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1. Introduction

Inverse semigroups were introduced in the 1950s by Ehresmann in France, Pre-
ston in the UK and Wagner in the Soviet Union as algebraic analogues of pseu-
dogroups of transformations. One of the goals of this article is to give some insight
into inverse semigroups by showing that they can in fact be seen as extensions of
presheaves of groups by pseudogroups of transformations.

Inverse semigroups can be viewed as generalizations of groups. Group theory is
based on the notion of a symmetry; that is, a structure-preserving bijection. Un-
derlying group theory is therefore the notion of a bijection. The set of all bijections
from a set X to itself forms a group, S(X), under composition of functions called
the symmetric group. Cayley’s theorem tells us that each abstract group is isomor-
phic to a subgroup of a symmetric group. Inverse semigroup theory, on the other
hand, is based on the notion of a partial symmetry; that is, a structure-preserving
partial bijection. Underlying inverse semigroup theory, therefore, is the notion of a
partial bijection (or partial permutation). The set of all partial bijections from X
to itself forms a semigroup, I(X), under composition of partial functions called the
symmetric inverse monoid. The Wagner-Preston representation theorem tells us
that each abstract inverse semigroup is isomorphic to an inverse subsemigroup of a
symmetric inverse monoid. However, symmetric inverse monoids and, by extension,
inverse semigroups in general, are endowed with extra structure, as we shall see.

The first version of this article was prepared for the Workshop on semigroups
and categories held at the University of Ottawa between 2nd and 4th May 2010.
The second version was prepared for the Field’s Institute sponsored workshop New
directions in inverse semigroups held between 1st and 4th June 2016 again at the
University of Ottawa. This version was prepared for my seminar in Bordeaux in
April 2018.

2. Basic definitions

In this section, we shall introduce the rudiments of inverse semigroup theory
motivated by the properties of the symmetric inverse monoids. Such monoids have
not only algebraic structure but also a partial order, a compatibility relation and
an underlying groupoid structure all of which can be defined on arbitrary inverse
semigroups.

2.1. The theorem of Wagner and Preston. A semigroup S is said to be inverse
if for each s ∈ S there exists a unique element s−1 such that

s = ss−1s and s−1 = s−1ss−1.

Clearly all groups are inverse semigroups.
1
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An idempotent in a semigroup is an element e such that e2 = e. Idempotents
play an important role in inverse semigroup because the elements s−1s and ss−1

are both idempotents. The set of idempotents of S is denoted by E(S). Two
special idempotents are the identity element, if it exists, and the zero element, if
it exists. An inverse semigroup with identity is called an inverse monoid and an
inverse semigroup with zero is called an inverse semigroup with zero. An inverse
subsemigroup of an inverse semigroup is a subsemigroup that is also closed under
inverses. If S is an inverse subsemigroup of T and E(S) = E(T ) we say that S is a
wide inverse subsemigroup of T .

The symmetric inverse monoid really is an inverse monoid in the terms of this
definition. The only idempotents in I(X) are the identity functions on the subsets
of X; that is, partial functions of the form 1A where A ⊆ X and 1A is the identity
function on A.

Remark 2.1. The distinction between semigroups and monoids is not a trivial one.
A comparison with C∗-algebras will make the point. Commutative C∗-algebras
correspond to locally compact spaces whereas the commutative C∗-algebras with
identity correspond to compact spaces. See Section 5.

A semigroup S is said to be regular if for each a ∈ S there exists an element
b such that a = aba and b = bab. The element b is said to be an inverse of a.
Thus inverse semigroups are the regular semigroups in which each element has a
unique inverse. The following result is elementary but fundamental. It was proved
independently by Liber in the Soviet Union, and Douglas Munn and Roger Penrose
in the UK.1

Proposition 2.2. A regular semigroup is inverse if and only if its idempotents
commute.

Proof. Let S be a regular semigroup in which the idempotents commute and let u
and v be inverses of x. Then

u = uxu = u(xvx)u = (ux)(vx)u,

where both ux and vx are idempotents. Thus, since idempotents commute, we have
that

u = (vx)(ux)u = vxu = (vxv)xu = v(xv)(xu).

Again, xv and xu are idempotents and so

u = v(xu)(xv) = v(xux)v = vxv = v.

Hence u = v.
The converse is a little trickier. Observe first that in a regular semigroup the

product of two idempotents e and f has an idempotent inverse. To see why, let
x = (ef)′ be any inverse of ef . Then the element fxe is an idempotent inverse of
ef .

Now let S be a semigroup in which every element has a unique inverse. We shall
show that ef = fe for any idempotents e and f . By the result above, f(ef)′e
is an idempotent inverse of ef . Thus (ef)′ = f(ef)′e by uniqueness of inverses,
and so (ef)′ is an idempotent. Every idempotent is self-inverse, but on the other
hand, the inverse of (ef)′ is ef . Thus ef = (ef)′ by uniqueness of inverses. Hence

1Allegedly over lunch in St John’s College, Cambridge as graduate students.
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ef is an idempotent. We have shown that the set of idempotents is closed under
multiplication. It follows that fe is also an idempotent. But ef(fe)ef = (ef)(ef) =
ef , and fe(ef)fe = fe since ef and fe are idempotents. Thus fe and ef are
inverses of ef . Hence ef = fe. �

In the symmetric inverse monoid, the product of the idempotents 1A and 1B is
just 1A∩B and so the commutativity of idempotent multiplication is just a reflection
of the fact that the intersection of subsets is commutative.

Inverses in inverse semigroups behave much like inverses in groups.

Lemma 2.3.

(1) (s−1)−1 = s.
(2) (st)−1 = t−1s−1.
(3) If e is an idempotent then ses−1 is an idempotent.

We now characterize the two extreme types of inverse semigroup: those having
exactly one idempotent and those consisting of nothing but idempotents.

Proposition 2.4. All groups are inverse semigroups, and an inverse semigroup is
a group if and only if it has a unique idempotent.

Proof. Clearly, groups are inverse semigroups. Conversely, let S be an inverse
semigroup with exactly one idempotent, e say. Then s−1s = e = ss−1 for each
s ∈ S. But es = (ss−1)s = s = s(s−1s) = se, and so e is the identity of S. Hence
S is a group. �

Groups are therefore degenerate inverse semigroups.
Recall that a poset is called a (meet) semilattice if each pair of elements has a

greatest lower bound.2 The following result leads to the set of idempotents of an
inverse semigroup being referred to as its semilattice of idempotents.

Proposition 2.5.

(1) Let S be an inverse semigroup. Then E(S) is a meet semilattice when we
define e ∧ f = ef .

(2) All meet semilattices are inverse semigroups, and an inverse in which every
element is an idempotent is a meet semilattice.

Proof. (1) Define e ≤ f by e = ef = fe. Then this is a partial order on E(S), and
with respect to this order each pair of idempotents e and f has a greatest lower
bound ef .

(2) Let (P,∧) be a meet semilattice. Then P is a commutative semigroup in
which e = e ∧ e for each element e ∈ P . Thus (P,∧) is an inverse semigroup in
which every element is idempotent. �

In the case of the symmetric inverse monoid I(X), result (1) above is just the fact
that the semilattice of idempotents of I(X) is isomorphic to the Boolean algebra
of all subsets of X.

The following property is often used to show that definitions involving idempo-
tents are self-dual with respect to left and right. It is part of the folklore of the
subject but it played an interesting, and rather unexpected role, in Girard’s work
on linear logic.3

2Usually denoted by ∧.
3Check out the third bullet-point on page 345 of [5].
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Lemma 2.6. Let S be an inverse semigroup.

(1) For each idempotent e and element s there is an idempotent f such that
es = sf .

(2) For each idempotent e and element s there is an idempotent f such that
se = fs.

Proof. We prove (1) only since the proof of (2) is similar. Put f = s−1es an
idempotent. Then sf = s(s−1es) = (ss−1)es = e(ss−1)s = es, using the fact that
idempotents commute. �

Homomorphisms of inverse semigroups are just semigroup homomorphisms. The
convention we shall follow is that if S and T are both monoids or both inverse semi-
groups with zero then their homomorphisms will be required to be monoid homo-
morphisms or map zeros to zeros, respectively. Isomorphisms of inverse semigroups
are just semigroup isomorphisms.

Lemma 2.7. Let θ : S → T be a homomorphism between inverse semigroups.

(1) θ(s−1) = θ(s)−1 for all s ∈ S.
(2) If e is an idempotent then θ(e) is an idempotent.
(3) If θ(s) is an idempotent then there is an idempotent e in S such that θ(s) =

θ(e).
(4) Im θ is an inverse subsemigroup of T .
(5) If U is an inverse subsemigroup of T then θ−1(U) is an inverse subsemi-

group of S.

Proof. (1) Clearly, θ(s)θ(s−1)θ(s) = θ(s) and θ(s−1)θ(s)θ(s−1) = θ(s−1). Thus by
uniqueness of inverses we have that θ(s−1) = θ(s)−1.

(2) θ(e)2 = θ(e)θ(e) = θ(e).
(3) If θ(s)2 = θ(s), then θ(s−1s) = θ(s−1)θ(s) = θ(s)−1θ(s) = θ(s)2 = θ(s).
(4) Since θ is a semigroup homomorphism im θ is a subsemigroup of T . By (1),

im θ is closed under inverses.
(5) Straightforward.

�

If θ : S → T is a homomorphism between inverse semigroups then it induces a
homomorphism between the semilattices E(S) and E(T ). If this restricted homo-
morphism is injective we say that the homomorphism is idempotent-separating.

The following result confirms that inverse semigroups are the right abstract coun-
terparts of the symmetric inverse monoids.

Theorem 2.8 (Wagner-Preston representation theorem). Every inverse semigroup
can be embedded in a symmetric inverse monoid.

Proof. Given an inverse semigroup S we shall construct an injective homomorphism
θ : S → I(S). For each element a ∈ S, define θa : a−1aS → aa−1S by θa(x) = ax.
This is well-defined because aS = aa−1S as the following set inclusions show

aS = aa−1aS ⊆ aa−1S ⊆ aS.

Also θa−1 : aa−1S → a−1aS and θa−1θa is the identity on a−1aS and θaθa−1 is the
identity on aa−1S. Thus θa is a bijection and θ−1a = θa−1 . Define θ : S → I(S) by
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θ(a) = θa. This is well-defined by the above. Next we show that θaθb = θab. If e
and f are any idempotents then

eS ∩ fS = efS.

Thus
dom θa ∩ im θb = a−1aS ∩ bb−1S = a−1abb−1S.

Hence
dom(θaθb) = θ−1b (a−1abb−1S) = b−1a−1aS = b−1a−1abS

where we use the following subset inclusions

b−1a−1aS = b−1bb−1a−1aS = b−1a−1abb−1S ⊆ b−1a−1abS ⊆ b−1a−1aS.
Thus dom(θaθb) = dom(θab). It is immediate from the definitions that θaθb and
θab have the same effect on elements, and so θ is a homomorphism. It remains to
prove that θ is injective. Suppose that θa = θb. Then a = ba−1a and b = ab−1b
from which a = b readily follows. �

Example 2.9. Let (X, τ) be a topological space. Consider the collection I(X, τ)
of all homeomorphisms between the open subsets of X. This is not merely a sub-
set of I(X) but also an inverse subsemigroup. It is our first example of what is
known as a pseudogroup of transformations. Admittedly, in many applications the
word ‘pseudogroup’ often implies extra properties that will not concern us here.
Pseudogroups of smooth maps between the open subsets of Rn are used to define
differential manifolds. This and similar applications led Ehresmann and Wagner
to develop a general theory of pseudogroups with a view to using them in the
foundations of differential geometry.

2.2. The natural partial order. In the previous section, we dealt with the al-
gebraic structures on the symmetric inverse monoid: the product and the inverse.
But the symmetric inverse monoid I(X) has other structures in addition to its al-
gebraic ones, and these will leave a trace in arbitrary inverse semigroups via the
Wagner-Preston representation theorem.

There is a partial ordering on partial bijections called the restriction ordering.
Perhaps surprisingly, this order can be characterized algebraically: namely, f ⊆ g
if and only if f = gf−1f . This motivates our next definition.

On an inverse semigroup, define s ≤ t iff s = ts−1s.

Lemma 2.10. The following are equivalent.

(1) s ≤ t.
(2) s = te for some idempotent e.
(3) s = ft for some idempotent f .
(4) s = ss−1t.

Proof. (1)⇒(2). This is immediate.
(2)⇒(3). This is immediate by Lemma 2.6.
(3)⇒(4). Suppose that s = ft. Then fs = s and so fss−1 = ss−1. It follows

that s = ss−1t.
(4)⇒(1). Suppose that s = ss−1t. Then s = t(t−1ss−1t). Put i = t−1ss−1t.

Then si = s and so s−1si = s−1s. It follows that s = ts−1s giving s ≤ t. �

We may now establish the main properties of the relation ≤. They are all
straightforward to prove in the light of the above lemma.
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Proposition 2.11.

(1) The relation ≤ is a partial order.
(2) If s ≤ t then s−1 ≤ t−1.
(3) If s1 ≤ t1 and s2 ≤ t2 then s1s2 ≤ t1t2.
(4) If e and f are idempotents then e ≤ f if and only if e = ef = fe.
(5) s ≤ e where e is an idempotent implies that e is an idempotent.

Remark 2.12. Property (1) above leads us to dub ≤ the natural partial order on
S. Property (2) needs to be highlighted since readers familiar with lattice-ordered
groups might have been expecting something different. Property (3) tells us that
the natural partial order is compatible with the multiplication. Property (4) tells us
that when the natural partial order is restricted to the semilattice of idempotents
we get back the usual ordering on the idempotents. Because the natural partial
order is defined algebraically it is preserved by homomorphisms.

Our next result tells us that the partial order encodes how far from being a group
an inverse semigroup is.

Proposition 2.13. An inverse semigroup is a group if and only if the natural
partial order is the equality relation.

Proof. Let S be an inverse semigroup in which the natural partial order is equality.
If e and f are any two idempotents then ef ≤ e, f and so e = f . It follows that there
is exactly one idempotent and so S is a group by Proposition 2.4. The converse is
immediate. �

In any poset (X,≤), a subset Y ⊆ X is said to be an order ideal if x ≤ y ∈ Y
implies that x ∈ Y . More generally, if Y is any subset of X then define

Y ↓ = {x ∈ X : x ≤ y for some y ∈ Y }.

This is the order ideal generated by Y . If y ∈ X then we denote {y}↓ by y↓ and
call it the principal order ideal generated by y.

Property (5) of Proposition 2.11 tells us that the semilattice of idempotents is
an order ideal in S with respect to the natural partial order.

Looking below an idempotent we see only idempotents, what happens if we look
up? The answer is that we don’t necessarily see only idempotents. The symmetric
inverse monoid is an example.

Let (X,≤) be a poset. If Y is any subset of X then define

Y ↑ = {x ∈ X : x ≥ y for some y ∈ Y }.

If Y = {y} we denote {y}↑ by y↑.
An inverse semigroup S is said to be E-unitary if e ≤ s where e is an idempotent

implies that s is an idempotent. An inverse semigroup with zero S is said to be
E∗-unitary if 0 6= e ≤ s where e is an idempotent implies that s is an idempotent.

Remark 2.14. The reason for having two definitions, depending on whether the
inverse semigroup does not or does have a zero, is because an E-unitary inverse
semigroup with zero has to be a semilattice since every element is above the zero.
Thus the definition of an E-unitary inverse semigroup in the presence of a zero
is uninteresting. This bifurcation between inverse semigroups-without-zero and
inverse semigroups-with-zero permeates the subject.
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2.3. The compatibility relation. As a partially ordered set I(X) has further
properties. The meet of any two partial bijections always exists, but joins are a
different matter. Given two partial bijections their union is not always another
partial bijection; to be so the partial bijections must satisfy a condition that forms
the basis of our next definition.

Define s ∼ t iff s−1t, st−1 ∈ E(S). This is called the compatibility relation. It is
reflexive and symmetric but not generally transitive.

Lemma 2.15. A pair of elements bounded above is compatible.

Proof. Let s, t ≤ u. Then s−1t ≤ u−1u and st−1 ≤ uu−1 so that s ∼ t. �

A subset of an inverse semigroup is said to be compatible if the elements are
pairwise compatible. If a compatible subset has a least upper bound it is said to
have a join.

Lemma 2.16. s ∼ t if and only if s ∧ t exists and d(s ∧ t) = d(s) ∧ d(t) and
r(s ∧ t) = r(s) ∧ r(t).

Proof. We prove that st−1 is an idempotent if and only if the greatest lower bound
s ∧ t of s and t exists and (s ∧ t)−1(s ∧ t) = s−1st−1t. The full result then follows
by the dual argument. Suppose that st−1 is an idempotent. Put z = st−1t. Then
z ≤ s and z ≤ t, since st−1 is an idempotent. Let w ≤ s, t. Then w−1w ≤ t−1t and
so w ≤ st−1t = z. Hence z = s ∧ t. Also

z−1z = (st−1t)−1(st−1t) = t−1ts−1st−1t = s−1st−1t.

Conversely, suppose that s∧t exists and (s∧t)−1(s∧t) = s−1st−1t. Put z = s∧t.
Then z = sz−1z and z = tz−1z. Thus sz−1z = tz−1z, and so st−1t = ts−1s. Hence
st−1 = ts−1st−1, which is an idempotent. �

Since the compatibility relation is not always transitive it is natural to ask when
it is. The answer might have been uninteresting but turns out not to be.

Proposition 2.17. The compatibility relation is transitive if and only if the semi-
group is E-unitary.

Proof. Suppose that ∼ is transitive. Let e ≤ s, where e is an idempotent. Then
se−1 is an idempotent because e = se = se−1, and s−1e is an idempotent because
s−1e ≤ s−1s. Thus s ∼ e. Clearly e ∼ s−1s, and so, by our assumption that the
compatibility relation is transitive, we have that s ∼ s−1s. But s(s−1s)−1 = s, so
that s is an idempotent.

Conversely, suppose that S is E-unitary and that s ∼ t and t ∼ u. Clearly
(s−1t)(t−1u) is an idempotent and

(s−1t)(t−1u) = s−1(tt−1)u ≤ s−1u.

But S is E-unitary and so s−1u is an idempotent. Similarly, su−1 is an idempotent.
Hence s ∼ u. �

An inverse semigroup is said to be a meet-semigroup or a ∧-semigroup if it has
all binary meets. Unlike the case with joins, there are no preconditions to a pair of
elements having a meet.

Proposition 2.18. An E∗-unitary inverse semigroup is a meet-semigroup.
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Proof. Let s and t be any pair of elements. Suppose that there exists a non-zero
element u such that u ≤ s, t. Then uu−1 ≤ st−1 and uu−1 is a non-zero idempotent.
Thus st−1 is an idempotent. Similarly s−1t is an idempotent. It follows that s ∧ t
exists by Lemma 2.16. If the only element below s and t is 0 then s ∧ t = 0. �

In an inverse semigroup with zero there is a refinement of the compatibility rela-
tion which is important. Define s ⊥ t iff s−1t = 0 = st−1. This is the orthogonality
relation. If an orthogonal subset has a least upper bound then it is said to have an
orthogonal join.

In the symmetric inverse monoid the union of compatible partial bijections is
another partial bijection and the union of an orthogonal pair of partial bijections
is another partial bijection which is a disjoint union.

Inverse semigroups generalize groups: the single identity of a group is expanded
into a semilattice of idempotents. It is possible to go in the opposite direction and
contract an inverse semigroup to a group. On an inverse semigroup S define the
relation σ by

s σ t⇔ ∃u ≤ s, t
for all s, t ∈ S.

Theorem 2.19. Let S be an inverse semigroup.

(1) σ is the smallest congruence on S containing the compatibility relation.
(2) S/σ is a group.
(3) If ρ is any congruence on S such that S/ρ is a group then σ ⊆ ρ.

Proof. (1) We begin by showing that σ is an equivalence relation. Reflexivity and
symmetry are immediate. To prove transitivity, let (a, b), (b, c) ∈ σ. Then there
exist elements u, v ∈ S such that u ≤ a, b and v ≤ b, c. Thus u, v ≤ b. The set b↓

is a compatible subset and so u ∧ v exists by Lemma 2.15 and Lemma 2.16. But
u∧ v ≤ a, c and so (a, c) ∈ σ. The fact that σ is a congruence follows from the fact
that the natural partial order is compatible with the multiplication. If s ∼ t then
by Lemma 2.16, the meet s ∧ t exists. Thus sσt. It follows that the compatibility
relation is contained in the minimum group congruence.

Let ρ be any congruence containing ∼, and let (a, b) ∈ σ. Then z ≤ a, b for some
z. Thus z ∼ a and z ∼ b. By assumption (z, a), (z, b) ∈ ρ. But ρ is an equivalence
and so (a, b) ∈ ρ. Thus σ ⊆ ρ. This shows that σ is the minimum group congruence.

(2) Clearly, all idempotents are contained in a single σ-class (possibly with non-
idempotent elements). Consequently, S/σ is an inverse semigroup with a single
idempotent. Thus S/σ is a group by Proposition 2.4.

(3) Let ρ be any congruence such that S/ρ is a group. Let (a, b) ∈ σ. Then
z ≤ a, b for some z. Hence ρ(z) ≤ ρ(a), ρ(b). But S/ρ is a group and so its natural
partial order is equality. Hence ρ(a) = ρ(b). �

The congruence σ is called the minimum group congruence and the group S/σ
the maximum group image of S. The properties of this congruence lead naturally
to the following result on the category of inverse semigroups.

Theorem 2.20. The category of groups is a reflective subcategory of the category
of inverse semigroups.

Proof. Let S be an inverse semigroup and σ\ : S → S/σ the natural homomorphism.
Let θ : S → G be a homomorphism to a group G. Then ker θ is a group congruence
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on S and so σ ⊆ ker θ by Theorem 2.19. Thus by standard semigroup theory there
is a unique homomorphism θ∗ from S/σ to G such that θ = θ∗σ\. �

It follows by standard category theory, such as Chapter IV, Section 3 of [22], that
there is a functor from the category of inverse semigroups to the category of groups
which takes each inverse semigroup S to S/σ. If θ : S → T is a homomorphism of
inverse semigroups then the function ψ : S/σ → T/σ defined by ψ(σ(s)) = σ(θ(s))
is the corresponding group homomorphism (this can be checked directly).

For inverse semigroups with zero the minimum group congruence is not very in-
teresting since the group degenerates to the trivial group. In this case, replacements
have to be found.

Remark 2.21. Constructing groups from inverse semigroups might seem a ret-
rograde step but some important groups arise most naturally as maximum group
images of inverse semigroups. However, over the past few years it has become ap-
parent that it is the group of units of an inverse monoid that is also of interest. The
group of units U(S) of the inverse monoid S is defined to be the set of all elements
s such that s−1s = 1 = ss−1. That is, the elements which are ‘invertible’ in the
old-fashioned sense.

2.4. The underlying groupoid. The product we have defined on the symmetric
inverse monoid I(X) is not the only one nor perhaps even the most obvious. Given
partial bijections f and g we might also want to define fg only when the domain
of f is equal to the range of g. When we do this we are regarding f and g as being
functions rather than partial functions. With respect to this restricted product
I(X) becomes a groupoid. Motivated by this example, define the restricted product
in an inverse semigroup by s · t = st if s−1s = tt−1 and undefined otherwise.

Proposition 2.22. Every inverse semigroup S is a groupoid with respect to its
restricted product.

Proof. We begin by showing that all idempotents of S are identities of (S, ·). Let
e ∈ S be an idempotent and suppose that e · x is defined. Then e = xx−1 and
e · x = ex. But ex = (xx−1)x = x. Similarly, if x · e is defined then it is equal to x.
We now check that the axioms (C1), (C2) and (C3) hold.

Axiom (C1) holds: suppose that x · (y · z) is defined. Then

x−1x = (y · z)(y · z)−1 and y−1y = zz−1.

But
(y · z)(y · z)−1 = yzz−1y−1 = yy−1.

Hence x−1x = yy−1, and so x · y is defined. Also (xy)−1(xy) = y−1y = zz−1. Thus
(x ·y) ·z is defined. It is clear that x · (y ·z) is equal to (x ·y) ·z. A similar argument
shows that if (x · y) · z exists then x · (y · z) exists and they are equal.

Axiom (C2) holds: suppose that x ·y and y ·z are defined. We show that x ·(y ·z)
is defined. We have that x−1x = yy−1 and y−1y = zz−1. Now

(yz)(yz)−1 = y(zz−1)y−1 = y(y−1y)y−1 = yy−1 = x−1x.

Thus x · (y · z) is defined. The proof of the converse is straightforward.
Axiom (C3) holds: for each element x we have that x · (x−1x) is defined, and

we have seen that idempotents of S are identities. Thus we put d(x) = x−1x.
Similarly, we put xx−1 = r(x). It is now clear that (S, ·) is a category. The fact
that it is a groupoid is immediate. �
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We call (S, ·) the underlying groupoid of S. The above result leads to the following
pictorial representation of the elements of an inverse semigroup. Recall that d(s) =
s−1s, which we now call the domain idempotent of s, and that r(s) = ss−1, which
we now call the range idempotent of s. We can regard s as an arrow

r(s) d(s)
soo

In the following result, if you draw a picture and imagine the elements are partial
bijections you will see exactly what is going on.

Proposition 2.23. Let S be an inverse semigroup. Then for any s, t ∈ S there
exist elements s′ and t′ such that st = s′ · t′ where the product on the right is the
restricted product.

Proof. Put e = d(s)r(t) and define s′ = se and t′ = et. Observe that d(s′) = e and
r(t′) = e and that st = s′t′. �

At this point, it is natural to define some relations, called Green’s relations, which
can be defined in any semigroup but assume particularly simple forms in inverse
semigroups. We define sL t iff d(s) = d(t); sRt iff r(s) = r(t); and H = L ∩R
which corresponds to the hom-sets of the underlying groupoid. We define sDt iff s
and t belong to the same connected component of the underlying groupoid. If K
is any one of Green’s relation then Ks denotes the K -class containing s.

Lemma 2.24.

(1) If s ≤ t and either sL t or sRt then s = t.
(2) If s ∼ t and either sL t or sRt then s = t.
(3) If s ∼ t and either d(s) ≤ d(t) or r(s) ≤ r(t) then s ≤ t.

Proof. (1) Suppose that s ≤ t and d(s) = d(t). Then s = ts−1s = tt−1t = t.
(2) Suppose that s ∼ t and d(s) = d(t). Then s ∧ t exists and d(s ∧ t) = d(s)

by Lemma 2.16. By (1) above s ∧ t = s and s ∧ t = t and so s = t.
(3) Suppose that s ∼ t and d(s) ≤ d(t). Then s ∧ t exists and d(s ∧ t) = d(s)

by Lemma 2.16. Thus s ∧ t = s and so s ≤ t. �

If θ : S → T then for each element s ∈ S the map θ induces a function from
Ls to Lθ(s) by restriction. If all these restricted maps are injective (respectively,
surjective) we say that θ is star injective (respectively, star surjective). In the
literature, star injective homomorphisms are also referred to as idempotent-pure
maps on the strength of the following lemma. We shall use this term when referring
to congruences.

Lemma 2.25. Let θ : S → T be a homomorphism between inverse semigroups. The
following are equivalent

(1) θ is is star injective
(2) Whenever θ(s) is an idempotent then s is an idempotent.
(3) The kernel of θ is contained in the compatibility relation.

Proof. (1)⇒(2). Let θ be star injective and suppose that θ(s) is an idempotent.
Then θ(s−1s) = θ(s) since idempotents are self-inverse. But θ is star injective and
so s−1s = s.

(2)⇒(3). Let θ(s) = θ(t). Then θ(s−1s) = θ(s−1t) and so s−1t is an idempotent.
By symmetry st−1 is an idempotent and so s and t are compatible.

(3)⇒(1). Let θ(s) = θ(t) and sL t. Then s ∼ t and so s = t by Lemma 2.24. �
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The E-unitary inverse semigroups also arise naturally in the context of star
injective homomorphisms.

Theorem 2.26. Let S be an inverse semigroup. Then the following conditions are
equivalent:

(1) S is E-unitary.
(2) ∼ = σ.
(3) σ is idempotent pure.
(4) σ(e) = E(S) for any idempotent e.

Proof. (1)⇒(2). We have already used the fact that the compatibility relation is
contained in σ. Let (a, b) ∈ σ. Then z ≤ a, b for some z. It follows that z−1z ≤ a−1b
and zz−1 ≤ ab−1. But S is E-unitary and so a−1b and ab−1 are both idempotents.
Hence a ∼ b.

(2)⇒(3). By Lemma 2.25 a congruence is idempotent pure precisely when it is
contained in the compatibility relation.

(3) ⇒ (4). This is immediate from the definition of an idempotent pure congru-
ence.

(4) ⇒ (1) Suppose that e ≤ a where e is an idempotent. Then (e, a) ∈ σ. But
by (4), the element a is an idempotent. �

The way in which the class of E-unitary inverse semigroups recurs is a reflection
of the importance of this class of inverse semigroups in the history of the subject.

In addition to the underlying groupoid, we may sometimes be able to associate
another, smaller, groupoid to an inverse semigroup with zero. Let S be an inverse
semigroup with zero. An element s ∈ S is said to be an atom if t ≤ s implies that
t = 0 or t = s. The set of atoms of S, if non-empty, forms a groupoid called the
minimal groupoid of S.

Example 2.27. The symmetric inverse monoid I(X) has an interesting minimal
groupoid. It consists of those partial bijections who domains consist of exactly one
element of X. This groupoid is isomorphic to the groupoid X × X with product
given by (x, y)(y, z) = (x, z). This is just the groupoid corresponding to the uni-
versal relation on X. When X is finite every partial bijection of X can be written
as an orthogonal join of elements of the minimal groupoid.

3. Some examples

So far, our range of examples of inverse semigroups is not very extensive. This
state of affairs is something we can now rectify using the tools we have available.
We describe three examples: groupoids with zero adjoined, presheaves of groups,
and semidirect products of semilattices by groups.

3.1. Groupoids with zero adjoined. Category theorists may shudder at this
example but a similar idea lies behind the construction of matrix rings from matrix
units.

Proposition 3.1. Groupoids with zero adjoined are precisely the inverse semi-
groups in which the natural partial order is equality when restricted to the set of
non-zero elements.
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Proof. If G is a groupoid then S = G0, the groupoid G with an adjoined zero,
is a semigroup when we define all undefined product to be zero. It is an inverse
semigroup and the natural partial order is equality when restricted to the non-zero
elements.

To prove the converse, let S be an inverse semigroup in which the natural partial
order is equality when restricted to the set of non-zero elements. Let s and t be
arbitrary elements in S. If d(s) = r(t) then st is just the restricted product.
Suppose that d(s) 6= r(t). Then d(s)r(t) = 0. It follows that in this case st = 0.
Thus the only non-zero products in S are the restricted products and the result
follows. �

3.2. Presheaves of groups. The idempotents of an inverse semigroup commute
amongst themselves but needn’t commute with anything else. The extreme case
where they do is interesting. An inverse semigroup is said to be Clifford if its
idempotents are central. Abelian inverse semigroups are Clifford semigroups and
play a central role in the cohomology of inverse semigroups. We show first how to
construct examples of Clifford semigroups.

Let (E,≤) be a meet semilattice, and let {Ge : e ∈ E} be a family of disjoint
groups indexed by the elements of E, the identity of Ge being denoted by 1e.
For each pair e, f of elements of E where e ≥ f let φe,f : Ge → Gf be a group
homomorphism, such that the following two axioms hold:

(PG1): φe,e is the identity homomorphism on Ge.
(PG2): If e ≥ f ≥ g then φf,gφe,f = φe,g.

We call such a family

(Ge, φe,f ) = ({Ge : e ∈ E}, {φe,f : e, f ∈ E, f ≤ e})

a presheaf of groups (over the semilattice E).

Proposition 3.2. Let (Ge, φe,f ) be a presheaf of groups. Let S = S(Ge, φe,f ) be
the union of the Ge equipped with the product defined by:

xy = φe,e∧f (x)φf,e∧f (y),

where x ∈ Ge and y ∈ Gf . With respect to this product, S is a Clifford semigroup.

Proof. The product is clearly well-defined. To prove associativity, let x ∈ Ge,
y ∈ Gf and z ∈ Gg and put i = e ∧ f ∧ g. By definition

(xy)z = φe∧f,i(φe,e∧f (x)φf,e∧f (y))φg,i(z).

But

φe∧f,i(φe,e∧f (x)φf,e∧f (y)) = φe∧f,i(φe,e∧f (x))φe∧f,i(φf,e∧f (y)).

By axiom (PG2) this simplifies to φe,i(x)φf,i(y). Thus

(xy)z = φe,i(x)φf,i(y)φg,i(z).

A similar argument shows that x(yz) likewise reduces to the right-hand side of the
above equation. Thus S is a semigroup.

Observe that if x, y ∈ Ge then xy is just their product in Ge. Thus if x ∈ Ge
and x−1 is the inverse of x in the group Ge then

x = xx−1x and x−1 = x−1xx−1

by axiom (PG1). Thus S is a regular semigroup.
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The idempotents of S are just the identities of the groups Ge, again by axiom
(PG1) and 1e1f = 1e∧f . Thus the idempotents commute. We have thus shown
that S is an inverse semigroup.

To finish off, let x ∈ Gf . Then

1ex = ϕe,e∧f (1e)ϕf,e∧f (x) = 1e∧fϕf,e∧f (x) = ϕf,e∧f (x),

and similarly, x1e = ϕf,e∧f (x). Consequently, the idempotents of S are central. �

The underlying groupoid of a Clifford semigroup is just a union of groups as the
following lemma shows.

Lemma 3.3. Let S be an inverse semigroup. Then S is Clifford if and only if
s−1s = ss−1 for every s ∈ S.

Proof. Let S be a Clifford semigroup and let s ∈ S. Since the idempotents are
central s = s(s−1s) = (s−1s)s. Thus ss−1 ≤ s−1s. We may similarly show that
s−1s ≤ ss−1, from which we obtain s−1s = ss−1.

Suppose now that s−1s = ss−1 for all elements s. Let e be any idempotent
and s an arbitrary element. Then (es)−1es = es(es)−1. That is s−1es = ss−1e.
Multiplying on the left by s gives es = se, as required. �

We may now characterize Clifford inverse semigroups.

Theorem 3.4. An inverse semigroup is a Clifford semigroup if and only if it is
isomorphic to a presheaf of groups.

Proof. Let S be a Clifford semigroup. By Lemma 3.3, we know that s−1s = ss−1

for all element s. This implies that the underlying groupoid of S is a union of
groups. For each idempotent e ∈ E(S) define

Ge = {s ∈ S : d(s) = e = r(s)}.
This is a group, the local group at the identity e in the underlying groupoid. By
assumption the union of these groups is the whole of S and each element of S belongs
to exactly one of these groups. If e ≥ f define φe,f : Ge → Gf by φe,f (a) = af .
This is a well-defined function, because d(af) = e. We show that (Ge, φe,f ) is a
presheaf of groups over the semilattice E(S).

Axiom (PG1) holds: let e ∈ E(S) and a ∈ Ge. Then φe,e(a) = ae = aa−1a = a.
Axiom (PG2) holds: let e ≥ f ≥ g and a ∈ Ge. Then

(φf,gφe,f )(a) = φf,g(φe,f (a)) = afg = ag = φe,g(a).

Let T be the inverse semigroup constructed from this presheaf of groups. Let
a ∈ Ge and b ∈ Gf . We calculate their product in this semigroup. By definition

φe,ef (a)φf,ef (b) = aefbef = afbe = aefb = ab.

Thus S and T are isomorphic.
The converse was proved in Proposition 3.2. �

3.3. Semidirect products of semilattices by groups. The group G acts on
the set Y (on the left) if there is a function G × Y → Y denoted by (g, e) 7→ g · e
satisfying 1 · e = e for all e ∈ Y and g · (h · e) = (gh) · e for all g, h ∈ G and e ∈ Y . If
Y is a partially ordered set, then we say that G acts on Y by order automorphisms
if for all e, f ∈ Y we have that

e ≤ f ⇔ g · e ≤ g · f.
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Observe that in the case of a group action, it is enough to assume that e ≤ f
implies g · e ≤ g · f , because if g · e ≤ g · f then g−1 · (g · e) ≤ g−1 · (g · f) and so
1 · e ≤ 1 · f , which gives e ≤ f . If Y is a meet semilattice on which G acts by order
automorphisms, then it is automatic that

g · (e ∧ f) = g · e ∧ g · f

for all g ∈ G and e, f ∈ Y .
Let P (G, Y ) be the set Y ×G equipped with the multiplication

(e, g)(f, h) = (e ∧ g · f, gh).

Proposition 3.5. P (G, Y ) is an E-unitary inverse semigroup in which the semi-
lattice of idempotents is isomorphic to (Y,≤) and G is isomorphic to the maximum
group homomorphic image of P (G, Y ).

Proof. P (G, Y ) is an inverse semigroup in which the inverse of (e, g) is the element
(g−1 · e, g−1), and the idempotents of P (G, Y ) are the elements of the form (e, 1).
From the definition of the multiplication in P (G, Y ) the function (e, 1) 7→ e is an
isomorphism of semilattices. The natural partial order is given by

(e, g) ≤ (f, h)⇔ e ≤ f and g = h.

If (e, 1) ≤ (f, g) then g = 1 and so P (G, Y ) is E-unitary. It also follows from the
description of the natural partial order that (e, g)σ(f, h) if and only if g = h. �

We may now characterize those inverse semigroups isomorphic to semidirect
products of semilattices by groups using many of the ideas introduced in Section 2
to do so.

Theorem 3.6. Let S be an inverse semigroup. Then the following are equivalent:

(1) The semigroup S is isomorphic to a semidirect product of a semilattice by
a group.

(2) S is E-unitary and for each a ∈ S and e ∈ E(S) there exists b ∈ S such
that b ∼ a and b−1b = e.

(3) σ\ : S → S/σ is star bijective.
(4) There is a star bijective homomorphism from S to a group.
(5) The function θ : S → E(S) × S/σ defined by θ(a) = (a−1a, σ(a)) is a

bijection.
(6) The function φ : S → E(S) × S/σ defined by φ(a) = (aa−1, σ(a)) is a

bijection.

Proof. (1)⇒ (2). Without loss of generality, we may assume that S is a semidirect
product of a meet semilattice Y by a group G. The semigroup S is E-unitary by
Theorem 3.6. Let (e, g) ∈ S and (f, 1) ∈ E(S). Then the element (g · f, g) of S
satisfies

(g · f, g) ∼ (e, g) and (g · f, g)−1(g · f, g) = (f, 1)

as required.
(2)⇒ (3). Since S is E-unitary, the homomorphism σ\ : S → S/σ is star injective

by Theorem 2.26. Let e ∈ E(S) and σ(a) ∈ S/σ. By assumption there exists b ∈ S
such that b−1b = e and b ∼ a. But b ∼ a implies σ(b) = σ(a). Thus σ\ is also star
surjective.

(3) ⇒ (4). Immediate.
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(4) ⇒ (3). Let θ : S → G be a star bijective homomorphism to a group G.
Since σ is the minimum group congruence, σ ⊆ ker θ by Theorem 2.19. But θ is
star injective by assumption, and so σ\ is idempotent pure by Lemma 2.25. In
particular, S is E-unitary by Theorem 2.26.

To show that σ\ is star surjective, let s ∈ S and e ∈ E(S). There exists t ∈ S
such that t−1t = e and θ(t) = θ(s), since θ is star surjective. Now θ(s−1t) is the
identity of G, and so s−1t is an idempotent of S since θ is star injective. Similarly,
st−1 is an idempotent. Hence s ∼ t and so (s, t) ∈ σ. Thus for each e ∈ E(S) and
σ(s) ∈ S/σ, there exists t ∈ S such that t−1t = e and σ(t) = σ(s). Thus σ\ is star
surjective.

(3) ⇒ (5). Straightforward.
(5) ⇒ (6). Suppose that φ(a) = φ(b). Then aa−1 = bb−1 and σ(a) = σ(b).

But σ(a−1) = σ(b−1) and so θ(a−1) = θ(b−1). By assumption θ is bijective and so
a−1 = b−1, giving a = b. Hence φ is injective.

Now let (e, σ(s)) ∈ E(S)×S/σ. Since θ is surjective there exists t ∈ S such that
θ(t) = (e, σ(s−1)). Thus t−1t = e and t σ s−1. Hence t−1 is such that t−1 σ s and
t−1(t−1)−1 = e. Thus φ(t−1) = (e, σ(s)), and so φ is surjective.

(6) ⇒ (5). A similar argument to (5) ⇒ (6).
(6) ⇒ (1). We shall use the fact that both the functions φ and θ defined above

are bijections.
First of all S is E-unitary. For suppose that e ≤ a where e is an idempotent.

Then σ(e) = σ(a), and σ(e) = θ(a−1a), so that σ(a) = σ(a−1a). Thus θ(a) =
θ(a−1a), and so a = a−1a, since θ is a bijection.

We shall define an action of S/σ on E(S) using θ, and then show that φ defines
an isomorphism from the semidirect product of E(S) by S/σ to S.

Define σ(s) · e = tt−1 where θ(t) = (e, σ(s)). This is well-defined because θ is
a bijection. The two defining properties of an action hold. Firstly, if σ(e) is the
identity of S/σ then θ(e) = (e, σ(e)) and so σ(e) · e = e; secondly, σ(u) · (σ(v) · e) =
σ(u)·aa−1 where θ(a) = (e, σ(v)), and σ(u)·aa−1 = bb−1 where θ(b) = (aa−1, σ(u)).
Now a σ v and b σ u so that ba σ uv. Also a−1a = e and b−1b = aa−1 so that
(ba)−1ba = a−1a. Hence θ(ba) = (e, σ(uv)). Thus

σ(uv) · e = (ba)(ba)−1 = bb−1 = σ(u) · (σ(v) · e).

Next, we show that S/σ acts on E(S) by means of order automorphisms. Suppose
that e ≤ f . Then σ(a) · e = uu−1 and σ(a) · f = vv−1 where

θ(u) = (e, σ(a)) and θ(v) = (f, σ(a)).

Consequently, e = u−1u and f = v−1v and uσ v. But S is E-unitary, and so σ is
equal to the compatibility relation by Theorem 2.26. From u−1u ≤ v−1v and u ∼ v
we obtain u ≤ v by Lemma 2.24. Hence uu−1 ≤ vv−1 and so σ(a) · e ≤ σ(a) · f .

It only remains to prove that φ is a homomorphism. By definition

φ(a)φ(b) = (aa−1, σ(a))(bb−1, σ(b)) = (aa−1 ∧ σ(a) · bb−1, σ(ab)).

But σ(a) · bb−1 = tt−1 where θ(t) = (bb−1, σ(a)). Thus

φ(a)φ(b) = (aa−1tt−1, σ(ab))

whereas

φ(ab) = (ab(ab)−1, σ(ab)).
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It remains to show that aa−1tt−1 = ab(ab)−1. We know that t−1t = bb−1 and t σ a.
But t ∼ a since S is E-unitary. Thus tt−1a = at−1t = abb−1 by Lemma 2.16.
Hence tt−1aa−1 = abb−1a−1 = ab(ab)−1. �

4. Fundamental inverse semigroups

The examples in the last section can be viewed as showing that various natural
ways of combining groups and semilattices lead to interesting classes of inverse
semigroups. But what does the ‘generic’ inverse semigroup look like? The main
goal of this section is to justify the claim made in the Introduction that inverse
semigroups should be viewed as common generalizations of presheaves of groups
and pseudogroups of transformations. We shall also characterize the congruence-
free inverse semigroups with zero.

4.1. The Munn representation. The symmetric inverse monoid is constructed
from an arbitrary set. We now show how to construct an inverse semigroup from a
meet semilattice. Let (E,≤) be a meet semilattice, and denote by TE be the set of
all order isomorphisms between principal order ideals of E. Clearly, TE is a subset
of I(E). In fact we have the following.

Proposition 4.1. The set TE is an inverse subsemigroup of I(E) whose semilattice
of idempotents is isomorphic to E.

TE is called the Munn semigroup of the semilattice E.

Theorem 4.2 (Munn representation theorem). Let S be an inverse semigroup.
Then there is an idempotent-separating homomorphism δ : S → TE(S) whose image
is a wide inverse subsemigroup of TE(S).

Proof. For each s ∈ S define the function

δs : (s−1s)↓ → (ss−1)↓

by δs(e) = ses−1. We first show that δs is well-defined. Let e ≤ s−1s. Then
ss−1δs(e) = δs(e), and so δs(e) ≤ ss−1. To show that δs is order-preserving, let
e ≤ f ∈ (s−1s)↓. Then

δs(e)δs(f) = ses−1sfs−1 = sefs−1 = δs(e).

Thus δs(e) ≤ δs(f).
Consider now the function δs−1 : (ss−1)↓ → (s−1s)↓. This is order-preserving by

the argument above. For each e ∈ (s−1s)↓, we have that

δs−1(δs(e)) = δs−1(ses−1) = s−1ses−1s = e.

Similarly, δs(δs−1(f)) = f for each f ∈ (ss−1)↓. Thus δs and δs−1 are mutually
inverse, and so δs is an order isomorphism.

Define δ : S → TE(S) by δ(s) = δs. To show that δ is a homomorphism, we begin
by calculating dom(δsδt) for any s, t ∈ S. We have that

dom(δsδt) = δ−1t ((s−1s)↓ ∩ (tt−1)↓) = δ−1t ((s−1stt−1)↓).

But δ−1t = δt−1 and so

dom(δsδt) = ((st)−1st)↓ = dom(δst).

If e ∈ dom δst then

δst(e) = (st)e(st)−1 = s(tet−1)s−1 = δs(δt(e)).
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Hence δsδt = δst.
To show that δ is idempotent-separating, suppose that δ(e) = δ(f) where e and

f are idempotents of S. Then dom δ(e) = dom δ(f). Thus e = f .
The image of δ is a wide inverse subsemigroup of TE(S) because every idempotent

in TE(S) is of the form 1[e] for some e ∈ E(S), and δe = 1[e]. �

The Munn representation should be contrasted with the Wagner-Preston repre-
sentation: that was injective whereas this has a non-trivial kernel which we shall
now describe. The kernel of δ is the congruence µ defined by (s, t) ∈ µ if and only
if d(s) = d(t), r(s) = r(t) and for all idempotents e such that e ≤ s−1s we have
that ses−1 = tet−1. The definition can be slightly weakened.

Lemma 4.3. The congruence µ is defined by

(s, t) ∈ µ⇔ (∀e ∈ E(S)) ses−1 = tet−1.

Proof. Define (s, t) ∈ µ′ iff ses−1 = tet−1 for all idempotents e. We shall prove
that µ = µ′. Observe first that µ′ is a congruence. It is clearly an equivalence
relation. Suppose that (a, b) ∈ µ′ and (c, d) ∈ µ′. The proof that (ac, bd) ∈ µ′ is
straightforward. It follows that from (s, t) ∈ µ′ we may deduce that (s−1, t−1) ∈ µ′.
Let (s, t) ∈ µ′. We prove that (s, t) ∈ µ. To do this we need to prove that
d(s) = d(t), r(s) = r(t). By choosing our idempotent to be ss−1 we get that
ss−1 ≤ tt−1. By symmetry we deduce that r(s) = r(t). The fact that d(s) = d(t)
follows from the same argument using the fact that (s−1, t−1) ∈ µ′. We have shown
that µ′ ⊆ µ.

To prove the converse, suppose that (s, t) ∈ µ. Let e be an arbitrary idempotent.
Then s−1s = t−1t and so s−1se = t−1te. Thus s(s−1se)s−1 = t(t−1te)t−1, which
simplifies to ses−1 = tet−1. It follows that (s, t) ∈ µ′, as required. �

We have defined idempotent-separating homomorphisms and we may likewise
define idempotent-separating congruences.

Lemma 4.4. µ is the largest idempotent-separating congruence on S.

Proof. Let ρ be any idempotent separating-congruence on S and let (s, t) ∈ ρ. Let
e be any idempotent. Then (ses−1, tet−1) ∈ ρ but ρ is idempotent separating and
so ses−1 = tet−1. It follows that (s, t) ∈ µ. Thus we have shown that ρ ⊆ µ. �

An inverse semigroup is said to be fundamental if µ is the equality relation.

Lemma 4.5. Let S be an inverse semigroup. Then S/µ is fundamental.

Proof. Suppose that µ(s) and µ(t) are µ-related in S/µ. Every idempotent in S/µ
is of the form µ(e) where e ∈ E(S). Thus

µ(s)µ(e)µ(s)−1 = µ(t)µ(e)µ(t)−1

so that µ(ses−1) = µ(tet−1). But both ses−1 and tet−1 are idempotents, so that
ses−1 = tet−1 for every e ∈ E(S). Thus (s, t) ∈ µ. �

Theorem 4.6. Let S be an inverse semigroup. Then S is fundamental if and only
if S is isomorphic to a wide inverse subsemigroup of the Munn semigroup TE(S).

Proof. Let S be a fundamental inverse semigroup. By Theorem 4.2, there is a
homomorphism δ : S → TE(S) such that ker δ = µ. By assumption, µ is the equality
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congruence, and so δ is an injective homomorphism. Thus S is isomorphic to its
image in TE(S), which is a wide inverse subsemigroup.

Conversely, let S be a wide inverse subsemigroup of a Munn semigroup TE .
Clearly, we can assume that E = E(S). We calculate the maximum idempotent-
separating congruence of S. Let α, β ∈ S and suppose that (α, β) ∈ µ in S.
Then domα = domβ. Let e ∈ domα. Then 1[e] ∈ S, since S is a wide inverse

subsemigroup of TE(S). By assumption α1[e]α
−1 = β1[e]β

−1. It is easy to check

that 1[α(e)] = α1[e]α
−1 and 1[β(e)] = β1[e]β

−1. Thus α(e) = β(e). Hence α = β,
and so S is fundamental. �

In group theory, congruences are handled using normal subgroups, and in ring
theory by ideals. In general semigroup theory, there are no such substructures and
so congruences have to be studied in their own right something that is common
to most of universal algebra. Even in the case of inverse semigroups, congruences
have to be used. However, idempotent-separating homomorphisms are determined
by analogues of normal subgroups.

Let θ : S → T be a homomorphism of inverse semigroups. The Kernel of θ is
defined to be the set K of all elements of S that map to idempotents under θ.
Observe that K is a wide inverse subsemigroup of S and it is self-conjugate in
the sense that s−1Ks ⊆ K for all s ∈ S. We say that K is a a normal inverse
subsemigroup of S.

Remark 4.7. This typographical distinction between kernels which are congru-
ences and Kernels which are substructures is not entirely happy but convenient for
the purposes of this section.

If θ is idempotent-separating then its Kernel satisfies an additional property. If
a ∈ K and if e is any idempotent then ae = ea. This motivates the following
definition.

For every inverse semigroup S, we define Z(E(S)), the centralizer of the idem-
potents, to be set of all elements of S which commute with every idempotent. The
centralizer is a normal inverse subsemigroup and is Clifford. Thus the Kernels of
idempotent-separating homomorphisms from S are subsets of the centralizer of the
idempotents of S. We now prove that idempotent-separating homomorphisms are
determined by their Kernels.

Theorem 4.8. Let S be an inverse semigroup. Let K be a normal inverse sub-
semigroup of S contained in Z(E(S)). Define the relation ρK by

(s, t) ∈ ρK ⇔ st−1 ∈ K and d(s) = d(t).

Then ρK is an idempotent-separating congruence whose associated Kernel is K.

Proof. We show first that ρK is an equivalence relation. Reflexivity and symmetry
hold because K is a wide inverse subsemigroup of S. To prove transitivity suppose
that (a, b), (b, c) ∈ ρK . Then ab−1, bc−1 ∈ K and d(a) = d(b) = d(c). Observe that
ab−1bc−1 = ac−1 ∈ K and d(a) = d(c). Hence (a, c) ∈ ρK . Next we show that ρK
is a congruence. Let (a, b) ∈ ρK and c ∈ S. By assumption, ab−1 ∈ K and d(a) =
d(b). We prove first that ρK is a right congruence by showing that (ac, bc) ∈ ρK .
Observe that ac(bc)−1 = acc−1b−1. We may move the idempotent cc−1 through
b−1 by Lemma 2.6. Thus by the fact that K is a wide inverse subsemigroup we
have show that ac(bc)−1 ∈ K. A simple calculation shows that d(ac) = d(bc). We
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prove now that ρK is a left congruence by showing that (ca, cb) ∈ ρK . Observe that
ca(cb)−1 = c(ab−1)c−1, but ab−1 ∈ K and K is self-conjugate so that ca(cb)−1 ∈ K.

It remains to show that the elements

(ca)−1ca = a−1c−1ca and (cb)−1cb = b−1c−1cb

are equal. Put e = c−1c. We shall show that a−1ea = b−1eb. Write

a−1ea = (a−1ea)(a−1a)(a−1ea).

But a−1a = b−1b and so

a−1ea = (a−1ea)(b−1b)(a−1ea).

Now

(a−1ea)(b−1b)(a−1ea) = (a−1e)(ab−1)(ab−1)−1(ea).

But ab−1 ∈ K, and K is contained in the centralizer of the idempotents, and so

ab−1(ab−1)−1 = (ab−1)−1ab−1.

Thus

(a−1e)(ab−1)(ab−1)−1(ea) = (a−1e)(ab−1)−1(ab−1)(ea),

and so

a−1ea = (a−1e)(ba−1ab−1)(ea).

Now

(a−1e)(ba−1ab−1)(ea) = a−1(ab−1e)−1(ab−1e)a.

But ab−1 ∈ K, and K is a wide subsemigroup, so that ab−1e ∈ K. Thus because
K is contained in the centralizer of the idempotents we have that

a−1(ab−1e)−1(ab−1e)a = a−1(ab−1e)(ab−1e)−1a.

Thus

a−1ea = a−1(ab−1e)(ab−1e)−1a.

But a−1(ab−1e)(ab−1e)−1a = a−1ab−1eb, so that we in fact have

a−1ea = a−1ab−1eb.

But then from a−1a = b−1b we obtain a−1ea = b−1eb as required.
We now calculate the Kernel of ρK . Let a be in the Kernel of ρK . Then there

is an idempotent e ∈ S such that (a, e) ∈ ρK . But then ae ∈ K and a−1a = e.
Thus a ∈ K. It follows that the Kernel of ρK is contained in K. To prove the
reverse inclusion, suppose that a ∈ K. Then a(a−1a) ∈ K and a−1a = a−1a. Thus
(a, a−1a) ∈ ρK . Hence a belongs to the Kernel of ρK . �

The following now confirms what we already suspect.

Proposition 4.9. Let S be an inverse semigroup. The idempotent-separating con-
gruence determined by Z(E(S)) is µ.

Proof. We calculate the Kernel of µ. Suppose that sµe where e is an idempo-
tent. Let f be an arbitrary idempotent. Then sfs−1µef and fss−1µef . Thus
sfs−1µfss−1 and so sfs−1 = fss−1. It follows that sf = fs and s ∈ Z(E(S)).
Conversely, let s ∈ Z(E(S)). Then sµss−1. �

The following result provides a useful criterion for a semigroup to be fundamen-
tal.
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Proposition 4.10. Let S be an inverse semigroup. Then S is fundamental if and
only if Z(E(S)) = E(S).

Proof. Suppose that S is fundamental. Let a ∈ Z(E(S)). By Proposition 4.9,
Kerµ = Z(E(S)). Thus (a, e) ∈ µ for some e ∈ E(S). But then a = e, since µ is
equality, and so a is an idempotent. Thus Z(E(S)) = E(S).

Conversely, suppose that Z(E(S)) = E(S). Let (a, b) ∈ µ. Then

(ab−1, bb−1) ∈ µ,

and so ab−1 ∈ Kerµ. But Kerµ = Z(E(S)) by Proposition 4.9, and so ab−1 ∈
Z(E(S)). Thus ab−1 is an idempotent, by assumption. But then ab−1 = bb−1

since µ is idempotent-separating, which gives ab−1b = b. But d(a) = d(b) and so
a = b. �

A topological space X is said to be T0 if for each pair of elements x, y ∈ X
there exists an open set which contains one but not both of x and y. A base for a
topological space is a set of open sets β such that every open set of the topology
is a union of elements of β. Let X be an arbitrary set and β a set of subsets of X
whose union is X and with the property that the intersection of any two elements
of β is a union of elements of β. Then a topology can be defined on X by defining
the open sets to be the unions of elements of β.

As in Example 2.9, the inverse semigroup of all homeomorphisms between open
subsets of X is denoted by Γ(X). An inverse subsemigroup S of Γ(X) is said to be
topologically complete if the set-theoretic domains of the elements of S form a base
for the topology.

Theorem 4.11. An inverse semigroup is fundamental if and only if it is isomorphic
to a topologically complete inverse semigroup on a T0-space.

Proof. Let S be a fundamental inverse semigroup. We can assume by Theorem 4.6,
that S is a wide inverse subsemigroup of a Munn semigroup TE . Put β = {e↓ : e ∈
E}. Clearly, E is the union of the elements of β, and β is closed under finite
intersections. Thus β is the base of a topology on the set E. With respect to this
topology, each element of S is a homeomorphism between open subsets of E. It
remains to show that this topology is T0. Let e, f ∈ E be distinct idempotents. If
f ≤ e then f↓ is an open set containing f but not e. If f 6≤ e then e↓ is an open
set containing e but not f . Thus the topology is T0.

Conversely, let S be a topologically complete inverse subsemigroup of the inverse
semigroup Γ(X) = I(X, τ) where the topology τ is T0 and β = {domα : α ∈ S} is
a base for τ . We shall prove that S is fundamental by showing that the centralizer
of the idempotents of S contains only idempotents (Proposition 4.10). Let φ ∈
S \ E(S). Then there exists x ∈ domφ such that φ(x) 6= x, because φ is not an
idempotent. Since τ is T0, there exists an open set U such that

either (φ(x) ∈ U and x /∈ U) or (φ(x) /∈ U and x ∈ U).

Since β is a basis for the topology, U =
⋃
Bi for some Bi ∈ β. It follows that there

is a B = Bi ∈ β such that

either (φ(x) ∈ B and x /∈ B) or (φ(x) /∈ B and x ∈ B).

Observe that 1B ∈ S since B = domα for some α ∈ S. Thus the elements φ1B and
1Bφ belong to S. In the first case, φ(x) ∈ B and x /∈ B, so that whereas (φ1B)(x)
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is not defined, (1Bφ)(x) is defined. Thus φ /∈ Z(E(S)). In the second case, (φ1B)(x)
is defined and (1Bφ)(x) is not defined. Thus once again φ /∈ Z(E(S)). Hence in
either case φ /∈ Z(E(S)). �

Let S be an arbitrary inverse semigroup, let its image under the Munn repre-
sentation be T , and let K be the centralizer of the idempotents of S. Then S is an
extension of K by T where the former is a presheaf of groups and the latter is a
pseudogroup of transformations.

Theorem 4.12. Every inverse semigroup is an idempotent-separating extension of
a presheaf of groups by a pseudogroup of transformations.

4.2. Congruence-free inverse semigroups. A useful application of fundamental
inverse semigroups is in characterizing those semigroups which are congruence-free.
I shall concentrate only on the case of inverse semigroups with zero. Douglas Munn
once remarked to me that this was one of the few instances where the theory for
inverse semigroups with zero was easier than it was for the one without. We shall
need a sequence of definitions before we can state our main result.

Although ideals are useful in semigroup theory, the connection between ideals
and congruences is weaker for semigroups than it is for rings. If ρ is a congruence on
a semigroup with zero S, then the set I = ρ(0) is an ideal of S; however, examples
show that the congruence is not determined by this ideal. Nevertheless, ideals can
be used to construct some congruences on semigroups. Let I be an ideal in the
semigroup S. Define a relation ρI on S by:

(s, t) ∈ ρI ⇔ either s, t ∈ I or s = t.

Then ρI is a congruence. The quotient semigroup S/ρI is isomorphic to the set
S \ I ∪{0} (we may assume that 0 /∈ S \ I) equipped with the following product: if
s, t ∈ S \ I then their product is st if st ∈ S \ I, all other products are defined to
be 0. Such quotients are called Rees quotients.

There is also a way of constructing congruences from subsets. Let S be a semi-
group and let L ⊆ S. Define a relation ρL on S by:

(s, t) ∈ ρL ⇔ (∀a, b ∈ S)(asb ∈ L⇔ atb ∈ L).

Then ρL is a congruence on S, called the syntactic congruence of L.
An inverse semigroup with zero S is said to be 0-simple if it contains at least one

non-zero element and the only ideals are {0} and S. An inverse semigroup is said to
be congruence-free if its only congruences are equality and the universal congruence.
Thus congruence-free-ness is much stronger than 0-simplicity. A congruence ρ is
said to be 0-restricted if the ρ-class containing 0 is just 0. Finally, define ξ to be
the syntactic congruence of the subset {0}.

Lemma 4.13. The congruence ξ is the maximum 0-restricted congruence.

Proof. Let ρ be a 0-restricted congruence on S and let sρt. Suppose that asb = 0.
But asbξatb and so since ρ is 0-restricted, we have that atb = 0. By symmetry we
deduce that aξb. Thus ρ ⊆ ξ, as required. �

Lemma 4.14. Let S be an inverse semigroup with zero.

(1) µ ⊆ ξ.
(2) The congruence ξ restricted to E(S) is the syntactic congruence determined

by zero on E(S).
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Proof. (1) Let sµt. Suppose that asb = 0 then asbµatb and so atb = 0. By
symmetry this shows that sξt.

(2) Let e and f be idempotents. Suppose that for all idempotents i we have that
ie = 0 iff if = 0. Let aeb = 0. Then a−1aebb−1 = 0. Thus a−1abb−1e = 0 and so
a−1abb−1f = 0. Hence a−1afbb−1 = 0 and so afb = 0. The reverse direction is
proved similarly. �

An inverse semigroup with zero is said to be 0-disjunctive if ξ is the equality
relation.

Proposition 4.15. An inverse semigroup S is 0-disjunctive if and only if E(S) is
0-disjunctive and S is fundamental.

Proof. If S is 0-disjunctive it follows by Lemma 4.14 that E(S) is 0-disjunctive and
S is fundamental. Suppose that E(S) is 0-disjunctive and S is fundamental. Then
ξ restricted to E(S) is the equality relation and so ξ is idempotent-separating. Thus
by Lemma 4.4 ξ ⊆ µ. But S is fundamental and so µ is the equality relation and
so ξ is the equality relation. �

Lemma 4.16. Let E be a meet semilattice with zero. Then the following are
equivalent.

(1) E is 0-disjunctive.
(2) For all distinct e, f ∈ E nonzero there exists g ∈ E such that either e∧g 6= 0

and f ∧ g = 0 or e ∧ g = 0 and f ∧ g 6= 0.
(3) For all 0 6= f < e there exists 0 6= g ≤ e such that f ∧ g = 0.

Proof. (1)⇒(2). This is immediate from the definition.
(2)⇒(3). Let 0 6= f < e. Then there exists g′ such that g′ ∧ f = 0 and g′ ∧ e 6= 0

or g′ ∧ f 6= 0 and g′ ∧ e = 0. Clearly the second case cannot occur. Put g = g′ ∧ e.
Then g ≤ e, g 6= 0 and g ∧ f = 0, as required.

(3)⇒(1). Suppose that eξf where e and f are both non-zero. Then eξ(e ∧ f)
and so e ∧ f 6= 0. Suppose that e ∧ f 6= e. Then there exists 0 6= g ≤ e such that
(e ∧ f) ∧ g = 0. But clearly e ∧ g 6= 0. We therefore have a contradiction and so
e ∧ f = e. Similarly e ∧ f = f and so e = f , as required. �

Remark 4.17. Property (3) in the above lemma has a Boolean ‘feel’ to it. If e < f
are non-zero then fē < f and e∧ fē = 0. Thus Boolean algebras are automatically
0-disjunctive. This has implications in the study of Boolean inverse semigroups.
See Section 5.

We may now state the characterization of congruence-free inverse semigroups
with zero.

Theorem 4.18. An inverse semigroup with zero S is congruence-free if and only
if S is fundamental, 0-simple and E(S) is 0-disjunctive.

Proof. Suppose that S is congruence-free. Then µ is equality, there are no non-
trivial ideals and ξ is equality. Thus S is fundamental, 0-simple and E(S) is 0-
disjunctive.

To prove the converse, suppose that S is fundamental, 0-simple and E(S) is 0-
disjunctive. Let ρ be a congruence on S which is not the universal relation. Then
ρ(0) is an ideal which is not S. Thus it must be equal to {0}. It follows that ρ is
a 0-restricted congruence and so ρ ⊆ ξ. But by Proposition 4.15, ξ is the equality
congruence and so ρ is the equality congruence. �
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The above theorem will be a useful criterion for congruence-free-ness once we
have a nice characterization of 0-simplicity. This involves the one Green’s relation
we have yet to define. Let S be an inverse semigroup. Define

(s, t) ∈J ⇔ SsS = StS.

It is always true that D ⊆ J . The meaning of the J -relation for inverse semi-
groups is clarified by the following result.

Lemma 4.19. Let S be an inverse semigroup. Then a ∈ SbS if and only if there
exists u ∈ S such that aDu ≤ b.
Proof. Let a ∈ SbS. Then a = xby for some x, y ∈ S. By Proposition 2.23, there
exist elements x′, y′ and b′ such that a = x′ · b′ · y′ is a restricted product where
x′ ≤ x, b′ ≤ b and a′ ≤ a. Hence aD b′ which, together with b′ ≤ b, gives aD b′ ≤ b.
Conversely, suppose that aD b′ ≤ b. From aD b′ we have that aJ b′, and from
b′ ≤ b we have that Sb′S ⊆ SbS. Thus a ∈ SbS. �

Lemma 4.20. Let S be an inverse semigroup with zero. Then it is 0-simple if and
only if S 6= {0} and the only J -classes are {0} and S \ {0}.
Proof. Let S be 0-simple and let s, t ∈ S be a pair of non-zero elements. Both
SsS and StS are ideals of S and so must be equal. Thus (s, t) ∈ J . Conversely,
suppose that the only non-zero J -class is S \ {0}. Let I be any non-zero ideal of
S. Let s ∈ I and t ∈ S be non-zero elements. By assumption, (s, t) ∈ J . Thus
t = asb for some a, b ∈ S and so t ∈ I. Hence I = S \ {0}. �

Proposition 4.21. Let S be an inverse semigroup with zero.

(1) S is 0-simple if and only if for any two non-zero elements s and t in S
there exists an element s′ such that sD s′ ≤ t.

(2) S is 0-simple if and only if for any two non-zero idempotents e and f in S
there exists an idempotent i such that eD i ≤ f .

Proof. (1) By Lemma 4.19, an inverse semigroup is 0-simple if it consists of exactly
two J -class {0} and S \ {0}. Thus any two non-zero elements of S are J -related.
The result is now immediate by Lemma 4.18.

(2) Suppose the condition on the idempotents holds. Let s, t ∈ S be a pair of
non-zero elements. Then e = ss−1 and f = tt−1 are non-zero idempotents and so,
by assumption, there is an idempotent i such that eD i ≤ f . Put u = it. Then
u ≤ t, and uu−1 = it(it)−1 = itt−1 = if = i. Thus sD u ≤ t. The proof of the
converse is straightforward. �

5. Boolean inverse monoids

Let S be an inverse monoid with zero. We say that it is distributive if it satisfies
the following two conditions:

(1) Compatible pairs of elements have a join. We shall call these compatible
joins.

(2) Multiplication distributes over compatible joins.

The semilattice of idempotents of a distributive inverse monoid is a distributive
lattice (with both top and bottom). A distributive inverse monoid is said to be
Boolean if its semilattice of idempotents is actually a Boolean algebra. Our per-
spective is that Boolean inverse monoids are non-commutative generalizations of
Boolean algebras.
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Examples 5.1. Here are a list of some examples of Boolean inverse monoids.

(1) Symmetric inverse monoids I(X) are Boolean inverse monoids. Its Boolean
algebra of idempotents is isomorphic to the power set Boolean algebra
P(X). If X is finite with n elements then we denote the symmetric in-
verse monoid on an n-element set by In.

(2) Groups with zero adjoined. We denote these by G0. These may look like
chimeras but they are honest-to-goodness Boolean inverse monoids whose
Boolean algebra of idempotents is isomorphic to the 2-element Boolean
algebra.

(3) Rn the set of all n×n rook matrices [29]. These are all n×n matrices over
the numbers 0 and 1 such that each row and each column contains at most
one non-zero entry. In fact, Rn is isomorphic to In.

(4) Rn(G0) the set of all n×n rook matrices over a group with zero [23]. These
are all n× n matrices over the group with zero G0 in which each row and
each column contains at most one non-zero entry.
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