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The goal of this talk is to show how two different generalizations

of Boolean algebras are related to each other:

Boolean inverse monoids and MV-algebras.

MV stands for multivalued logic.
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Terminology

I assume you are familiar with the contents of Lectures 1–3. In particular,
you need to know what a Boolean inverse monoid is and what rook matrices
are.

I shall use the following relations defined on any inverse semigroup:

Let e and f be idempotents. Then eD f if and only if there exists a such that
a−1a = e and aa−1 = f .

aJ b if and only if SaS = SbS. So, a and b generate the same principal ideal.

Let e and f be idempotents. Define e � f if and only if eD e′ ≤ f for some
idempotent e′.

An inverse semigroup is said to be Dedekind finite if eD f ≤ e implies that
e = f .

In a Dedekind finite inverse semigroup, we have that D = J .
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1. MV-algebras

MV-algebras are another generalization of Boolean algebras aris-

ing from multivalued logic.

See the book [CDM]: R. L. O. Cignoli, I. M. L. D’Ottaviano,

D. Mundici, Algebraic foundations of many-valued reasoning,

Springer, 2000.
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An MV-algebra is a set A equipped with a binary operation ⊕, a unary oper-
ation ¬ and two constants 0 and 1 such that the following axioms hold:

1. ⊕ is associative.

2. ⊕ is commutative.

3. The identity is 0.

4. ¬¬x = x.

5. ¬0 = 1.

6. 1 is the zero.

7. ¬(¬x⊕ y)⊕ y = ¬(¬y⊕x)⊕x. This mysterious identity actually says that
x ∨ y = y ∨ x. See below.
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Examples

1. All Boolean algebras are MV-algebras.

2. The closed unit interval [0,1] is an MV-algebra when we

define ¬x = 1− x and x⊕ y = max{1, x + y}.

3. For each n ≥ n, define

 Ln =

{
0,

1

n− 1
, . . . ,

(n− 2)

(n− 1)
,1

}
with the above operations. Then  Ln is a finite MV-algebra.
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An element x of an MV-algebra is called an idempotent if and

only if x⊕ x = x.

The set of idempotents in an MV-algebra forms a Boolean alge-

bra (Corollary 1.5.4 of [CDM]).

The following was proved as Corollary 1.5.5 of [CDM].

Theorem An MV-algebra is a Boolean algebra if and only if

every element is idempotent.

Thus, MV-algebras are non-idempotent generalizations of Boolean

algebras, though they are still commutative. There is a very rich

theory of MV-algebras.
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The following generalizes the structural description of finite Boolean

algebras as finite direct products of B, the two-element Boolean

algebra.

It was proved as Proposition 3.6.5 of [CDM]).

Theorem Every finite MV-algebra is a finite direct product of

MV-algebras of the form  Ln.
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Define x ≤ y if and only if x ⊕ z = y for some z. Then ≤ is a partial order
(Lemma 1.1.2 of [CDM]). The folllowing was proved as Proposition 1.1.5 and
Proposition 1.5.1 of [CDM].

Proposition Every MV-algebra is a distributive lattice with respect to the
partial order ≤.

It can be proved that

x ∨ y = ¬(¬x⊕ y)⊕ y

and

x ∧ y = ¬(¬x ∨ ¬y)

by Proposition 1.1.5 of [CDM].

The following will be useful later. It can also be proved that

x⊕ y = x⊕ (¬x ∧ y)

where x ≤ ¬(¬x ∧ y).
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Boolean inverse monoids generalize Boolean algebras.

MV-algebras generalize Boolean algebras.

This raises the question of how Boolean inverse monoids and

MV-algebras are related.
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We shall show that the theory of MV-algebras is subservient to

the theory of Boolean inverse monoids.

We shall refer to our paper

[LS]: M. V. Lawson, P. Scott, AF inverse monoids and the struc-

ture of countable MV-algebras, Journal of Pure and Applied Al-

gebra 221 (2017), 45–74.

See also [W]: F. Wehrung, Refinement monoids, equidivisibility

types, and Boolean inverse semigroups, Springer, lecture Notes

in Mathematics 2188, 2017.
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2. The type monoid

How can we study Boolean inverse monoids?

We need invariants.

The first such invariant was introduced in

[KLLR]: G. Kudryavtseva, M. V. Lawson, D. H. Lenz, P. Re-

sende, Invariant means on Boolean inverse monoids, Semigroup

Forum 92 (2016), 77–101.

Other invariants are the homology groups associated with the

Stone groupoid of the Boolean inverse monoid.

12



Let S be a Boolean inverse semigroup (you can think monoid

but there are technical reasons to allow semigroups).

Denote the idempotent D-class containing the idempotent e by

[e]. Define Int(S) to be the set E(S)
D equipped with the following

partially defined operation

[e] + [f ] = [e′ ∨ f ′]

if eD e′ and f D f ′ and e′f ′ = 0 and undefined otherwise. We

write ∃[e] + [f ] if the sum is defined.

We call (Int(S),+, [0]) the interval associated with S.
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A structure (E,+,0) is called a partial commutative monoid if it satisfies the
axioms (E1), (E2) and (E3) below:

(E1) ∃a + b if and only if ∃b + a and when they exist they are equal.

(E2) ∃(a+b)+c if and only if ∃a+(b+c) and when they exist they are equal.

(E3) For all a ∈ E, ∃a + 0 and a + 0 = a.

(E4) There is an element 1 such that ∃a + 1 implies that a = 0.

We say that a partial commutative monoid (E,+,0) is conical if a + b = 0
implies that a = 0 and b = 0.

It is said to satisfy the refinement property if a1 +a2 = b1 +b2 then there exist

elements c11, c12, c21, c22 such that a1 = c11 + c12 and a2 = c21 + c22.
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Proposition Let S be a Boolean inverse semigroup. Then

(Int(S),+, [0]) is a conical partial commutative monoid satisfying

the refinement property. If S is also a monoid then it satisfies

axiom (E4) where we use [1].

Put 0 = [0] and 1 = [1], in the monoid case.

This construction is actually functorial.
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The problem with (Int(S),+, [0]) is that the addition is partially

defined.

We can embed Int(S) into an honest-to-goodness commutative

monoid by using rook matrices.

Let S be a Boolean inverse monoid. Then Mω(S) is a Boolean

inverse semigroup. This has the additional property that the

addition in Int(Mω(S)) is always defined.

Define the type monoid of S, denoted by Typ(S), to be the com-

mutative monoid Int(Mω(S)). Observe that Int(S) can be embed-

ded into Typ(S), and Typ(S) has the correct universal properties.

16



A partial commutative monoid (E,+,′ ,0,1) satisfying (E4) is

called an effect algebra if it also has a unary operation ′ such that

(E5) holds: for each a ∈ E we have that ∃a + a′ and a + a′ = 1.

It is natural to ask when the interval of S is an effect algebra.

Effect algebras were developed independently by mathematical

physicists studying quantum measurement theory and quantum

effects.
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An inverse monoid is said to be factorizable if each element is

below an element in the group of units.

The following result shows how the inverse monoid structure and

the Boolean algebra structure interact.

Lemma [Proposition 2.7 of [LS]] Let S be a Boolean inverse

monoid. Then S is factorizable if and only if eDf implies that

ēD f̄ .
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Proposition Let S be a Boolean inverse monoid. Then its in-

terval is an effect algebra if and only if S is factorizable where

we define [e]′ = [ē].
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In a partial commutative monoid M , it is natural to define a

preorder a ≤ b if a + c = b for some c.

Lemma Let S be a Boolean inverse monoid. Then [e] ≤ [f ] if

and only if e � f in S. If S is factorizable then ≤ is a partial

order.
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3. Foulis inverse monoids

A Foulis inverse monoid is defined to be a factorizable Boolean

inverse monoid S such that S/J = S/D is a lattice under subset

inclusion.

If S is a Foulis monoid, put  L(S) = Int(S) equipped with the

following everywhere defined operation ⊕:

[e]⊕ [f ] = [e] + (¬[e] ∧ [f ])

where [e]∧ [f ] is constructed using the lattice structure on S/J .
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The following is a nice introduction to our theory:

[WL]: Weiyun Lu, Topics in many-valued and quantum algebraic

logic, MSc Thesis, University of Ottawa, 2016.

Theorem [Section 2.2 of [LS]] Let S be a Foulis monoid. Then

( L(S),⊕,¬, 0, 1) is an MV-algebra.

An MV-algebra isomorphic to one of the form  L(S) where S is

a Foulis monoid is said to be coordinatizable. WLOG we can

always assume that S is fundamental.

Lemma Let S be a Foulis monoid. Then  L(S) is a Boolean

algebra if and only if all idempotents in S are central.
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Finite symmetric inverse monoids are Foulis monoids as are ma-

tricial inverse monoids.

Recall that a Boolean inverse monoid is said to be matricial if it

is isomorphic to a finite direct product of finite symmetric inverse

monoids.

Theorem [Theorem 2.14 of [LS]] The finite MV-algebra  Ln+1

is coordinatized by In. More generally, every finite MV-algebra

is coordinatized by a matricial monoid.
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The following was first proved in [LS].

Theorem Every countable MV-algebra is coordinatizable.

The above theorem was generalized by Wehrung [W] as his The-

orem 5.2.10 using different techniques.

Theorem Every MV-algebra is coordinatizable.

The above theorem therefore completely answers the question of

the nature of the relationship between MV-algebras and Boolean

inverse monoids.
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4. AF inverse monoids

We shall sketch out our result on the coordinatization of count-

able MV-algebras.

We first need to be explicit about what kind of substructures we

shall be dealing with.

Let S be a Boolean inverse monoid. Let T be an inverse sub-

monoid of S which is a Boolean inverse monoid in its own right.

We say that T is a subalgebra of S if E(T ) is a Boolean subalge-

bra of E(S) and compatible joins in T are the same as compatible

joins in S.
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Let S be a countable Boolean inverse monoid. We say it is AF (Approximately
Finite) if S =

⋃∞
i=0 Si where S0 ⊆ S1 ⊆ S2 ⊆ . . . and where each Si is a matricial

subalgebra of S. We assume that S0 = B. They are always factorizable.

This definition is modelled after the definition of AF C∗-algebras where finite
direct products of finite symmetric inverse monoids replace finite dimensional
C∗-algebras.

The theory of AF C∗-algebras was introduced in:

[B]: O. Bratteli, Inductive limits of finite dimensional C∗-algebras, Transac-
tions of the AMS 171 (1972), 195–234.

The theory developed there relies a lot on matrix units which form inverse
semigroups.

Bratteli diagrams give rise to AF inverse monoids and conversely.
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In [DM]: D. Mundici, Logic of infinite quantum systems, Inter-

national Journal of Theoretical Physics 32 (1993), 1941–1955,

we have the following quote:

. . . AF C∗algebras should be regarded as sort of noncom-

mutative Boolean algebras . . .

We claim that the above quote actually applies more strongly to

AF inverse monoids since commutative AF inverse monoids are

Boolean algebras.

Theorem 3 from [DM] states that there is a bijection between

AF C∗-algebras whose Murray-von Neumann order is a lattice

and countable MV-algebras.
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By modifying Mundici’s proof we actually proved the following:

Theorem [LS] Every countable MV-algebra can be coordinatized

by an AF inverse monoid satisfying the lattice condition.
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Research Question 3: Describe the Boolean groupoids G(S)

when S is a Foulis monoid.

Research Question 4: Use the (extensive) theory of MV-algebras

to reveal something about the structure of Foulis monoids.

END OF LECTURE 4
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