality arose from the following

• J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Mathematics, 793,
Springer, 1980.

• A. Kumjian, On localizations and simple C∗-algebras, Pacific J. Math. (1984), 11.

• J. Kellendonk, The local structure of tilings and their integer group of coinvariants,
Comm. Math. Phys. 187 (1997), 115–157.

• A. L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress
in Mathematics, 170, Birkhäuser, Boston, 1998.
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