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Abstract. In this article, we define étale groupoids and describe some of their

properties.

1. Generalities

1.1. Categories. A category is usually regarded as a ‘category of structures’ of
some kind, such as the category of sets or the category of groups. A (small) category
can, however, also be regarded as an algebraic structure; that is, as a set equipped
with a partially defined binary operation satisfying certain axioms. We shall need
both perspectives but in this article the latter perspective will be foremost. This
algebraic approach to categories was an important ingredient in Ehresmann’s work
[1] and applied by Philip Higgins to prove some basic results in group theory [3].
In addition, groupoids have come to play an important role in constructing C∗-
algebras [5, 6].

To define the algebraic notion of a category, we begin with a set C equipped with
a partial binary operation. We write ∃ab to mean that the product ab is defined.
An identity in such a structure is an element e such that if ∃ae then ae = a and
if ∃ea then ea = a. A category is a set equipped with a partial binary operation
satisfying the following axioms:

(C1): ∃a(bc) if and only if ∃(ab)c and when one is defined so is the other and
they are equal.

(C2): ∃abc if and only if ∃ab and ∃bc.
(C3): For each a there is an identity e, perforce unique, such that ∃ae, and

there exists an identity f , perforce unique, such that ∃fa. I shall write
d(a) = e and r(a) = f and draw the picture

f
a←− e.

The set of all elements from e to f is called a hom-set and denoted hom(e, f).

You can check that ∃ab if and only if d(a) = r(b).

Example 1.1. A category with one identity is a monoid. Thus, viewed in this
light, categories are ‘monoids with many identities’.

1.2. Groupoids. Before we define groupoids, we define inverse semigroups whose
theory shadows that of groupoids. These semigroups will be the subject of a detailed
account in the third article. A semigroup S is said to be inverse if for each s ∈ S
there exists a unique element s−1 such that s = ss−1s and s−1 = s−1ss−1.

Example 1.2. The first example of an inverse semigroup is I(X), the symmetric
inverse monoid on the set X. This consists of all bijections between subsets of X
with composition being composition of partial functions.

An element a of a category is said to be invertible if there exists an element b
such that ab and ba are identities. If such an element b exists it is unique and is
called the inverse of a; we denote the inverse of a when it exists by a−1. A category
in which every element is invertible is called a groupoid.
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Example 1.3. A groupoid with one identity is a group. Thus groupoids are ‘groups
with many identities’.

Example 1.4. A set can be regarded as a groupoid in which every element is an
identity.

Example 1.5. Equivalence relations can be regarded as groupoids. They corre-
spond to principal groupoids; that is, those groupoids in which given any identities

e and f there is at most one element g of the groupoid such that f
a←− e. A

special case of such groupoids are the pair groupoids, X ×X, which correspond to
equivalence relations having exactly one equivalence class.

Example 1.6. Let G ×X → X be a left group action of the group G on the set
X. We can construct a groupoid GnX, called a transformation groupoid,

We shall need the following notation for the maps involved in defining a groupoid
(not entirely standard). Define d = g−1g and r(g) = gg−1. Put

G ∗G = {(g, h) ∈ G×G : d(g) = r(h)}
and if U, V ⊆ G, define U ∗ V = (U × V ) ∩ (G ∗ G). Define m : G ∗ G → G by
(g, h) 7→ gh and i : G → G by g 7→ g−1. The set of identities of G is denoted
by Go. If e is an identity in G then Ge is the set of all elements a such that
a−1a = e = aa−1. We call this the local group at e. Put Iso(G) =

⋃
e∈Go

Ge. This
is called the isotropy groupoid of G.

We now show how to construct all groupoids. Let G be a groupoid. We say
that elements g, h ∈ G are connected, denoted g ≡ h, if there is an element x ∈ G
such that d(x) = d(h) and r(x) = d(g). The ≡-equivalence classes are called the
connected components of the groupoid. If ∃gh then necessarily g ≡ h. It follows
that G =

∐
i∈I Gi where the Gi are the connected components of G.

It remains to describe the structure of all connected groupoids. Let X be a non-
empty set and let H be a group. The set of triples X ×H ×X becomes a groupoid
when we define (x, h, x′)(x′, h′, x′′) = (x, hh′, x′′) and (x, h, y)−1 = (y, h−1, x). It
is easy to check that X × H × X is a connected groupoid. Now let G be an
arbitrary groupoid. Choose, and fix, an identity e in G. Denote the local group at
e by H. For each identity f in G choose an element xf such that d(xf ) = e and
r(xf ) = f . Put X = {xf : f ∈ Go}. We prove that G is isomorphic to X ×H ×X.

Let g ∈ G. Then x−1r(g)gxd(g) ∈ H. Define a map from G to X × H × X by

g 7→ (xr(g), x
−1
r(g)gxd(g), xd(g)). It is easy to show that this is a bijective functor.

1.3. Partial bisections on groupoids. The key definition needed to relate groupoids
and inverse semigroups in our non-commutative generalization of Stone duality is
the following. A subset A ⊆ G is called a partial bisection if A−1A,AA−1 ⊆ Go.

Lemma 1.7. A subset A ⊆ G is a partial bisection if and only if a, b ∈ A and
d(a) = d(b) implies that a = b and r(a) = r(b) implies that a = b.

Proof. Suppose that A is a partial bijection. Let a, b ∈ A such that d(a) = d(b).
Then the product ab−1 exists and, by assumption, is an identity. It follows that
a = b. A similar argument shows that if a, b ∈ A are such that r(a) = r(b) then
a = b. We now prove the converse. We prove that A−1A ⊆ Go. Let a, b ∈ A and
suppose that a−1b is exists. Then r(a) = r(b). By assumption, a = b and so a−1b
is an identity. The proof that AA−1 ⊆ Go is similar. �

The next result tells us how to construct an inverse monoid from a groupoid.

Proposition 1.8. The set of all partial bisections of a groupoid forms an inverse
monoid under subset multiplication.
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Proof. Let A and B be partial bisections. We prove that AB is a partial bisection.
We calculate (AB)−1AB. This is equal to B−1A−1AB. Now A−1A is a set of
identities. Thus B−1A−1AB ⊆ B−1B. But B−1B is a set of identities. It follows
that (AB)−1AB is a set of identities. By a similar argument we deduce that
AB(AB)−1 is a set of identities. We have therefore proved that the product of
two partial bisections is a partial bisection. Since Go is a partial bisection, we
have proved that the set of partial bisections is a monoid. Observe that if A is a
partial bisection, then A = AA−1A and A = A−1AA−1. Suppose that A2 = A.
Then a = bc where b, c ∈ A. But d(a) = d(c), and so a = c, and r(a) = r(b),
and so a = b. It follows that a = a2. But the only idempotents in groupoids are
identities and so a is an identity. We have show that if A2 = A then A ⊆ Go. It is
clear that if A ⊆ Go then A2 = A. We have therefore proved that the idempotent
partial bisections are precisely the subsets of the set of identities. Suppose that
A = ACA and C = CAC. We prove that C = A−1. Observe that AC and CA
are idempotents. Thus both are subsets of the set of identities. Let c ∈ C. Then
c = c′ac′′ for some c′, c′′ ∈ C and a ∈ A. Now d(c) = c′′. Thus c = c′′. Similarly,
c = c′. Thus c = cac. It follows that c = a−1 and so C ⊆ A−1. Let a ∈ A. Then by
a similar argument to the above, a = aca for some c ∈ C. It follows that a−1 = c.
This prove that A−1 ⊆ C. We have therefore proved that C = A−1, and so proved
the claim. �

A subset A ⊆ G of a groupoid is called a bisection if

A−1A,AA−1 = Go.

The following is immediate by Proposition 1.8 and tells us that we may also con-
struct groups from groupoids.

Corollary 1.9. The set of bisections is just the group of units of the inverse monoid
of all partial bisections.

The following example is important in motivating the theory of topological full
groups of étale groupoids.

Example 1.10. The inverse monoid of partial bisections of the pair groupoid X×X
is isomorphic with the symmetric inverse monoid on X, and the group of bisections
of the pair groupoid X × X is isomorphic with the symmetric group on X. It is
straightforward to check that there is a bijection between the partial bisections in
the groupoid X × X and the set of partial bijections on the set X which induces
a bijection between the set of bisections in the groupoid X × X and the set of
bijections on the set X. It can be checked that composition of partial bisections
agrees with composition of bijections.

2. Etale topological groupoids

This section is based on [2, 5, 7].
Just as we can study topological groups, so we can study topological groupoids.

A topological groupoid is a groupoid G equipped with a topology, and Go is equipped
with the subspace topology, such that the maps d, r, i,m are all continuous func-
tions where d, r : G→ Go and m : G ∗G→ G. Clearly, it is just enough to require
that m and i are continuous. Observe that i is actually a homeomorphism.

A topological groupoid is said to be open if the map d is an open map; it is
said to be étale if the map d is a local homeomorphism. Recall that every local
homeomorphism is an open map and so étale groupoids are open groupoids.

Lemma 2.1. Let G be a topological space. If Go is an open subset then the open
partial bisections form a basis for the topology.
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Proof. Since m is continuous, m−1(Go) is an open subset of G ∗G. It follows that
m−1(Go) =

(⋃
i∈I Ui × Vi

)
∩ (G ∗ G), for some open sets Ui, Vi ⊆ G where i ∈ I,

using the description of the product topology. Observe that UiVi ⊆ Go for each
i ∈ I. Let g ∈ G. Then (g−1, g) ∈ G ∗ G and m(g−1, g) = g−1g ∈ Go. Thus
(g−1, g) ∈ Ui × Vi for some i ∈ I. Put X = U−1i ∩ Vi, an open set containing
g. Then X−1X ⊆ Go. By a symmetric argument, we can find an open set Y
containing g such that Y Y −1 ⊆ Go. Put A = X ∩ Y . Then A is an open set that
contains g and is a partial bisection by construction. �

Lemma 2.2. Let G be a topological groupoid. If d : G→ Go is a local homeomor-
phism then Go is an open subset of G.

Proof. Let e ∈ Go. Then, of course, e ∈ G. Since d is a local homeomorphism, there
is an open set e ∈ A in G and an open set e ∈ B in Go such that (d|A) : A → B
is a homeomorphism. Put B′ = A ∩ B. Then e ∈ B′ and B′ is an open subset of
B. It follows that A′ = (d|A)−1(B′) = d−1(B′) ∩A is an open set in G. It is easy
to check that B′ ⊆ A′. But d is the identity function on B′ and d restricts to a
bijective map from A′ to B′. It follows that A′ = B′ and so e ∈ A′ ⊆ Go, where A′

is open in G. It follows that Go is an open subset of G. �

Lemma 2.3. Let G be a topological groupoid. If d : G→ Go is a local homeomor-
phism then m is an open map.

Proof. By Lemma 2.2 and Lemma 2.1, we know that the open partial bisections
form a basis for the topology. Since d is a local homeomorphism so too is r using
the fact that i is a homeomorphism. Let A,B ⊆ G be open sets. Then A ∗ B =
(A×B)∩ (G ∗G) is an open set. We prove that m(A ∗B) = AB is also open from
which it follows that m is an open map. Let (u, v) ∈ A ∗B. Then uv ∈ AB. There
is an open partial bisection W such that uv ∈ W . It follows that there is an open
neighbourhood Z of r(uv) such that (r|W ) : W → Z is a homeomorphism. From
the fact that m is continuous, there are open sets U, V ⊆ G such that u ∈ U , v ∈ V
and UV ⊆ W . We may assume that U ⊆ A and V ⊆ B. We can also assume that
U ⊆ d−1r(V ); this simply means that each element of U has a product with some
element of V . Then r(UV ) = r(U) is an open neighbourhood of r(uv) contained in
Z. Since W is a partial bisection, we have that UV = r−1r(UV ) ∩W . But this is
an open neighbourhood of uv in UV . It follows that AB is open. �

Lemma 2.4. Let G be a topological groupoid. If m is open and Go is an open
subset then d is a local homeomorphism.

Proof. We prove first that d is open. Let U ⊆ G be an open set. We prove that
d(U) is an open subset of Go. The map i is a homeomorphism and so U−1 is open.
Thus U−1 × U is an open set in G × G. Thus U−1 ∗ U = (U−1 × U) ∩ (G ∗ G) is
an open set in G ∗G. It follows that m(U−1 ∗U) = U−1U is an open set in G and
so U−1U ∩ Go is an open set in Go. Observe that d(U) = U−1U ∩ Go. Thus d is
an open mapping.

We now prove that if d is open and Go is open then d is a local homeomorphism.
Let g ∈ G. Then by Lemma 2.1, there is an open partial bisection U such that
g ∈ U . The map d restricted to U gives rise to a bijection (d|U) : U → d(U). But
d is an open map and so (d|U) is a homeomorphism. It follows that d is a local
homeomorphism. �

The obvious question is why should étale groupoids be regarded as a nice class
of topological groupoids? The following theorem gives us one reason. We need a
little notation: if X is a topological space denote its lattice of open sets by Ω(X).
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Theorem 2.5 (Resende [7]). Let G be a topological groupoid. Then G is étale if
and only if Ω(G) is a monoid under subset multiplication.

Proof. Suppose that G is étale. Then by Lemma 2.3, the map m is open and so
Ω(G) is closed under subset multiplication. By Lemma 2.2, the set Go is open
and this is the identity for subset multiplication. It follows that Ω(G) is a monoid.
To prove the converse, assume that Ω(G) is a monoid under subset multiplication.
This implies that m is an open map and that Go is open and so by Lemma 2.4, it
follows that d is a local homeomorphism and so G is étale. �

We may paraphrase the above theorem by saying that étale groupoids are those
topological groupoids that have an algebraic alter ego.

Recall that a Boolean space is a 0-dimensional, compact Hausdorff space. We say
that an étale topological groupoid is Boolean if its space of identities is a Boolean
space. Thus Boolean groupoids generalize Boolean spaces since a Boolean space
is a Boolean groupoid consisting entirely if identities. We shall regard Boolean
groupoids as being non-commutative Boolean spaces.

If we combine Theorem 2.5 and Proposition 1.8, we have the following.

Theorem 2.6. Let G be an étale topological groupoid. Then the set of all open
partial bisections forms an inverse monoid.

There are now two, related paths that one may now take. Our path will be that of
inverse semigroups and, in particular, inverse semigroups of open partial bisections.
The second path is to take the monoid Ω(G) as the fundamental structure. This
leads to a class of quantales called inverse quantal frames. These are the subject of
[8]. Intuitively, Ω(G) can be regarded as the quantale of (abstract) binary relations
associated with the inverse monoid of open partial bisections.
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