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1. Inverse semigroups, étale groupoids
and C*-algebras
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Well-known construction of C*-algebras from
étale groupoids.

Goal: to understand the connection be-
tween inverse semigroups and étale groupoids.
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2. Idea: non-commmutative Stone duality

Commutative Non-commutative
Frame Pseudogroup
Dist. lattice Dist. inverse semigroup
Boolean algebra Boolean inverse semigroup
Boolean inverse meet-semigroup

Algebra Topology
Semigroup Locally compact
Monoid Compact
Meet-semigroup Hausdorff

In this talk, I will concentrate on Boolean in-
verse monoids.



3. Inverse semigroups

“Symmetry denotes that sort of con-
cordance of several parts by which they
integrate into a whole.” — Hermann Weyl

Symmetry is more than groups.

AsS groups are algebraic tools for studying sym-
metry, so inverse semigroups are tools for study-
ing partial symmetry.



Inverse semigroups arose by abstracting pseu-
dogroups of transformations in the same way
that groups arose by abstracting groups of trans-
formations.

There were three independent approaches:

1. Charles Ehresmann (1905—1979) in France.

2. Gordon B. Preston (1925—2015) in the UK.

3. Viktor V. Vagner (1908-1981) in the USSR.

They all three converge on the definition of
‘inverse semigroup’.



A semigroup S is said to be inverse if for each
a € S there exists a unique element a1 such
that a = aa " la and a ! = alaa 1.

Example: the symmetric inverse monoid

Let X be a set equipped with the discrete
topology. Denote by I(X) the set of all partial
bijections of X. This is an example of an in-
verse semigroup called the symmetric inverse
monoid. If X is finite with n elements denote
I(X) by Iy.

Theorem [Vagner-Preston] Symmetric inverse
monoids are inverse, and every inverse semi-
group can be embedded in a symmetric inverse
monoid.



T he natural partial order

Let S be an inverse semigroup. Define a < b if

a = ba1la.

Proposition The relation < is a partial order
with respect to which S is a partially ordered
semigroup.

It is called the natural partial order.
Example In symmetric inverse monoids the

natural partial order is nothing other than the
restriction ordering on partial bijections.



Let S be an inverse semigroup. Elements of
the form a—la and aa—! are idempotents. De-
note by E(S) the set of idempotents of S.

Remarks

1. E(S) is a commutative subsemigroup or
semilattice.

2. E(S) is an order ideal of S,

Observation Suppose that a,b < ¢. Then
ab—1 <cc 1l and a=1b < clc. Thus a necessary
condition for a and b to have an upper bound
is that a~1b and ab~1 be idempotent.

Define a ~ b if a~1b and ab~! are idempotent.
This is the compatibility relation.

A non-empty subset is said to be compatible
if each pair of distinct elements in the set are
compatible.



Example

The idempotents in I(X) are the identity func-
tions defined on the subsets of X. Denote
them by 1,4, where A C X, called partial iden-
tities. Then

14 <1< ACB

and

14l = 14nB-

Thus the semilattice of idempotents on I(X)
is isomorphic to P(X).

Partial bijections f and g are compatible if and
only if fUg is a partial bijection.
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An inverse semigroup is said to have finite
(resp. infinite) joins if each finite (resp.
arbitrary) compatible subset has a join.

An inverse semigroup is said to be distribu-
tive if it has finite joins and multiplication
distributes over such joins.

An inverse monoid is said to be a pseu-
dogroup if it has infinite joins and multipli-
cation distributes over such joins.

An inverse semigroup is a meet-semigroup
if has has all binary meets.
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Boolean inverse semigroups

A distributive inverse semigroup is said to be
Boolean if its semilattice of idempotents forms
a (generalized) Boolean algebra.

Symmetric inverse monoids are Boolean.

Theorem [Paterson, Wehrung] Let S be a
subsemigroup of a ring with involution R such
that S is an inverse semigroup with respect to
the involution. Then there is a Boolean inverse
semigroup T" such that S CT C R.

The above result is significant when viewing
inverse semigroups in relation to C*-algebras.

Theorem Every inverse semigroup can be em-
bedded in a universal Boolean inverse semi-
group.
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Fundamental inverse semigroups

An inverse semigroup is fundamental if the only
elements that centralize all idempotents are
themselves idempotents. Example: symmet-
ric inverse monoids are fundamental.

Theorem [Vagner] An inverse semigroup is
fundamental if and only if it is isomorphic to an
inverse semigroup of partial homeomorphisms
between the open subsets of a Iy space where
the domains of definition of the elements form
a basis for the space.

Fundamental inverse semigroups should there-
fore be viewed as inverse semigroups of partial
homeomorphisms.

Each inverse semigroup is an extension of an

inverse semigroup with central idempotents by

a fundamental one; inverse semigroups with

central idempotents are presheaves of groups.
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O-simplifying Boolean inverse monoids

A closed ideal in a Boolean inverse monoid is
an ideal closed under finite compatible joins.

A Boolean inverse monoid is O-simplifying if it

contains no non-trivial closed ideals. Example:
symmetric inverse monoids are O-simplifying.
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Groupoids

We view categories as 1-sorted structures: ev-
erything is an arrow. Objects are identified
with identity arrows.

A groupoid is a category in which every arrow
IS invertible.

We regard groupoids as ‘groups with many
identities’.

Let G be a groupoid with set of identities Go.
A subset A C @G is called a local bisection if
A=1A AA-L C @G,.

Proposition The set of all local bisections
of a groupoid forms a Boolean inverse meet
monoid.
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4. Finite Boolean inverse monoids

Theorem

1. The finite O-simplifying, fundamental Boolean
inverse monoids are precisely the finite sym-
metric inverse monoids.

2. The finite fundamental Boolean inverse monoids
are precisely the finite direct products of fi-
nite symmetric inverse monoids.

3. The finite Boolean inverse monoids are iso-
morphic to the inverse monoids of local bi-
sections of finite discrete groupoids.
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Remarks

1. Boolean inverse monoids should be viewed
as non-commutative unital Boolean alge-
bras.

2. We call finite fundamental Boolean inverse
monoids semisimple. They have the form
In,x...xIn,. They are therefore the Boolean
inverse monoid analogues of finite dimen-
sional C*-algebras.

3. The groups of units of finite, fundamen-
tal Boolean inverse monoids are finite di-
rect products of finite symmetric groups.
This suggests that the groups of units of
Boolean inverse monoids are likely to be
interesting.
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5. Non-commutative Stone duality

A topological groupoid is said to be étale if its
domain and range maps are local homeomor-
phisms.

Why étale? This is explained by the following
result.

Theorem [Resende] A topological groupoid is
€tale if and only if its set of open subsets forms
a monoid under multiplication of subsets.

Etale groupoids therefore have a strong alge-
braic character.
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A Boolean space is a compact Hausdorff space
with a basis of clopen subsets.

A Boolean groupoid is an étale topological groupoid
whose space of identities is a Boolean space.

If G is a Boolean groupoid denote by KB(G)
the set of all compact-open local bisections.

If S is a Boolean inverse monoid denote by
G(S) the set of ultrafilters of S.

Proposition

1. KB(G) is a Boolean inverse monoid.

2. G(S) is a Boolean groupoid.
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Non-commutative Stone duality

T heorem

1. Boolean inverse monoids are in duality with
Boolean groupoids

2. (Countable) Boolean inverse meet-monoids
are in duality with (second countable) Haus-
dorff Boolean groupoids.
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6. Examples

1. There is a family of Boolean inverse meet-
monoids C,, where n > 2, called Cuntz
inverse monoids which are congruence-free
and whose groups of units are the Thomp-
son groups V,. Their associated groupoids
are the ones derived from Cuntz C*-algebras.

2. We define a Boolean inverse monoid to be
AF if it is a direct limit of semisimple in-
verse monoids. AF inverse monoids are
fundamental Boolean inverse meet-monoids
and their associated groupoids are the ones
derived from AF C*-algebras.
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7. Some sample theorems

The ideas that follow were partly inspired by
work of Matui.

e A topological groupoid G is minimal if ev-
ery G-orbit is a dense subset of the space
of identities.

e A topological groupoid is effectiveif Iso(G)°
is equal to the space of identities. Here
Iso(G&) is the union of the local groups.
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We call the countable atomless Boolean alge-
bra the Tarski algebra.

Under classical Stone duality the Tarski algebra
corresponds to the Cantor space.

A Tarski inverse monoid is a countable Boolean
inverse meet-monoid whose set of idempotents
forms a Tarski algebra.
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Theorem T here are bijective correspondences
between the following three classes of struc-
tures.

1. Fundamental (O-simplifying) Tarski inverse
monoids.

2. Second countable Hausdorff étale topolog-
ical effective (minimal) groupoids with a
Cantor space of identities.

3. Cantor groups: full countable (minimal)
subgroups of the group of homeomorphisms
of the Cantor space in which the support
of each element is clopen.
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Theorem [After Krieger] There is a bijective
correspondence between the following two classes
of structures.

1. AF Tarski inverse monoids.

2. Ample groups: locally finite Cantor groups
in which the fixed-point set of each ele-
ment is clopen.
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In lieu of a definition: MV algebras are to
multiple-valued logic as Boolean algebras are
to classical two-valued logic.

Denote by S/ ¢ the poset of principal ideals of
S. If this is a lattice we say that S satisfies the
lattice condition. The following is a semigroup
version of a theorem of Mundici.

Theorem Every countable MV algebra is iso-
morphic to a S/ _# where S is AF and satisfies
the lattice condition.

Wehrung (2015) has generalized this result to
arbitrary MV algebras.

Example The direct limit of I1 — Io — I, —
Ig — ... is the CAR inverse monoid whose as-
sociated MV algebra is that of the dyadic ra-
tionals in [0, 1].
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8. Concluding remarks

e Inverse semigroup theory provides an ab-
stract setting for connecting results from
many different settings (group theory, étale
groupoids, C*-algebras, ...).

e Matui's recent work suggests a programme:
classify Tarski inverse monoids.

e [ he connection with MV-algebras and so
with multiple-valued logic raises the ques-
tion of the logical content of the theory of
Boolean inverse monoids and the implica-
tions of this for applications.
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