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I shall assume familiarity with Lecture 1.

Recall that in an inverse semigroup S the elements a and b having

an upper bound implies that a and b are compatible.

Define a and b to be compatible, denoted by a ∼ b, if and only if

a−1b and ab−1 are idempotents. Being compatible is therefore a

necessary condition for a pair of elements to have a join.
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1. Basic definitions

• An inverse semigroup is said to have finite (resp. infinite)
joins if each finite (resp. arbitrary) compatible subset has a
join.

• An inverse semigroup is said to be distributive if it has finite
joins and multiplication distributes over such joins.

• An inverse monoid is said to be a pseudogroup if it has infinite
joins and multiplication distributes over such joins.

Pseudogroups are the correct abstractions of pseudogroups of
transformations.
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This leads us to think of inverse semigroup theory from a lattice-

theoretic perspective.

An inverse semigroup is a meet-semigroup if has has all binary

meets.

A distributive inverse semigroup is said to be Boolean if its semi-

lattice of idempotents forms a (generalized) Boolean algebra.
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Summary

Commutative Non-commutative

Meet semilattice Inverse semigroup

Frame Pseudogroup

Distributive lattice Distributive inverse semigroup

Boolean algebra Boolean inverse semigroup

Boolean inverse meet-semigroup
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2. Motivation

This work draws on a number of sources:

• The idea of a non-commutative space.

• The 1980 book by Renault on the relationship between topological groupoids
and C∗-algebras.

• Paterson’s 1999 book on groupoids, inverse semigroups and operator
algebras.

• Work in the late 90’s by Johannes Kellendonk on tiling semigroups as
mediated by Daniel Lenz.

• Birget’s semigroup approach to constructing the Thompson groups.

• The work of Charles Ehresmann.

• Frame theory as described in Peter Johnstone’s book.

• The quantale theory of Pedro Resende.
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In concrete terms, this leads us to regard inverse semigroups (of various
complexions) as being non-commutative generalizations of lattices (of various
complexions).

There are various applications of this approach:

1. Topos theory and pseudogroups.

2. Constructing Thompson-Higman type groups.

3. Constructing C∗-algebras from inverse semigroups.

In what follows, I shall focus on Boolean inverse monoids.
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3. Generalities on Boolean inverse monoids

An inverse monoid is Boolean if it satisfies the following three

conditions:

1. Compatible pairs of elements have all binary compatible joins:

we write a ∨ b for the join of a and b.

2. Multiplication distributes over such joins: so c(a∨ b) = ca∨ cb
and (a ∨ b)c = ac ∨ bc.

3. The set of idempotents E(S) of S forms a Boolean algebra

with respect to the usual order.
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It is useful to define the extent of a, denoted by e(a), to be
d(a) ∨ r(a).

We say a and b are orthogonal, denoted by a ⊥ b, if d(a)d(b) = 0
and r(a)r(b) = 0. In terms of partial bijections, this means that
domains and ranges are disjoint.

Orthogonal elements are compatible. We sometimes denote or-
thogonal joins by ⊕.

The complement of e in a Boolean algebra is denoted by ē.

The two-element Boolean algebra is denoted by B.

If a ≤ b in a Boolean inverse monoid define b\a = bd(a). Observe
that b = a⊕ (b \ a).
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Let S and T be Boolean inverse monoids.

A morphism θ : S → T is a semigroup homomorphism that pre-

serves identities and binary compatible joins.
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Boolean inverse monoids behave a lot like rings.

The join should be viewed as a partially defined addition.

We shall see later that we can form matrices over Boolean inverse

monoids.
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4. Examples of Boolean inverse monoids

Any group with an adjoined zero. We write these as G0.

The symmetric inverse monoids I(X) are Boolean inverse monoids

(see Lecture 1).

Boolean inverse monoids arise naturally as soon as you are in-

terested in embedding inverse monoids in rings.

Theorem [Lawson-Paterson] Let S be an inverse submonoid

with zero of the multiplicative monoid of a ring R. Then there

is a Boolean inverse submonoid S′′ such that S ⊆ S′′ ⊆ R.
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Every inverse monoid with zero gives rise to a Boolean inverse

monoid.

Theorem [Booleanization/Lawson] Let S be an inverse monoid

with zero. Then there is a Boolean inverse monoid B(S) and

an embedding β : S → B(S) such that if θ : S → T is an homo-

morphism to a Boolean inverse monoid then there is a unique

morphism γ : B(S)→ T such that θ = βγ.
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Let S be a Boolean inverse monoid. An n× n rook matrix over
S is an n× n matrix whose entries are drawn from S with only a
finite number of non-zero entries such that if a and b are in the
same row then r(a) ⊥ r(b) and if they are in the same column
then d(a) ⊥ d(b). Denote the set of all n× n rook matrices over
S by Mn(S). If n is countably infinite we write Mω(S); we shall
use this case in Lecture 4.

Lemma When n is finite, Mn(S) is a Boolean inverse monoid
for matrix multiplication when sums are replaced by joins. The
inverse of a rook matrix A is denoted by A∗ and is the transpose
of A with all entries inversed. The idempotents are the diagonal
rook matrices whose diagonal entries are idempotents. Mω(S) is
a Boolean semigroup rather than a Boolean monoid.

Our use of the term ‘rook matrix’ generalizes that of Solomon.
Here, ‘rook’ is the alternative name for a ‘castle’ in chess.
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5. Additive ideals in Boolean inverse monoids

A non-empty subset I ⊆ S is called an additive ideal if it is a

semigroup ideal closed under binary compatible joins. We call

{0} the trivial additive ideal.

Let θ : S → T be a morphism between Boolean inverse monoids.

Define the kernel of θ, denoted by ker(θ), to be all the elements

of S that map to zero. Kernels are additive ideals.

15



Although Boolean inverse monoids behave like rings in many

ways, one has to be careful with morphisms. The following

result is a warning.

Lemma Let θ : S → T be a morphism between Boolean in-

verse monoids. Then the kernel of θ is trivial if and only if θ

is idempotent-separating.
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If I is an additive ideal on S, then we can define a congruence ≡I
on S by a ∼I b if and only if there is c ≤ a, b such that a\c, b\c ∈ I.

Then S/I = S/ ∼I is a Boolean inverse monoid and the natural

map is a morphism.

Not all morphisms are induced by additive ideals.

Lemma A morphism θ : S → T is induced by an additive ideal

if and only if it is weakly-meet-preserving meaning that if t ≤
θ(a), θ(b) then there exists c ≤ a, b such that t ≤ θ(c).
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We say that a Boolean inverse monoid is 0-simplifying if the only

additive ideals are {0} and S, itself.

We say that a Boolean inverse monoid is simple if it is 0-simplifying

and fundamental. This is justified by the following lemma.

Lemma Let S be a simple Boolean inverse monoid. If θ : S → T

is a surjective morphism then θ is an isomorphism.

An inverse semigroup with zero is said to be 0-simple if the

only ideals are {0} and S itself. A Boolean inverse monoid is

congruence-free if it is 0-simple and fundamental.
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6. Infinitesimals in Boolean inverse monoids

A typical element of In can be written as a join (in fact, an

orthogonal join) of elements of the form

(
x
y

)
and elements of

the form

(
x
x

)
. The latter are idempotents, whereas the former

are examples of the following concept.

A non-zero element a in a Boolean inverse semigroup is called

an infinitesimal if a2 = 0.
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Infinitesimals are important because they can be used to build

units.

Lemma Let a be an infinitesimal in a Boolean inverse monoid.

Then g = a ∨ a−1 ∨ e(a) is an involution.

The Boolean inverse monoids that do not contain infinitesimals

are very special.

Lemma A Boolean inverse monoid has no infinitesimals if and

only if all its idempotents are central.
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Lemma A Boolean inverse monoid is fundamental if and only if

every non-idempotent is above an infinitesimal.

We say that a Boolean inverse monoid is basic if every element

is a join of a finite number of infinitesimals and an idempotent.

Finite direct products of finite symmetric inverse monoids are

basic.

A Boolean inverse monoid is said to be piecewise factorizable if

each element has the form
∨m
i=1 giei where the gi are units and

the ei are idempotents.

Lemma Basic Boolean inverse monoids are fundamental meet-

monoids which are piecewise factorizable.
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7. Finite Boolean inverse monoids

It is a feature of semigroup theory that the finite members of a

class are usually hard to describe.

This is not true of finite Boolean inverse monoids.

Their theory can be developed in an entirely elementary way

by generalizing the classical structure theory of finite Boolean

algebras.
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Recall that an atom in a partially ordered set (with zero) is an

element a such that b ≤ a implies that b = 0 or b = a.

Theorem Let S be a finite Boolean inverse monoid.

1. The set of atoms G of S forms a groupoid under the restricted

product and S ∼= K(G), the local bisections of G.

2. S is fundamental if and only if G is a principal groupoid.

3. S is 0-simplifying if and only if G is a connected groupoid.
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Theorem Let S be a finite Boolean inverse monoid.

1. S is isomorphic to a finite direct product S1× . . .×Sm where

each Si is a 0-simplifying Boolean inverse monoid.

2. S is fundamental if and only if S ∼= In1 × . . . × Inm for some

n1, . . . , nm. We call such Boolean inverse monoids matricial.

3. S is simple if and only if S ∼= In for some n.
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Two insights emerge from these results.

The groups of units of the finite simple Boolean inverse monoids

are the finite symmetric groups. We therefore regard the groups

of units of the infinite simple Boolean inverse monoids as infinite

generalizations of the finite symmetric groups.

The matricial Boolean inverse monoids are analogous to the

finite-dimensional C∗-algebras: where finite replaces finite-dimensional

and B replaces C.
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We can use the rook matrices introduced earlier to describe finite Boolean
inverse monoids.

Theorem Let S be a finite Boolean inverse monoid.

1. S is isomorphic to a finite direct product

Mn1(G
0
1)× . . .×Mnm(G0

m)

where G1, . . . , Gm are finite groups, and if G is a group then G0 is that
group with an adjoined zero.

2. S is fundamental if and only if

S ∼= Mn1(B)× . . .×Mnm(B),

where B is the two-element Boolean algebra, and for some n1, . . . , nm.

3. S is simple if and only if S ∼= Mn(B) for some n.
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8. The dichotomy theorem for Boolean inverse monoids

A Boolean inverse monoid is said to be atomless if it contains
no atoms.

We call the following the Dichotomy Theorem.

Theorem Let S be a simple Boolean inverse monoid. Then
there are exactly two possibilities:

1. S ∼= In for some n.

2. S is atomless.

There is exactly one countable atomless Boolean algebra which
we call the Tarski algebra.
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Let S be a Boolean inverse monoid. An idempotent e is said

to be properly infinite if there are elements x and y such that

d(x) = e = d(y), r(x), r(y) ≤ e and r(x) ⊥ r(y).

A Boolean inverse monoid is said to be purely infinite if every

non-zero idempotent is properly infinite. The following is simply

the inverse monoid version of Proposition 4.11 of Matui:

[M]: H. Matui, Topological full groups of one-sided shifts of finite

type, J. Reine Angew. Math. 705 (2015), 35–84.

Lemma Let S be an atomless Boolean inverse monoid. Then it

is 0-simple if and only if it is 0-simplifying and purely infinite.
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The following is Theorem 4.16 of [M] translated into our lan-

guage.

Theorem Let S be an atomless Boolean inverse monoid. If it is

congruence-free then the derived subgroup of its group of units

of S is simple.

How to translate from the language of étale groupoids (used by

Matui) into the language of Boolean inverse monoids is described

in the next lecture.
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The following are now interesting questions:

Research Question 1: Classify the countably infinite simple

Boolean inverse monoids.

Research Question 2: Describe the groups of units of the

countably infinite simple Boolean inverse monoids. Classical

groups often arise as groups of units of rings. The Classical

Thompson groups Vn arise as the groups of units of countably

infinite simple Boolean inverse monoids.
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