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1. Background

1. T. Giordano, I. F. Putnam, C. F. Skau, Full

groups of Cantor minimal systems, Israel

J. Math. 111 (1999), 285–320. Interest-

ing groups arising from dynamical systems

called topological full groups.

2. H. Matui in a sequence of important pa-

pers generalized (1) to the setting of étale

topological groupoids and their associated

topological full groups. The classical Thomp-

son groups arise in this way.

3. V. Nekrashevych introduced the term groups

of dynamical origin and suggested that they

may be viewed as infinite generalizations of

finite symmetric groups.
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My (semigroup-based) interest is as follows:

1. We have developed a non-commutative gen-

eralization of classical Stone duality (Boolean

algebras ←→ Boolean spaces) linking étale

groupoids and inverse monoids.

2. The groups of units of such inverse monoids

are the topological full groups.

3. The inverse monoids which arise are related

to C∗-algebras of real rank zero such as AF,

Cuntz and Cuntz-Krieger as well as those

arising from aperiodic tilings

The goal of my talk is to explain these con-

nections.
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2. Motivating example

CLAIM: The finite symmetric groups Sn arise

as the groups of units of the finite symmetric

inverse monoids In and the structure of the

latter has an impact on the structure of the

former.
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3. Boolean inverse monoids

A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

Elements of the form a−1a and aa−1 are idem-

potents.

Not obvious but the idempotents in an inverse

semigroup commute and so form a meet-semilattice.

We refer to the semilattice of idempotents.

The symmetric inverse monoid I(X) of all par-

tial bijections of X really is an inverse monoid.

5



Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

Proposition The relation ≤ is a partial order

with respect to which the inverse semigroup is

a partially ordered semigroup.

It is called the natural partial order.

Observation Suppose that a, b ≤ c. Then

ab−1 ≤ cc−1 and a−1b ≤ c−1c. Thus a necessary

condition for a and b to have an upper bound

is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.

This is the compatibility relation.

A non-empty subset is said to be compatible

if each pair of distinct elements in the set are

compatible.
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In the symmetric inverse monoid I(X) we have

the following:

• The idempotents in I(X) are the identity

functions defined on the subsets of X. De-

note them by 1A, where A ⊆ X, called par-

tial identities. Then

1A ≤ 1B ⇐⇒ A ⊆ B

and

1A1B = 1A∩B.

Thus the semilattice of idempotents on I(X)

is isomorphic to P(X).

• The natural partial order is the restriction

order. Partial bijections f and g are com-

patible if and only if f ∪ g is a partial bijec-

tion.
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Theorem [Wagner-Preston] Symmetric inverse

monoids are inverse, and every inverse semi-

group can be embedded in a symmetric inverse

monoid.



• An inverse semigroup is said to have fi-
nite (resp. infinite) joins if each non-empty
finite (resp. arbitrary) compatible subset
has a join.

• An inverse semigroup is said to be a pseu-
dogroup if it has infinite joins and multipli-
cation distributes over such joins.

• An inverse semigroup is said to be distribu-
tive if it has finite joins and multiplication
distributes over such joins.

• An inverse semigroup is said to be Boolean
if it is distributive and its semilattice of
idempotents is a (generalized) Boolean al-
gebra. (In this talk, I shall only deal with
unital Boolean algebras).

• An inverse semigroup that has all binary
meets is called a meet-semigroup.
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Idea

Algebra Topology

Semigroup Locally compact

Monoid Compact

Meet-semigroup Hausdorff

Commutative Non-commutative

Frame Pseudogroup

Distributive lattice Distributive inverse semigroup

Boolean algebra Boolean inverse semigroup

Boolean inverse meet-semigroup

In this talk, I will concentrate on Boolean in-

verse monoids. Symmetric inverse monoids are

Boolean.
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3. Non-commutative Stone duality

We view categories as 1-sorted structures: ev-

erything is an arrow. Objects are identified

with identity arrows.

A groupoid is a category in which every arrow

is invertible.

We regard groupoids as ‘groups with many

identities’.

Let G be a groupoid with set of identities Go.

A subset A ⊆ G is called a local bisection if

A−1A,AA−1 ⊆ Go.

Proposition The set of all local bisections of

a groupoid forms an inverse monoid.
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A topological groupoid is said to be étale if its

domain and range maps are local homeomor-

phisms.

Why étale? This is explained by the following

result.

Theorem [Resende] A topological groupoid is

étale if and only if its set of open subsets forms

a monoid under multiplication of subsets.

Etale groupoids therefore have a strong alge-

braic character.
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A compact Boolean space is a compact Haus-

dorff space with a basis of clopen subsets.

Theorem [Classical Stone duality] The cate-

gory of Boolean algebras is dually equivalent

to the category of Boolean spaces.

Example Under classical Stone duality the Can-

tor space corresponds to what I shall call the

Tarski algebra — the unique countable atom-

less Boolean algebra.
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A Boolean groupoid is an étale topological groupoid
whose space of identities is a compact Boolean
space.

If G is a Boolean groupoid denote by KB(G)
the set of all compact-open local bisections.

If S is a Boolean inverse monoid denote by
G(S) the set of ultrafilters of S.

Theorem [Non-commutative Stone duality]

1. KB(G) is a Boolean inverse monoid.

2. G(S) is a Boolean groupoid.

3. Boolean inverse monoids are in duality with
Boolean groupoids.

4. Boolean inverse meet-monoids are in dual-
ity with Hausdorff Boolean groupoids.

13



INTERMISSION
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An inverse semigroup is fundamental if the only
elements that centralize all idempotents are
themselves idempotents. Example: symmet-
ric inverse monoids are fundamental.

Theorem [Wagner] An inverse semigroup is
fundamental if and only if it is isomorphic to an
inverse semigroup of partial homeomorphisms
between the open subsets of a T0 space where
the domains of definition of the elements form
a basis for the space.

Fundamental inverse semigroups should there-
fore be viewed as inverse semigroups of partial
homeomorphisms.

A closed ideal in a Boolean inverse monoid is
an (semigroup) ideal closed under finite com-
patible joins. A Boolean inverse monoid is 0-
simplifying if it contains no non-trivial closed
ideals.

Example Finite symmetric inverse monoids are
fundamental and 0-simplifying.

15



A topological groupoid is said to be effective if

the interior of the isotropy subgroupoid is just

the space of identities. Such a groupoid is min-

imal if there are no non-trivial open invariant

subsets.

Theorem [More non-commutative Stone du-

ality] Under non-commutative Stone duality,

we have that

1. Fundamental Boolean inverse monoids cor-

respond to effective étale groupoids.

2. 0-simplifying Boolean inverse monoids cor-

respond to minimal étale groupoids.
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GROUPS!
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4. Groups, inverse semigroups and

groupoids

Definition A Boolean inverse monoid that is

both fundamental and 0-simplifying is said to

be simple.

Theorem [The simple alternative] A simple

Boolean inverse monoid is either isomorphic to

a finite symmetric inverse monoid or atomless.

Corollary A simple countable Boolean inverse

monoid has the Tarski algebra as its set of

idempotents.
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Definition Denote by Homeo(S ) the group of

homeomorphisms of the Boolean space S . By

a Boolean full group, we mean a subgroup G of

Homeo(S ) satisfying the following condition:

let {e1, . . . , en} be a finite partition of S by

clopen sets and let g1, . . . , gn be a finite subset

of G such that {g1e1, . . . , gnen} is a partition

of S also by clopen sets. Then the union of

the partial bijections (g1 | e1), . . . , (gn | en) is

an element of G. We call this property fullness

and term full those subgroups of Homeo(S )

that satisfy this property.
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Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups.

2. Simple Boolean inverse monoids

3. Minimal, effective Boolean groupoids.

20



Let S be a compact Hausdorff space. If α ∈
Homeo(S ), define

supp(α) = cl{x ∈ S : α(x) 6= x}

the support of α.

Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has clopen support.

2. Simple Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff Boolean groupoids.
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A groupoid is principal if it is defined from an

equivalence relation.

A Boolean inverse monoid is basic if each non-

zero element is a finite join of some infinitesi-

mals and possibly an idempotent.

Theorem The following three classes of struc-

ture are equivalent.

1. Minimal Boolean full groups in which each

element has a clopen fixed-point set.

2. Simple basic Boolean inverse meet-monoids

3. Minimal, effective, Hausdorff, principal Boolean

groupoids.
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Example There is a family C2, C3, . . . of simple,

countable atomless Boolean inverse monoids,

the Cuntz inverse monoids, whose groups of

units are the Thompson groups V2, V3, . . ., re-

spectively.

The groupoid associated with Cn is the same

as the groupoid associated with the Cuntz C∗-
algebra On.

Representations of the inverse monoids Cn are

(unknowingly) the subject of Iterated function

systems and permutation representations of the

Cuntz algebra by O. Bratteli and P. E. T. Jor-

gensen, AMS, 1999.
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Example The AF monoids are a class of fun-

damental Boolean inverse monoids defined to

be direct limits lim−→Si where the inverse semi-

groups Si are finite direct products of finite

symmetric inverse monoids and the maps be-

tween them preserve joins.

Their groups of units are direct limits of finite

direct products of finite symmetric groups with

morphisms being by means of diagonal embed-

dings.
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