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1. Stone, 1937

In 1937, Marshall Stone wrote a paper

M. H. Stone, Applications of the theory of Boolean

rings to general topology, Transactions of the Ameri-

can Mathematical Society 41 (1937), 375–481.

in which he generalized the theory of finite

Boolean algebras to arbitrary Boolean alge-

bras.

This theory is now known as Stone duality.
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Stone was what we would now term a func-

tional analyst.

Question: How did he become interested in

Boolean algebras?

Answer: Through algebras of commuting pro-

jections.

More generally . . .
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Let R be a commutative ring.

Denote by E(R) the set of idempotents of R.

On the set E(R) define

a ∧ b = a · b a ∨ b = a + b− ab a′ = 1− a.

Theorem (E(R),∧,∨, ′ ,0,1) is a Boolean al-

gebra and every Boolean algebra arises in this

way.
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2. Stone duality

Stone’s work is the first deep result on Boolean

algebras.

It is also represents the first construction of a

topological space from algebraic data.

Define a Boolean space to be a 0-dimensional,

compact Hausdorff space.

5



Theorem [Stone, 1937]

1. Let S be a Boolean space. Then the set

B(S) of clopen subsets of S is a Boolean

algebra.

2. Let A be a Boolean algebra. Then the set

X(A) of all ultrafilters of A can be topol-

ogized in such a way that it becomes a

Boolean space. It is called the Stone space

of A.

3. If S is a Boolean space then S ∼= XB(S).

4. If A is a Boolean algebra then A ∼= BX(A).
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Examples

1. Up to isomorphism, there is exactly one

countable, atomless Boolean algebra. It is

innominate so I call it the Tarski algebra.

The Stone space of the Tarski algebra is

the Cantor space.

2. The Stone space of the powerset Boolean

algebra P(X) is the Stone-Čech compacti-

fication of the discrete space X.
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3. Renault, 1980

Renault’s monograph

J. Renault, A groupoid approach to C∗-algebras, LNM

793, Springer-Verlag, 1980.

highlighted the important role played by in-

verse semigroups in the theory of C∗-algebras.
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Recall that . . .

A semigroup S is said to be inverse if for each

s ∈ S there exists a unique s−1 ∈ S such that

s = ss−1s and s−1 = s−1ss−1.

An inverse semigroup S is equipped with two

important relations:

1. s ≤ t is defined if and only if s = te for

some idempotent e. Despite appearances

ambidextrous. Called the natural partial

order. Compatible with multiplication.

2. s ∼ t if and only if st−1 and s−1t both idem-

potents. Called the compatibility relation.

It controls when pairs of elements are eli-

gible to have a join.

9



Example Symmetric inverse monoids I(X) are

the prototypes of inverse semigroups just as

the symmetric groups are the prototypes of

groups.

If X has n elements we sometimes denote the

symmetric inverse monoid on n letters by In.

The idempotents of an inverse semigroup form

a commutative subsemigroup but are not (ring

theorists beware!) central.
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There were earlier papers on the interactions

between inverse semigroups and functional anal-

ysis:

B. A. Barnes, Representations of the l1-algebra of an

inverse semigroup, Trans. Amer. Math. Soc. 218

(1976), 361–396.

But since Renault’s book, inverse semigroups

have become a feature of the theory of C∗-
algebras.

The work of Ruy Exel is particularly notewor-

thy

http://mtm.ufsc.br/~exel/.
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Question: Why inverse semigroups and C∗-
algebras?

Answer: Because the set of partial isometries

of a C∗-algebra is almost an inverse semigroup.

The following is Theorem 4.2.3 of my book on

inverse semigroups.

Theorem The set of partial isometries of a

C∗-algebra forms an ordered groupoid
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4. Boolean inverse monoids

Inverse semigroups might not, however, be the
right structures to study in this context.

A Boolean inverse monoid is an inverse monoid
satisfying the following conditions:

1. The set of idempotents forms a Boolean
algebra under the natural partial order.

2. Compatible pairs of elements have a join.

3. Multiplication distributes over the compat-
ible joins in (2).

Symmetric inverse monoids are Boolean.

The compatible joins give rise to a (partially)
additive structure.
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Theorem [Wehrung, 2017] Let S be an in-

verse submonoid of the multiplicative monoid

of a C∗-algebra R where s−1 = s∗ for each

s ∈ S. Then there is a Boolean inverse monoid

B such that S ⊆ B ⊆ R.

Example Let S be the monoid that consists

of the matrix units in R = Mn(C) together

with the zero and the identity. Then B is the

Boolean inverse monoid of rook matrices in R.

The monoid B is isomorphic to the symmetric

inverse monoid on n letters.
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We view Boolean inverse monoids as non-commu-

tative generalizations of Boolean algebras.

Boolean inverse monoids are ‘ring-like’ with

the partial join operation being analogous to

the addition in a ring. Wehrung (2017) proved

they form a variety and have a Mal’cev term.

This raises the question of generalizing Stone

duality to a non-commutative setting.

What, then, are the generalizations of Boolean

spaces?
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5. Etale groupoids

We shall regard groupoids as algebraic struc-

tures with a subset of identities. If G is a

groupoid, its set of identities if Go.

Examples

1. Groups are the groupoids with exactly one

identity.

2. Equivalence relations can be regarded as

principal groupoids; the pair groupoid X ×
X is a special case.

3. From a group action G × X → X we get

the transformation groupoid G nX.
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A topological groupoid is a groupoid G equipped

with a topological structure in which both mul-

tiplication and inversion are continuous.

A topological groupoid is said to be étale if the

domain map is a local homeomorphism.

WHY ETALE?
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If X is a topological space, denote by Ω(X)

the lattice of all open sets of X.

Theorem [Resende, 2006] Let G be a topo-

logical groupoid. Then G is étale if and only if

Ω(G) is a monoid.

• Etale groupoids are topological groupoids

with an algebraic alter ego.

• Etale groupoids should be viewed as gen-

eralized spaces (Kumjian, Crainic and Mo-

erdijk . . . .)
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6. Non-commutative Stone duality

A Boolean groupoid is an étale groupoid whose

space of identities is a Boolean space.

Let G be a groupoid. A partial bisection is a

subset A ⊆ G such that A−1A,AA−1 ⊆ Go.

Let G be a Boolean groupoid. The set of

compact-open partial bisections of G is de-

noted by B(G).

Let S be a Boolean inverse monoid. The set

of ultrafilters of S is denoted by G(S).
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Theorem [Lawson & Lenz, Resende]

1. Let G be a Boolean groupoid. Then B(G)

is a Boolean inverse monoid.

2. Let S be a Boolean inverse monoid. Then

G(S) is a Boolean groupoid, called the Stone

groupoid of S.

3. If G is a Boolean groupoid then G ∼= GB(G).

4. If S is a Boolean inverse monoid then S ∼=
BG(S).
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Example

An inverse semigroup is fundamental if the only
elements centralizing the idempotents are idem-
potents. A Boolean inverse monoid is simple
if it has no non-trivial additive ideals.

Theorem

1. The finite, fundamental Boolean inverse
monoids are finite direct products

In1 × . . .× Inr.

[Compare finite dimensional C∗-algebras.]

2. The finite simple Boolean inverse monoids
are the finite symmetric inverse monoids
I(X).

3. The Boolean groupoid associated with I(X)
is the pair groupoid X ×X.
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7. Applications

• The groups of units of Boolean inverse monoids

are the topological full groups. These form

an interesting class of infinite groups gen-

eralizing the finite symmetric groups.

• Boolean inverse monoids can be used to

co-ordinatize MV algebras.

• There are families of Boolean inverse monoids

that parallel families of C∗-algebras: AF

inverse monoids, Cuntz inverse monoids,

. . . with the associated groupoids being the

groupoids used to construct the C∗-algebras

in question.
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• Boolean inverse monoids used by Donsig,

Fuller and Pitts to obtain a new proof of

classical results by Feldman and Moore on

von Neumann algebras. Key role played by

the cohomology of Boolean inverse monoids

(arXiv:1409.1624v2).
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8. Envoi

1. Develop the theory of Boolean inverse monoids

as the non-commutative theory of Boolean

algebras. For example, the Booleanization

of an inverse semigroup has Paterson’s uni-

versal groupoid as its Stone groupoid.

2. Develop the theory of Boolean inverse monoids

by analogy with (is there more going on

here?) the theory of C∗-algebras of real

rank zero. Observe that the analogue of

the Cuntz C∗-algebra O2 is the Cuntz in-

verse monoid C2. The group of units of C2

is Thompson’s group V .

3. Classify Boolean inverse monoids using the

homology theory of their associated Stone

groupoids.
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