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1. Inverse semigroups, étale groupoids

and C∗-algebras

• J. Renault, A groupoid approach to C∗-
algebras, Lecture Notes in Mathematics,

793, Springer, 1980.

• A. Kumjian, On localizations and simple

C∗-algebras, Pacific J. Math. 112 (1984),

141–192.

• J. Kellendonk, The local structure of tilings

and their integer group of coinvariants, Comm.

Math. Phys 187 (1997), 115–157.

2



• A. L. T. Paterson, Groupoids, inverse semi-

groups, and their operator algebras, Progress

in Mathematics, 170, Birkhäuser, Boston,

1998.

• D. H. Lenz, On an order-based construc-

tion of a topological groupoid from an in-

verse semigroup, Proc. Edinb. Math. Soc.

51 (2008), 387–406.

• P. Resende, Etale groupoids and their quan-

tales, Adv. Math. 208 (2007), 147–209.

Well-known construction of C∗-algebras from

étale groupoids.

Goal: to understand the connection be-

tween inverse semigroups and étale groupoids.
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2. Idea: non-commutative Stone duality

Commutative Non-commutative

Frame Pseudogroup

Dist. lattice Dist. inverse semigroup

Boolean algebra Boolean inverse semigroup

Boolean inverse meet-semigroup

Algebra Topology

Semigroup Locally compact

Monoid Compact

Meet-semigroup Hausdorff

In this talk, I will concentrate on Boolean in-

verse monoids.
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3. Inverse semigroups

“Symmetry denotes that sort of con-

cordance of several parts by which they

integrate into a whole.” – Hermann Weyl

Symmetry is more than groups.

As groups are algebraic tools for studying sym-

metry, so inverse semigroups are tools for study-

ing partial symmetry.
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Inverse semigroups arose by abstracting pseu-

dogroups of transformations in the same way

that groups arose by abstracting groups of trans-

formations.

There were three independent approaches:

1. Charles Ehresmann (1905–1979) in France.

2. Gordon B. Preston (1925–2015) in the UK.

3. Viktor V. Vagner (1908–1981) in the USSR.

They all three converge on the definition of

‘inverse semigroup’.
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A semigroup S is said to be inverse if for each

a ∈ S there exists a unique element a−1 such

that a = aa−1a and a−1 = a−1aa−1.

Example: the symmetric inverse monoid

Let X be a set equipped with the discrete

topology. Denote by I(X) the set of all partial

bijections of X. This is an example of an in-

verse semigroup called the symmetric inverse

monoid. If X is finite with n elements denote

I(X) by In.

Theorem [Vagner-Preston] Symmetric inverse

monoids are inverse, and every inverse semi-

group can be embedded in a symmetric inverse

monoid.
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The natural partial order

Let S be an inverse semigroup. Define a ≤ b if

a = ba−1a.

Proposition The relation ≤ is a partial order

with respect to which S is a partially ordered

semigroup.

It is called the natural partial order.

Example In symmetric inverse monoids the

natural partial order is nothing other than the

restriction ordering on partial bijections.
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Let S be an inverse semigroup. Elements of
the form a−1a and aa−1 are idempotents. De-
note by E(S) the set of idempotents of S.

Remarks

1. E(S) is a commutative subsemigroup or
semilattice.

2. E(S) is an order ideal of S.

Observation Suppose that a, b ≤ c. Then
ab−1 ≤ cc−1 and a−1b ≤ c−1c. Thus a necessary
condition for a and b to have an upper bound
is that a−1b and ab−1 be idempotent.

Define a ∼ b if a−1b and ab−1 are idempotent.
This is the compatibility relation.

A non-empty subset is said to be compatible
if each pair of distinct elements in the set are
compatible.
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Example

The idempotents in I(X) are the identity func-

tions defined on the subsets of X. Denote

them by 1A, where A ⊆ X, called partial iden-

tities. Then

1A ≤ 1B ⇐⇒ A ⊆ B

and

1A1B = 1A∩B.

Thus the semilattice of idempotents on I(X)

is isomorphic to P(X).

Partial bijections f and g are compatible if and

only if f ∪ g is a partial bijection.
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• An inverse semigroup is said to have finite

(resp. infinite) joins if each finite (resp.

arbitrary) compatible subset has a join.

• An inverse semigroup is said to be distribu-

tive if it has finite joins and multiplication

distributes over such joins.

• An inverse monoid is said to be a pseu-

dogroup if it has infinite joins and multipli-

cation distributes over such joins.

• An inverse semigroup is a meet-semigroup

if has has all binary meets.
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Boolean inverse semigroups

A distributive inverse semigroup is said to be

Boolean if its semilattice of idempotents forms

a (generalized) Boolean algebra.

Symmetric inverse monoids are Boolean.

Theorem [Paterson, Wehrung] Let S be a

subsemigroup of a ring with involution R such

that S is an inverse semigroup with respect to

the involution. Then there is a Boolean inverse

semigroup T such that S ⊆ T ⊆ R.

The above result is significant when viewing

inverse semigroups in relation to C∗-algebras.

Theorem Every inverse semigroup can be em-

bedded in a universal Boolean inverse semi-

group.
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Fundamental inverse semigroups

An inverse semigroup is fundamental if the only
elements that centralize all idempotents are
themselves idempotents. Example: symmet-
ric inverse monoids are fundamental.

Theorem [Vagner] An inverse semigroup is
fundamental if and only if it is isomorphic to an
inverse semigroup of partial homeomorphisms
between the open subsets of a T0 space where
the domains of definition of the elements form
a basis for the space.

Fundamental inverse semigroups should there-
fore be viewed as inverse semigroups of partial
homeomorphisms.

Each inverse semigroup is an extension of an
inverse semigroup with central idempotents by
a fundamental one; inverse semigroups with
central idempotents are presheaves of groups.
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0-simplifying Boolean inverse monoids

A closed ideal in a Boolean inverse monoid is

an ideal closed under finite compatible joins.

A Boolean inverse monoid is 0-simplifying if it

contains no non-trivial closed ideals. Example:

symmetric inverse monoids are 0-simplifying.
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Groupoids

We view categories as 1-sorted structures: ev-

erything is an arrow. Objects are identified

with identity arrows.

A groupoid is a category in which every arrow

is invertible.

We regard groupoids as ‘groups with many

identities’.

Let G be a groupoid with set of identities Go.

A subset A ⊆ G is called a local bisection if

A−1A,AA−1 ⊆ Go.

Proposition The set of all local bisections

of a groupoid forms a Boolean inverse meet

monoid.
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4. Finite Boolean inverse monoids

Theorem

1. The finite 0-simplifying, fundamental Boolean

inverse monoids are precisely the finite sym-

metric inverse monoids.

2. The finite fundamental Boolean inverse monoids

are precisely the finite direct products of fi-

nite symmetric inverse monoids.

3. The finite Boolean inverse monoids are iso-

morphic to the inverse monoids of local bi-

sections of finite discrete groupoids.
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Remarks

1. Boolean inverse monoids should be viewed

as non-commutative unital Boolean alge-

bras.

2. We call finite fundamental Boolean inverse

monoids semisimple. They have the form

In1×. . .×Inr. They are therefore the Boolean

inverse monoid analogues of finite dimen-

sional C∗-algebras.

3. The groups of units of finite, fundamen-

tal Boolean inverse monoids are finite di-

rect products of finite symmetric groups.

This suggests that the groups of units of

Boolean inverse monoids are likely to be

interesting.
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5. Non-commutative Stone duality

A topological groupoid is said to be étale if its

domain and range maps are local homeomor-

phisms.

Why étale? This is explained by the following

result.

Theorem [Resende] A topological groupoid is

étale if and only if its set of open subsets forms

a monoid under multiplication of subsets.

Etale groupoids therefore have a strong alge-

braic character.
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A Boolean space is a compact Hausdorff space

with a basis of clopen subsets.

A Boolean groupoid is an étale topological groupoid

whose space of identities is a Boolean space.

If G is a Boolean groupoid denote by KB(G)

the set of all compact-open local bisections.

If S is a Boolean inverse monoid denote by

G(S) the set of ultrafilters of S.

Proposition

1. KB(G) is a Boolean inverse monoid.

2. G(S) is a Boolean groupoid.
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Non-commutative Stone duality

Theorem

1. Boolean inverse monoids are in duality with

Boolean groupoids

2. (Countable) Boolean inverse meet-monoids

are in duality with (second countable) Haus-

dorff Boolean groupoids.
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6. Examples

1. There is a family of Boolean inverse meet-

monoids Cn, where n ≥ 2, called Cuntz

inverse monoids which are congruence-free

and whose groups of units are the Thomp-

son groups Vn. Their associated groupoids

are the ones derived from Cuntz C∗-algebras.

2. We define a Boolean inverse monoid to be

AF if it is a direct limit of semisimple in-

verse monoids. AF inverse monoids are

fundamental Boolean inverse meet-monoids

and their associated groupoids are the ones

derived from AF C∗-algebras.
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7. Some sample theorems

The ideas that follow were partly inspired by

work of Matui.

• A topological groupoid G is minimal if ev-

ery G-orbit is a dense subset of the space

of identities.

• A topological groupoid is effective if Iso(G)◦

is equal to the space of identities. Here

Iso(G) is the union of the local groups.
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We call the countable atomless Boolean alge-

bra the Tarski algebra.

Under classical Stone duality the Tarski algebra

corresponds to the Cantor space.

A Tarski inverse monoid is a countable Boolean

inverse meet-monoid whose set of idempotents

forms a Tarski algebra.
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Theorem There are bijective correspondences

between the following three classes of struc-

tures.

1. Fundamental (0-simplifying) Tarski inverse

monoids.

2. Second countable Hausdorff étale topolog-

ical effective (minimal) groupoids with a

Cantor space of identities.

3. Cantor groups: full countable (minimal)

subgroups of the group of homeomorphisms

of the Cantor space in which the support

of each element is clopen.
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Theorem [After Krieger] There is a bijective

correspondence between the following two classes

of structures.

1. AF Tarski inverse monoids.

2. Ample groups: locally finite Cantor groups

in which the fixed-point set of each ele-

ment is clopen.
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In lieu of a definition: MV algebras are to

multiple-valued logic as Boolean algebras are

to classical two-valued logic.

Denote by S/J the poset of principal ideals of

S. If this is a lattice we say that S satisfies the

lattice condition. The following is a semigroup

version of a theorem of Mundici.

Theorem Every countable MV algebra is iso-

morphic to a S/J where S is AF and satisfies

the lattice condition.

Wehrung (2015) has generalized this result to

arbitrary MV algebras.

Example The direct limit of I1 → I2 → I4 →
I8 → . . . is the CAR inverse monoid whose as-

sociated MV algebra is that of the dyadic ra-

tionals in [0,1].
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8. Concluding remarks

• Inverse semigroup theory provides an ab-

stract setting for connecting results from

many different settings (group theory, étale

groupoids, C∗-algebras, . . . ).

• Matui’s recent work suggests a programme:

classify Tarski inverse monoids.

• The connection with MV-algebras and so

with multiple-valued logic raises the ques-

tion of the logical content of the theory of

Boolean inverse monoids and the implica-

tions of this for applications.
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