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I shall assume familiarity with Lecture 2.

Recall that a Boolean inverse monoid is an inverse monoid with

all binary compatible joins, multiplication distributes over such

joins, and the semilattice of idempotents forms a Boolean algebra

with respect to the usual order on the set of idempotents.
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1. Commutative (= Classical) Stone duality

This was developed by Marshall Stone in 1936.

He showed that Boolean algebras could be described in topolog-

ical terms. We shall assume identities but Stone extended the

theory to ‘generalized Boolean algebras’. We can also do the

same for semigroups as opposed to monoids.

The basic concept we shall need is that of an ultrafilter. This

will also be used in our generalization.
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Let B be a Boolean algebra. A subset F of a Boolean algebra

B is called a filter if it satisfies the following conditions:

1. 1 ∈ F .

2. If a, b ∈ F then a ∧ b ∈ F .

3. If a ∈ F and a ≤ b then b ∈ F .

The filter F is said to be proper if 0 /∈ F .
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A proper filter F is said to be prime if a∨b ∈ F implies that a ∈ F
or b ∈ F .

A maximal proper filter is called an ultrafilter.
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Lemma The following are equivalent for a filter F in a Boolean

algebra B:

1. F is an ultrafilter.

2. For each non-zero a ∈ B either a ∈ F or ā ∈ F .

3. F is a prime filter.
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The proofs of the following require Zorn’s Lemma

Lemma Every non-zero element of a Boolean algebra is con-

tained in an ultrafilter.

The following result tells us that we have enough ultrafilters.

Lemma Let a � b in a Boolean algebra. Then there is an

ultrafilter that contains a but omits b.
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A topological space is said to be 0-dimensional if it has a base

of clopen sets.

A compact Hausdorff space which is 0-dimensional is called a

Boolean space.

Proposition The clopen subsets of a Boolean space form a

Boolean algebra.

If X is a Boolean space, we denote the Boolean algebra of clopen

subsets of B by B(X).
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Let B be a Boolean algebra. Define X(B) to be the set of ultrafilters on B.

If a ∈ B denote by Va the set of ultrafilters containing a.

Lemma Let B be a Boolean algebra.

1. V0 = ∅.

2. V1 = X(B).

3. Va ∩ Vb = Va∧b.

4. Va ∪ Vb = Va∨b.

5. Vā = Va.
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Define a topology σ on X(B) whose open sets are unions of the

sets of the form Va.

Proposition For each Boolean algebra B the space (X(B), σ) is

Boolean.

The topological space X(B) is called the Stone space of the

Boolean algebra B.
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Theorem

1. Let B be a Boolean algebra. Then B ∼= BX(B).

2. Let S be a Boolean space. Then S ∼= XB(S).
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Examples

1. Let B be a finite Boolean algebra. Then each ultrafilter is

determined by an atom. The Stone space of B is then simply

the finite set of atoms equipped with the discrete topology.

2. Tarski proved that any two atomless, countably infinite Boolean

algebras are isomorphic. We call any atomless, countably in-

finite Boolean algebra a Tarski algebra. The Stone space

of the Tarski algebra is a second-countable, 0-dimensional,

compact Hausdorff space with no isolated points; such a

space is homeomorphic to the Cantor space.
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It remains to say a few words about maps. ‘Duality’ means that

maps are reversed on the nose.

Geometry = algebra through the looking glass.

Let B be a Boolean algebra. Then there is a bijective map

between the ultrafilters in B and the Boolean algebra homomor-

phisms from B to B, the 2-element Boolean algebra.

This bijection associates with the ultrafilter F its characteristic

function χF .
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Let θ : B1 → B2 be a homomorphism between Boolean algebras.

Let F ∈ X(B2) be an ultrafilter.

Then χFθ is the characteristic function of an ultrafilter in B2.

In this way, we can map homomomorphisms B1 → B2 to con-

tinuous functions X(B1) ← X(B2) with a consequent reversal of

arrows.
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In the other direction, let φ : X1 → X2 be a continuous function.

Then φ−1 maps clopen sets to clopen sets. In this way, we can

map continuous functions X1 → X2 to homomorphisms B(X1)←
B(X2).

Because maps are reversed, we have the following: the cate-

gory of Boolean algebras is dually equivalent to the category of

Boolean spaces.
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Our program(me)

We shall generalize the above to a non-commutative setting:

Boolean algebras → Boolean inverse monoids

topological spaces → topological groupoids

One can (but I won’t here) replace monoids by semigroups

(which means that compact is replaced by locally compact) and

analogous results can be proved for distributive inverse semi-

groups.

The correct setting for all of the above is a dual adjunction

linking pseudogroups and étale groupoids.

16



2. Non-commutative Stone duality: Boolean groupoids

A groupoid G is a (for us, small) category with every arrow

invertible.

The set of identities of G is denoted by Go. The ‘o’ stands for

‘objects’.

If a groupoid G carries a topology making the multiplication m

and inversion i continuous, it is called a topological groupoid.
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The most important class of topological groupoids are the étale

groupoids.

These are the topological groupoids in which d and r are local

homeomorphisms.

Resende’s characterization of étale groupoids below explains why

they are so important: their topology forms a monoid. They

therefore have algebraic alter egos.

Proposition A topological groupoid G is étale if and only if Go
is an open set and the product of any two open sets in G is an

open set.
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Key definition

An étale groupoid G is called Boolean if its identity space Go is

a Boolean space.
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Passing from Boolean groupoids to Boolean inverse monoids is

easy.

Proposition Let G be a Boolean groupoid. Denote by KB(G)

the set of all compact-open local bisections of G. Then KB(G)

is a Boolean inverse monoid.
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3. Non-commutative Stone duality: Boolean inverse

monoids

Let P be a poset with zero 0.

If X ⊆ P , define

X↓ = {y ∈ P : y ≤ x if x ∈ X}

and

X↑ = {y ∈ P : x ≤ y if x ∈ X}.

If for any x, y ∈ X there exists z ∈ X such that z ≤ x, y, we say

that X is downwardly directed. If X = X↑ we say that X is

upwardly closed.
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A subset F ⊆ P is a filter if it is downwardly directed and upwardly

closed.

It is proper if 0 /∈ F .

An ultrafilter is a maximal proper filter.

A proper filter F is prime if a∨ b ∈ F implies that a ∈ F or b ∈ F .
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The following little result is important.

A filter in an inverse semigroup is said to be idempotent if it

contains an idempotent.

Lemma A filter is idempotent if and only if it is an inverse

subsemigroup.
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Proposition In a Boolean inverse monoid prime filters and ul-

trafilters are the same.

If A is a prime filter in a Boolean inverse monoid, define

d(A) = (A−1A)↑ and r(A) = (AA−1)↑

both are prime filters and both are idempotent.
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Prime filters in Boolean inverse monoids look a little like cosets.

If A is a prime filter and a ∈ A then

A = (ad(A))↑.
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Let S be a Boolean inverse monoid. Denote the set of prime filters containing
a by Va.

Lemma Let S be a Boolean inverse monoid.

1. V0 = ∅.

2. V −1
a = Va−1.

3. Va ⊆ Vb if and only if a ≤ b.

4. Va ∩ Vb =
⋃
c≤a,b Vc.

5. Va ∪ Vb = Va∨b if a ∼ b.

6. VaVb = Vab.
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Let S be a Boolean inverse monoid. Denote by G(S) the set of

all prime filters on S.

Define a partial binary operation · on G(S) as follows:

A ·B = (AB)↑

if and only if d(A) = r(B).

Lemma G(S) is a groupoid whose identities are the idempotent

prime filters.
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Let S be a Boolean inverse monoid. Let σ be the topology on

G(S) with basis the set Va where a ∈ S.

Theorem Let S be a Boolean inverse monoid. Then G(S) is a

Boolean groupoid.

We call G(S) the Stone groupoid of S.

Lemma Let S be a Boolean inverse monoid. Then for each

a ∈ S, we have that Va is a compact-open local bisection of

G(S).
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4. Non-commutative Stone duality: isomorphism

theorems

Theorem

1. Let S be a Boolean inverse monoid. Then S ∼= KB(G(S)).

2. Let G be a Boolean groupoid. Then G ∼= G(KB(G)).
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5. Non-commutative Stone duality: maps

A morphism θ : S → T of Boolean inverse monoids is called callitic

if it is weakly-meet-preserving and proper (which means that

each element in T is a join of elements in the image).

A continuous functor α : G→ H of topological groupoids is said

to be coherent if the inverse images of compact sets are compact.

The following is the full statement of non-commutative Stone

duality.

Theorem The category of Boolean inverse monoids and cal-

litic morphisms is dually equivalent to the category of Boolean

groupoids and coherent, continuous, covering functors.
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6. Non-commutative Stone duality: refinements

I do not have time to go into details, so I shall simply summarize

the most important results in the following table:

Boolean inverse monoid Boolean groupoid
Meet-monoid Hausdorff
Fundamental Effective

Tarski algebra of idempotents Cantor space of identities
0-simplifying Minimal

0-simple Minimal and purely infinite
Group of units Topological full group

Finite Discrete
Basic inverse meet-monoids Hausdorff principal

Countable Second countable
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