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Boolean algebras

A Boolean algebra is a structure (B,+, ·, ,̄0,1)

where B is a set, + and · are binary operations,

a 7→ ā is a unary operation, and 0 and 1 are dis-

tinguished elements. In addition, the following

ten axioms are required to hold.

(B1) (x + y) + z = x + (y + z).

(B2) x + y = y + x.

(B3) x + 0 = x.

(B4) (x · y) · z = x · (y · z).
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(B5) x · y = y · x.

(B6) x · 1 = x.

(B7) x · (y + z) = x · y + x · z.

(B8) x + (y · z) = (x + y) · (x + z).

(B9) x + x̄ = 1.

(B10) x · x̄ = 0.
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1. The finite Boolean algebras are isomorphic

to power set algebras P(X) where X is a

finite set.

2. More generally, Stone’s theorem says that

the category of Boolean algebras is in du-

ality with the category of compact, Haus-

dorff 0-dimensional spaces.

3. The Lindenbaum algebra of propositional

logic is a Boolean algebra.

4. Boolean algebras used in circuit design.

5. Boolean algebras form the foundations of

measure theory.
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Non-commutativity

The work of Alain Connes has stimulated in-

terest in non-commutative geometry, closely

connected with C∗-algebras.

Out of this work, a theory of non-commutative

Boolean algebras has arisen.

In this theory,

• The commutative · is replaced by a non-

commutative binary operation.

• The commutative + is replaced by a par-

tially defined commutative operation.
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Boolean inverse monoids

A semigroup is a set with an associative binary
operation, a monoid is a semigroup with an
identity.

A semigroup S is said to be inverse if for each
a ∈ S there exists a unique element a−1 such
that a = aa−1a and a−1 = a−1aa−1.

The idempotents in an inverse semigroup com-
mute with each other. We speak of the semi-
lattice of idempotents E(S) of the inverse semi-
group S.

The set of all partial bijections of a set X forms
an inverse monoid I(X) called the symmetric
inverse monoids. If X has n elements, we de-
note the symmetric inverse monoid by In.

Theorem [Wagner-Preston] Symmetric inverse
monoids are inverse, and every inverse semi-
group can be embedded in a symmetric inverse
monoid.
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Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

Proposition The relation ≤ is a partial order

with respect to which S is a partially ordered

semigroup.

It is called the natural partial order.

Suppose that a, b ≤ c. Then ab−1 ≤ cc−1 and

a−1b ≤ c−1c. Thus a necessary condition for a

and b to have an upper bound is that a−1b and

ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.

This is the compatibility relation.

A subset is said to be compatible if each pair

of distinct elements in the set is compatible.
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In the symmetric inverse monoid I(X) the nat-

ural partial order is defined by restriction of

partial bijections.

The union of two partial bijections is a partial

bijection if and only if they are compatible.
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• An inverse semigroup is said to have finite

joins if each finite compatible subset has a

join.

• An inverse semigroup is said to be distribu-

tive if it has finite joins and multiplication

distributes over such joins.

• An inverse monoid is said to be Boolean if

it is distributive and its semilattice of idem-

potents is a Boolean algebra.

Boolean inverse monoids are non-commutative

generalizations of Boolean algebras.

The symmetric inverse monoids are Boolean

inverse monoids.
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To manufacture other examples of Boolean in-

verse monoids, we use groupoids.

We view categories as 1-sorted structures (over

sets): everything is an arrow. Objects are iden-

tified with identity arrows.

A groupoid is a category in which every arrow

is invertible.

We regard groupoids as ‘groups with many

identities’.
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Key definition Let G be a groupoid with set

of identities Go. A subset A ⊆ G is called a

local bisection if A−1A,AA−1 ⊆ Go.

The set of all local bisections of the groupoid

G is denoted by B(G).

Proposition The set of all local bisections

of a groupoid forms a Boolean inverse meet-

monoid.
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We can now characterize the finite Boolean

inverse monoids.

Theorem Each finite Boolean inverse monoid

is isomorphic to a Boolean inverse monoid B(G)

where G is a finite groupoid.

Thus in passing from finite Boolean algebras

to finite Boolean inverse monoids, we replace

finite sets by finite groupoids.
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It is possible to define what we mean by a

simple Boolean inverse monoid.

Theorem The simple Boolean inverse monoids

are precisely the finite symmetric inverse monoids

In.
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The theory of Boolean inverse monoids has

close connections with groups of Thompson-

Higman type, via their groups of units, and

with étale groupoids under a non-commutative

generalization of Stone duality.

But for the remainder of this talk, I will show

a (tangential) connection with multiple-valued

(MV) logic.

We begin by defining MV-algebras, another

generalization of Boolean algebras.
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MV-algebras

An MV-algebra (A,�,¬,0) is a set A equipped
with a binary operation �, a unary operation
¬ and a constant 0 such that the following
axioms hold.

(MV1) x � (y � z) = (x � y) � z.

(MV2) x � y = y � x.

(MV3) x � 0 = x.

(MV4) ¬¬x = x.

(MV5) x � ¬0 = ¬0. Define 1 = ¬0.

(MV6) ¬(¬x � y) � y = ¬(¬y � x) � x.
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Examples

1. Every Boolean algebra is an MV-algebra
when ∨ is interpreted as � and ¯ as ¬.

2. The real closed interval [0,1] equipped with
the operations x � y = min(1, x + y) and
¬x = 1− x is an MV-algebra.

3. For each n ≥ 2 define

Ln =
{

0,
1

n− 1
,

2

n− 1
, . . . ,

n− 2

n− 1
,1

}
equipped with the operations � and ¬ as in
(2). These are called  Lukasiewicz chains.

4. MV-algebras arise as Lindenbaum algebras
of many-valued logic in the same way that
Boolean algebras arise as Lindenbaum al-
gebras of classical, two-valued logic.
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• The idempotents of an MV-algebra form

a Boolean algebra. Thus MV-algebras are

‘non-idempotent Boolean algebras’.

• The finite MV-algebras are finite direct prod-

ucts of MV-algebras of the form Ln.

17



Further reading

Daniele Mundici, Logic of infinite quantum sys-

tems, Int. J. Theor. Phys. 32 (1993), 1941–

1955.

Daniele Mundici, MV-algebras: A short tuto-

rial, May 26, 2007.
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Boolean algebras as partial algebras

In Boole’s original work on Boolean algebras

the operation �, that is ∨, was a partial op-

eration defined only between orthogonal ele-

ments.

Here is an axiomatization of Boolean algebras

in these terms due to Foulis and Bennett.

Let (B,⊕,0,1) be a set B equipped with a par-

tial binary operation ⊕ and two constants 0 and

1 such that the following axioms hold.
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(PB1) p ⊕ q is defined if and only if q ⊕ p is
defined, and when both are defined they
are equal.

(PB2) If q⊕r is defined and p⊕(q⊕r) is defined
then p⊕q is defined and (p⊕q)⊕r is defined
and p⊕ (q ⊕ r) = (p⊕ q)⊕ r.

(PB3) For each p there is a unique q such that
p⊕ q = 1.

(PB4) If 1⊕ p is defined then p = 0.

(PB5) If p ⊕ q and p ⊕ r and q ⊕ r are defined
then (p⊕ q)⊕ r is defined.

(PB6) Given p and q there exist a, b, c such that
b⊕c and a⊕(b⊕c) are defined and p = a⊕c

and q = b⊕ c.
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MV-algebras as partial algebras

Let (B,⊕,0,1) be a set B equipped with a par-
tial binary operation ⊕ and two constants 0 and
1. It is called an effect algebra if the following
axioms hold.

(EA1) p ⊕ q is defined if and only if q ⊕ p is
defined, and when both are defined they
are equal.

(EA2) If q⊕r is defined and p⊕(q⊕r) is defined
then p⊕q is defined and (p⊕q)⊕r is defined
and p⊕ (q ⊕ r) = (p⊕ q)⊕ r.

(EA3) For each p there is a unique p′ such that
p⊕ p′ = 1.

(EA4) 1⊕ p is defined if and only if p = 0.
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Define p ≤ q if and only if p⊕ r = q for some r.

The refinement property is defined as follows.

If a1 ⊕ a2 = b1 ⊕ b2 then there exist elements

c11, c12, c21, c22 such that a1 = c11 ⊕ c12 and

a2 = c21 ⊕ c22, and b1 = c11 ⊕ c21 and b2 =

c12 ⊕ c22.

b1 b2
a1 c11 c12
a2 c21 c22

Theorem An effect algebra which is a lattice

with respect to ≤ and satisfies the refinement

property is an MV-algebra when we define

a � b = a⊕ (a′ ∧ b)

and every MV-algebra arises in this way.

22



Further reading

D. J. Foulis and M. K. Bennett, Effect algebras

and unsharp quantum logics, Found. Phys., 24

(1994), 1331–1352.

M. K. Bennett and D. J. Foulis, Phi-symmetric

effect algebras, Found. Phys., 25 (1995), 1699–

1722.

D. J. Foulis, MV and Heyting effect algebras,

Found. Phys., 30 (2000), 1687–1706.
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A question

Boolean inverse monoids are to be viewed as

non-commutative generalizations of Boolean

algebras.

MV-algebras are to be viewed as non-idempotent

generalizations of Boolean algebras

This raises the question of how Boolean in-

verse monoids are related to MV-algebras.

We now answer this very question.
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Let S be a Boolean inverse monoid and let

a ∈ S.

We may think of a as an arrow

a−1a
a−→ aa−1

where a−1a is called the domain idempotent

and aa−1 is called the range idempotent.

If e = a−1a and f = aa−1 we write eD f .
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An inverse monoid is factorizable if each ele-

ment is beneath an element of the group of

units.

The symmetric inverse monoids, for example,

are factorizable if and only if they are finite.

A factorizable Boolean inverse monoid is called

a Foulis monoid.
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Let S be an arbitrary Boolean inverse monoid.

Put

E(S) = E(S)/D .

We denote the D-class containing the idempo-

tent e by [e].

Define [e]⊕ [f ] as follows. If we can find idem-

potents e′ ∈ [e] and f ′ ∈ [f ] such that e′ and f ′

are orthogonal then define [e] ⊕ [f ] = [e′ ∨ f ′],
otherwise, the operation ⊕ is undefined. Put

0 = [0] and 1 = [1].

Theorem Let S be a Boolean inverse monoid.

Then (E(S),⊕, 0, 1) is an effect algebra (satis-

fying the refinement property) if and only if S

is factorizable.
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An inverse monoid S in which the poset of

principal ideals is a lattice is said to satisfy the

lattice condition.

Theorem Let S be a Foulis monoid satisfying

the lattice condition. Then E(S) is an MV-

algebra.
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Co-ordinatizations

We say that an MV-algebra A can be co-ordin-
atized if there is a Foulis monoid S satisfying
the lattice condition such that E(S) is isomor-
phic to A.

Theorem 1 [Lawson, Scott, 2014] Every count-
able MV-algebra can be co-ordinatized.

Theorem 2 [Wehrung, 2015] Every MV-algebra
can be co-ordinatized.

M. V. Lawson, P. Scott, AF inverse monoids
and the structure of countable MV-algebras, to
appear in Journal of Pure and Applied Algebra.

F. Wehrung, Refinement monoids, equidecom-
posability types, and Boolean inverse semigroups,
205pp, 2015, <hal-01197354>.
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