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Abstract. We characterise in terms of Zappa-Szép products a class of semi-
groups which arise from actions of groupoids on semigroups constructed from
subshifts of graphs.

1. Introduction

Before describing the particular questions addressed in this paper, I want to
begin by setting the scene. The ‘homological classification of monoids’ is a phrase
that refers to the use of actions of monoids to classify monoids. It goes back to
Skornjakov’s paper [16] and is the subject of [6], a book which is the bible for this
area of research. There are many homological properties that are of interest, but
I want to focus on just one in this introduction, and that property is projectivity.
Projectivity can be used to define classes of monoids in the following way. Recall
that if I is a right ideal of a monoid S then there is a right monoid action I×S → I.
Accordingly, the following definitions make sense:

• A monoid is said to be right PP if all its principal right ideals are projec-
tive.

• A monoid is said to be right semihereditary if all its finitely generated
right ideals are projective.

• A monoid is said to be right hereditary if all its right ideals are projective.

The study of monoids defined in this way was initiated by Dorofeeva [2] and Kilp
[5], who obtained some important first results on their structure. In particular,
Dorofeeva showed [2] that a monoid is right semihereditary iff it is right PP and
incomparable principle right ideals are disjoint, and right hereditary iff it is right
semihereditary and has the ACC for principal right ideals. The detailed study of
classes of right PP monoids was taken up by John Fountain in England. The start-
ing point of Fountain’s work is a very neat characterisation of right PP monoids.
Define the relation L∗ on a semigroup S by aL∗b iff for all elements x, y ∈ S1 we
have that ax = ay ⇔ bx = by. The relation R∗ is defined dually. Both relations
are equivalence relations. Using this notation, Fountain [3] showed that a monoid
is right PP if and only if each L∗-class contains an idempotent. A semigroup with
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this property is said to be right abundant; left abundant semigroups are defined
dually, and abundant semigroups are those which are both left and right abundant
[4]. In particular, the right PP monoids are precisely the right abundant monoids.
The significance of these characterisations is that they show an analogy between
abundant semigroups and regular semigroups, because regular semigroups can be
characterised as those semigroups in which each L-class contains an idempotent
(equivalently, in which each R-class contains an idempotent).

Clearly, we would like to say something about the structure of classes of abun-
dant semigroups. Fountain’s characterisation has provided one fruitful avenue of
research by directing us to look for generalisations of results from classes of regular
semigroups to classes of abundant semigroups. However, I would like to suggest an
alternative approach that will lead naturally to the actual subject matter of this
paper. Consider the monoids of each of our three classes which contain a single
idempotent: this is a natural special case to focus on given the description of right
PP monoids in terms of the L∗-relation. A right PP monoid with a single idempo-
tent is precisely a left cancellative monoid. Thus the theory of right PP monoids is
a generalisation of the theory of left cancellative monoids. It is hard to say anything
about left cancellative monoids in general so instead I am now going to concentrate
on the right hereditary monoids with a single idempotent and then single out a
subclass of such monoids in which the ACC is strengthened by the condition that
each element is contained in only a finite number of principal right ideals. I call
right hereditary monoids of this type left Rees monoids.1 Remarkably, left Rees
monoids can be described in more detail: there is a correspondence, originating
in the work of Rees and Perrot, between left Rees monoids and self-similar group
actions [12]. Self-similar group actions are defined in [14] and consist of a group
acting in a particular way on a free monoid. Such actions are, in fact, of a kind
arising in the theory of Zappa-Szép products [1, 8]. Thus the correspondence is
equivalent to a structural description of left Rees monoids as Zappa-Szép products
of free monoids and groups. This success suggests that we try to study the structure
of generalisations of right hereditary monoids in a similar way. This paper will not
do this exactly, but it is very much in the spirit of this idea.

The actual goal of this paper is to generalise the correspondence between left
Rees monoids and self-similar group actions in as direct a way as possible. To carry
out this generalisation, we therefore need to do two things: generalise groups and
generalise free monoids. The generalisation of groups is easy: we simply replace
them by groupoids, where by a groupoid I mean a small category in which every ele-
ment is an isomorphism. How to generalise free monoids was suggested by Krieger’s
paper [7] and my own on one-dimensional tiling semigroups [11]. The semigroups
in question are defined in Section 2. We will return to abundant semigroups at the
end of the paper.

2. A class of semigroups constructed from free categories

We distinguish between semigroups and monoids, the latter being semigroups
with an identity. The group of a units of a monoid is the group of invertible
elements in the monoid. We shall say that a monoid is unit-free if the only invertible
element is the identity. Idempotents are elements equal to their square. The set of

1In a left cancellative monoid, the condition that incomparable principal right ideals be
disjoint is equivalent to the semigroup being equidivisible. See [12].
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idempotents of a semigroup S is denoted by E(S). An element a in a semigroup S
is said to be regular if there is an element b such that a = aba and b = bab. The
element b is called an inverse of a. The set of regular elements in S is denoted by
Reg(S). Clearly, E(S) ⊆ Reg(S). If E(S) = Reg(S) we shall say that the set of
regular elements is trivial. A semigroup in which all elements are regular is said to
be regular. An inverse semigroup is a regular semigroup in which the idempotents
commute. If e and f are idempotents we define e ≤ f iff e = ef = fe. This is a
partial order. A semigroup with zero is said to be primitive if e ≤ f where f is a
non-zero idempotent implies that e = 0 or e = f . Primitive inverse semigroups are
isomorphic to groupoids with a zero adjoined; see Theorem 3.3.4 of [10] for a proof.
In semigroups we can talk about left and right ideals, and ideals, and principal left
and right ideals. Given an ideal I in a semigroup we can form its quotient S/I.

An important role will be played in this paper by semigroups with zero which
satisfy the following two conditions. A semigroup S has left and right identities if
for each non-zero a ∈ S there is a unique idempotent a∗ such that aa∗ = a and
a unique idempotent a+ such that a+a = a. A semigroup satisfies the idempotent
condition if whenever e and f are distinct idempotents ef = 0. For the purposes
of this paper, I shall refer to semigroups satisfying these two conditions as arrow
semigroups; I shall explain this terminology below. A semigroup with zero is said
to be categorical at zero if ab 6= 0 and bc 6= 0 implies that abc 6= 0.

Lemma 2.1. Let S be an arrow semigroup.

(1) If ab 6= 0 then a∗ = b+.
(2) S is categorical at zero iff a∗ = b+ ⇔ ab 6= 0.

Proof. (1) Suppose that ab 6= 0 and a∗ 6= b+. By the idempotent condition
a∗b+ = 0. Thus ab = a(a∗b+)b = 0, a contradiction.

(2) Suppose that S is categorical at zero. Let a∗ = b+ = e. Then ae 6= 0 and
eb 6= 0 giving aeb = ab 6= 0. The converse is proved in (1) above.

Suppose now that a∗ = b+ implies that ab 6= 0. Let ab 6= 0 and bc 6= 0. Then
a∗ = b+ and b∗ = c+ by (1) above. Now ab is non-zero and (ab)b∗ = ab and so
(ab)∗ = b∗. But b∗ = c+, and so (ab)∗ = c+. By assumption, (ab)c is non-zero. �

Categories play a big role in this paper. For us, categories are algebraic struc-
tures generalising monoids. To make this precise, we need some definitions. Let C
be a set equipped with a partially defined binary operation. We write ∃ab if the
product of a and b is defined. An element e ∈ C is said to be an identity if ∃ea
implies that ea = a and ∃be implies that be = b. A category, C, in the sense we use
the term in this paper, is a set C equipped with a partially defined binary operation
such that for each a ∈ C there exist unique identities a∗ and a+ such that ∃aa∗ and
∃a+a; the partial product ab exists iff a∗ = b+, and if it is defined (ab)∗ = b∗ and
(ab)+ = a+; finally, the product is associative wherever it is defined. A category
with exactly one identity is a monoid.

Lemma 2.2. Let S be an arrow semigroup which is categorical at zero. On the
set S∗ = S \ {0} define a partial product by ab is defined iff a∗ = b+. Then S∗ is a
category.

Proof. Regard a as an arrow starting at a∗ and finishing at a+. If ab is de-
fined then (ab)∗ = b∗ and (ab)+ = a+. The fact that we have a category is now
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clear. �

We can now explain the terminology of arrow semigroup. We regard each
non-zero element a ∈ S of an arrow semigroup as being an arrow

a+ a
←− a∗

where we regard a∗ as the source or domain of a and a+ as the target or codomain.
If ab 6= 0 then the domain of a is equal to the codomain of b, but the converse is not
true in general. The converse is true, however, by Lemma 2.1, when the semigroup
is categorical at zero and by Lemma 2.2 this then gives us a category structure on
the set of non-zero elements. We can now see that arrow semigroups are just a way
of handling structures a little more general than categories (with the proviso that
the only idempotents are identities). In fact, underlying an arrow semigroup is a
precategory in the sense of Schröder [15].2

A monoid with exactly one idempotent is an arrow semigroup. In this case, the
regular elements are precisely the units.

Lemma 2.3. In an arrow semigroup the regular elements form a subsemigroup
which is a primitive inverse semigroup.

Proof. We begin with an observation. Let a be a non-zero regular element.
Then there is an element a′ such that a = aa′a and a′ = a′aa′. The element a′a is
an idempotent such that a(a′a) = a. The semigroup has left and right idempotents,
and so it follows that a∗ = a′a. Similarly aa′ = a+.

Let a and b be regular elements. If ab = 0 then we are done. Suppose therefore
that ab 6= 0. Since ab = aa∗b+b, we clearly have a∗b+ 6= 0 and so a∗ = b+ by
the idempotent condition. Let a′ and b′ be such that a = aa′a and a′ = a′aa′ and
b = bb′b and b′ = b′bb′. We calculate

ab(b′a′)ab = a(bb′)(a′a)b = ab+a∗b = aa∗b+b = ab.

Similarly (b′a′)ab(b′a′) = b′a′. Thus ab is regular with inverse b′a′. It follows
that Reg(S) is a subsemigroup. By assumption, the idempotents commute and so
Reg(S) is inverse. We are given that the idempotents are primitive. It follows that
Reg(S) is a primitive inverse semigroup. �

It follows from the proof of the above lemma that in an arrow category the
inverse of a regular element is unique. We denote the unique inverse of g by g−1.
Hence if g is regular then g∗ = g−1g and g+ = gg−1. Thus the set of regular
elements of an arrow semigroup is the analogue of the group of units. We noted
above that primitive inverse semigroups are groupoids with an adjoined zero. Thus
we essentially replace groups by groupoids.

We have seen that in an arrow semigroup, we cannot in general decide when
the product of two elements is zero. However, if one of the terms of the product
is regular then we can be more precise. The following lemma will turn out to be
crucial in Section 4.

Lemma 2.4. Let S be an arrow semigroup. Let g ∈ Reg(S) and let x ∈ S.
Then gx 6= 0 iff g−1g = x+, and xg 6= 0 iff x∗ = gg−1.

2Precategories with a zero adjoined are a little more general than our arrow semigroups, but
we shall not need that extra generality here.
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Proof. We prove the first result; the proof of the second is similar. One di-
rection is immediate by Lemma 2.1(1). To prove the other direction, suppose that
g−1g = x+ and gx = 0. Then g−1gx = 0 and so g−1g 6= x+, a contradiction. �

One bugbear of semigroup theory is that because semigroups need not have
zeros definitions often come in two flavours: those applied to semigroups, and those
applied to semigroups where we acknowledge the zero as a distinguished element.
It has been traditional within semigroup theory to designate these two flavours of
a definition by distinguishing between a ‘definition’ and a ‘0-definition’. I shall
follow this tradition here, although Krieger’s use of ‘definition’ versus ‘essentially
definition’ is less ugly. Definitions of left and right cancellative semigroups and
cancellative semigroups tout court are well-known. Let S be a semigroup with zero.
The semigroup S is 0-left cancellative if ab = ac 6= 0 implies that b = c. The
definitions of 0-right cancellative and 0-cancellative are similar. The semigroup S
is 0-equidivisible if ac = bd 6= 0 implies that there is a u ∈ S such that either a = bu
and uc = d, or b = au and c = ud.

Lemma 2.5. Let S be a 0-left cancellative semigroup. Then the following are
equivalent.

(1) If aS ∩ bS 6= {0} then aS ⊆ bS or bS ⊆ aS.
(2) S is 0-equidivisible.

In particular, if either condition holds then Sa ∩ Sb 6= {0} implies Sa ⊆ Sb or
Sb ⊆ Sa.

Proof. (1)⇒ (2). Let ac = bd 6= 0. Then aS∩bS 6= {0}. Thus by assumption
aS ⊆ bS or bS ⊆ aS. Suppose that the former holds. Then a = bu for some u ∈ S.
Hence buc = bd 6= 0. It follows by 0-left cancellation that uc = d. Hence S is
0-equidivisible. Suppose that the latter holds. Then b = au for some u ∈ S. Hence
ac = aud 6= 0. It follows by 0-left cancellation that c = ud.

(2) ⇒ (1). Suppose that aS ∩ bS 6= {0}. Then ac = bd 6= 0 for some c, d ∈ S.
By assumption, it follows that there is a u such that a = bu or b = au so that either
aS ⊆ bS or bS ⊆ aS.

The proof of the final claim is immediate. �

The following lemma is easy to prove; some of the cases were dealt with in [11].

Lemma 2.6. Let S be a semigroup and let I be an ideal of S.

(1) If S is 0-left cancellative so too is S/I.
(2) If S is 0-equidivisible so too is S/I.
(3) If S has only only trivial regular elements so too does S/I. �

A free monoid is the set of all strings A∗ over an alphabet A equipped with the
operation of concatenation. The empty string is denoted ε. There are a number of
abstract characterisations of free monoids [9], but the one that will be most useful
to us is: a monoid is free iff it is cancellative, equidivisible, unit-free and every
element is contained in only a finite number of principal right ideals. The maximal
proper principal right ideals are of the form aA∗ where a ∈ A. Thus the alphabet
A is finite iff there are only finitely many maximal proper principal right ideals.
However, the principal right ideal xA∗ properly contains xaA∗, and the principal
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left ideal A∗x properly contains A∗ax where a ∈ A is arbitrary. Thus in the free
monoid A∗ there are no minimal principal right ideals nor minimal principal left
ideals.

Subsets L of A∗ are called languages. A language is said to be factorial if
uv ∈ L implies that u, v ∈ L. Factorial languages arise, for example, in studying
1-dimensional tilings [11]. The language L in A∗ is factorial iff A∗ \ L is an ideal
in A∗. If I = A∗ \ L is an ideal then the quotient monoid A∗/I can be identified
with the set L with a zero adjoined. We call this the ‘obvious’ monoid associated
with L. By Lemma 2.6, such quotient monoids are 0-cancellative, 0-equidivisible,
unit free, and every element is contained in only a finite number of principal right
ideals. A language L ⊆ A∗ is prolongable if for all x ∈ L there exist non-empty
strings u and v such that uxv ∈ L. Prolongable, factorial languages correspond to
shift spaces [13]. A factorial language L is prolongable iff for all x ∈ L there exist
non-empty strings u and v such that ux, xv ∈ L. In the obvious monoid associated
with L this corresponds to the fact that there are no non-zero minimal principal
left or principal right ideals.

Free monoids A∗ are defined from sets A. Free categories G∗ are defined from
directed graphs G. The elements of G∗ are finite labelled paths in G. The empty
paths at each vertex correspond to identities defined by that vertex. If we adjoin
a zero to G∗ we get a semigroup with zero, which I will denote by (G∗)0. For
each non-zero element a ∈ (G∗)0 there are unique idempotents, being just the
identities of the category, which I’ll denote by a∗ and a+, such that a+a = a = aa∗.
The semigroup (G∗)0 is an arrow semigroup which is 0-cancellative, 0-equidivisible,
categorical at zero, and has trivial regular elements.

Following [7] we now emulate the theory of factorial languages in free monoids
for their analogues in free categories. A subset L ⊆ G∗ is said to be factorial if
xy ∈ L implies that x, y ∈ L. The complements of factorial subsets are ideals of
(G∗)0 and so we can form quotient semigroups. They are arrow semigroups which
are 0-cancellative, 0-equidivisible, and have trivial regular elements.

The following results will be proved as Theorem 4.5. We state them now to
show how the definitions above are related.

Theorem

(1) A semigroup with zero is isomorphic to an ideal quotient of a free category
with an adjoined zero if and only if it is a 0-cancellative, 0-equidivisible
arrow semigroup having trivial regular elements in which each non-zero
element belongs to only a finite number of principal right ideals.

(2) A semigroup with zero is isomorphic to a free category with an adjoined
zero if and only if it is a 0-cancellative, 0-equidivisible arrow semigroup
which is categorical at zero having trivial regular elements in which each
non-zero element belongs to only a finite number of principal right ideals.

�

3. Left Krieger semigroups

In this section, we shall introduce a class of semigroups generalising those of
[12]. Unlike the examples we have discussed so far, these semigroups will have
non-trivial sets of regular elements in general.
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Lemma 3.1. Let S be a 0-left cancellative arrow semigroup.

(1) If e = xy 6= 0 is an idempotent then yx is an idempotent and x is regular
with inverse y.

(2) Let a 6= 0. Then aS = bS iff a = bg where g is a regular element.
(3) aS = eS for some non-zero idempotent e iff a is regular.

Proof. (1) We have that x+e = x+xy = xy = e. Thus x+ = e. Similarly,
y∗ = e. Now

(yx)2 = y(xy)x = yex = yx+x = yx.

Thus yx is an idempotent. It is easy to check that xyx = x and yxy = y.
(2) Suppose that aS = bS. Then a = bx and b = ay. Thus a = ayx and so by

0-left cancellation a∗ = yx. Thus by (i) above, x is regular. Conversely, suppose
that a = bg where g is regular with inverse g−1. Then b∗ = gg−1 and a∗ = g−1g.
But ag−1 = bgg−1 = b, and so aS = bS.

(3) Suppose that aS = eS. Then by (2), we have that a = eg for some reg-
ular element g. Thus a is regular by Lemma 2.3. Conversely, if a is regular then
aS = aa−1aS ⊆ aa−1S ⊆ aS. Thus aS = aa−1S, as required. �

Lemma 3.2. Let S be a 0-left cancellative arrow semigroup. Then the maximal
principal right ideals are those generated by a non-zero idempotent (equivalently by
a non-zero regular element).

Proof. Observe that for any non-zero element a we have that aS ⊆ a+S,
because as = a+(as). It follows that if aS is maximal then aS = a+S; ob-
serve that this implies that a is regular by Lemma 3.1(3). Conversely, let e be
a non-zero idempotent. Suppose that eS ⊆ aS. Then e = ab for some b. Thus
a+e = a+ab = ab = e. It follows that e = a+. Thus eS ⊆ aS ⊆ eS. Hence
eS = aS, and so eS is maximal. �

The proof of the following is immediate by the above result.

Lemma 3.3. Let S be a 0-left cancellative 0-equidivisible arrow semigroup.
Then two maximal principal right ideals either have an intersection in zero or are
equal. �

A non-zero element a ∈ S is said to be indecomposable iff a = bc implies that
either a or b is regular. A principal right ideal aS is said to be submaximal if
aS 6= a+S and there are no proper principal right ideals between aS and a+S.

Lemma 3.4. Let S be a 0-left cancellative arrow semigroup. The non-regular
element a is indecomposable iff aS is submaximal.

Proof. Suppose that a is indecomposable, and that aS ⊆ bS. Then a =
bc. By assumption either b or c is regular. If c is regular then aS = bcS = bS
by Lemma 3.1(3). If b is regular then bS is a maximal principal right ideal by
Lemma 3.2. Thus aS is submaximal.

Conversely, suppose that aS is submaximal. Let a = bc. Then aS = bcS ⊆ bS.
By assumption either aS = bS or b is regular. If the latter we are done; suppose the
former. Then a = bg where g is regular by Lemma 3.1(2). By 0-left cancellation
c = g and so c is regular. It follows that a is indecomposable. �
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Lemma 3.5. Let S be a 0-left cancellative arrow semigroup. The set of regular
elements is trivial iff for all non-zero idempotents e we have that e = xy implies
that either x or y is idempotent.

Proof. Suppose that the set of regular elements is trivial. Let e be a non-zero
idempotent such that e = xy. Then by Lemma 3.1(1), x and y are both regular.
By assumption, they must be idempotents.

Conversely, suppose that for all non-zero idempotents e we have that e = xy
implies that either x or y is idempotent. If a is a regular element then it has an
inverse a′. Thus e = a′a is an idempotent. By assumption, either a′ or a is idem-
potent. But the set of regular elements forms an inverse semigroup by Lemma 2.3
and so a′ is idempotent iff a is idempotent. It follows that a is idempotent. Thus
the set of regular elements is trivial. �

We now come to our main definition. A left Krieger semigroup is a 0-left
cancellative 0-equidivisible arrow semigroup in which each non-zero element belongs
to only finitely many principal right ideals. A left Krieger monoid without zero is
called a left Rees monoid, such monoids were the subject of [12]. A semigroup
which is both a left and a right Krieger semigroup is called a Krieger semigroup.

Lemma 3.6. Let S be a left Krieger semigroup.

(1) If S is 0-right cancellative then Sa = Sb iff ga = b for some regular
element g.

(2) If S is 0-right cancellative then S is a Krieger semigroup.
(3) If S has trivial regular elements then S is 0-right cancellative.

Proof. (1) This is similar to the proof of Lemma 3.1(2).
(2) By Lemma 2.5, it is enough to prove that each non-zero element of S belongs

to only finitely many principal left ideals. Let a ∈ S be a non-zero element and
let {Sbi : i ∈ I} be the set of principal left ideals that a belongs to. Thus for
each i ∈ I there exists ci ∈ S such that a = cibi. It follows that a ∈ ciS. By
assumption, there are only a finite number of distinct such principal right ideals.
Using Lemma 3.1(2), we deduce that there are finitely many elements c1, . . . , cm

with the following property: for each ci, where i ∈ I, there is a cj , where 1 ≤ j ≤ m,
and a regular element gij such that ci = cjgij . Let j = 1 and consider all the i ∈ I
such that a = c1gi1bi. Then by 0-left cancellation and by (1) above, all the bi’s that
occur generate the same principal left ideal. We now repeat this argument for each
j such that 2 ≤ j ≤ m. It follows that the set {Sbi : i ∈ I} is finite, as required.

(3) Let yx = zx 6= 0. Without loss of generality we can assume that x is not
regular (because then it would be an idempotent and y = z would follow). Then
yS ∩ zS 6= {0}. Thus by Lemma 2.5, we have that yS ⊆ zS or zS ⊆ yS. With-
out loss of generality we assume the former. It follows that y = zw for some w.
Substituting back into our original equation we get zwx = zx 6= 0. Thus by left can-
cellation wx = x. It follows that for all r ≥ 1 we have that x = wrx. Thus x ∈ wrS
for all r ≥ 1. By assumption, the element x is contained in only a finite number of
principal right ideals. It quickly follows by Lemma 3.1(2) and the fact that the set
of regular elements is trivial that not all powers of w can be distinct. It follows from
this and 0-left cancellation that there is s ≥ 1 such that ws = w∗. Now y = zw
and so yws−1 = zws = zw∗ = z. Hence yS = zS. Thus from Lemma 3.1(2) and
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the fact that the regular elements are trivial, we deduce that y = z, as required. �

By the above lemma, it follows that Krieger semigroups are the left Krieger
semigroups which are also 0-right cancellative.

4. The structure of left Krieger semigroups

In this section, we shall show how left Krieger semigroups can be described in
terms of groupoids and left Krieger semigroups having trivial regular elements.

Theorem 4.1. Let S be a left Krieger semigroup. Let X be a transversal of
generators of the submaximal principal right ideals, and denote by X⋆ the subsemi-
group generated by X and E(S). Then

(1) The semigroup X⋆ is a left Krieger semigroup in which the set of regular
elements is trivial.

(2) Each non-zero element of S can be written uniquely as a product xg where
x ∈ X⋆ and g ∈ Reg(S).

Proof. (1) We prove that the only regular elements of X⋆ are the idempotents.
Suppose that x1 . . . xm is regular where each xi ∈ X. Then x1 . . . xmS is a maximal
principal right ideal. But x1 . . . xmS ⊆ x1S and so x1 . . . xmS = x1S. Thus x1 is
regular by Lemma 3.1, which is a contradiction.

To prove that X⋆ is 0-equidivisible, it is enough to prove that if x = yz where
x, y ∈ X⋆ then z ∈ X⋆. Let x = x1 . . . xm and y = y1 . . . yn where xi, yj ∈
X. Now x1 . . . xmS = y1 . . . ynzS and x1 . . . xmS ⊆ x1S and y1 . . . ynzS ⊆ y1S.
Thus x1S ∩ y1S 6= {0}, and so either x1S ⊆ y1S or vice-versa. But both are
submaximal and neither is regular and so x1S = y1S, which implies x1 = y1. By
0-left cancellation we have that x2 . . . xm = y2 . . . ynz. Suppose that m < n. Then
repeated 0-left cancellation yields x∗

m = ym+1 . . . ynz. It follows that ym+1 . . . ynzS
is maximal and so ym+1 . . . ynzS = ym+1S giving that ym+1 is regular, which is a
contradiction. Thus m ≥ n, from which it follows immediately by 0-left cancellation
that z ∈ X⋆.

(2) We show first that each non-zero element can be written in the stated
way. Let s ∈ S \ Reg(S). Consider the set of all non-maximal principal right
ideals that contain s: such exist because s is non-regular, and they are finite in
number by assumption. This set contains a maximal ideal x1S, which is necessarily
submaximal, and where x1 ∈ X. Thus s = x1s1. If s1 is regular or an element of
X we are done. Otherwise, repeat this process with s1 to get s1 = x2s2 and so on.
Thus we can write s = x1 . . . xisi. To show that this process terminates, observe
that

sS ⊂ x1 . . . xiS ⊂ . . . ⊂ x1S.

Thus termination follows from our assumption that each non-zero element be-
longs to only finitely many principal right ideals. It follows that we can write
s = x1 . . . xng where g is regular.

We now verify the uniqueness claim. Let s = xu = yv 6= 0 where x, y ∈ X⋆ and
u, v ∈ Reg(S), and let x = x1 . . . xm and y = y1 . . . yn. Observe that xuS = yvS
but x1 . . . xmuS ⊆ x1S and y1 . . . ynvS ⊆ y1S. Thus x1S ∩ y1S 6= {0}. But both
are submaximal and neither is regular and so x1S = y1S. Hence x1 = y1. By 0-left
cancellation, we have that x2 . . . xmu = y2 . . . ynv. Assume that m < n. Repeating
the above argument, we get that u = ym+1 . . . ynv. Let v′ be an inverse of v. Then
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uv′ = ym+1 . . . yn. Thus ym+1 . . . yn is regular and so ym+1 . . . ynS is maximal. But
ym+1 . . . ynS ⊆ ym+1S. Hence ym+1 . . . ynS = ym+1S, and so ym+1 is regular. This
is a contradiction. We also get a contradiction if m > n. Thus in fact, we must have
that m = n, and so xi = yi for all i. By 0-left cancellation again we get u = v. �

Theorem 4.1 suggests that left Krieger semigroups can be constructed from
groupoids and those left Krieger semigroups having trivial regular elements. We
shall now show how this can be done.

Let G be a groupoid with set of identities G0 and let S be a 0-left cancellative
arrow semigroup. We shall suppose that there is a bijection between G0 and the set
of non-zero idempotents of S, although to simplify notation we shall assume that
this is actually an equality. The element g of G can be regarded as an arrow starting
at g−1g and ending at gg−1; the element x of S \ {0} can also be regarded as an
arrow starting at x∗ and ending at x+, although it is important to remember that
in general the partial multiplication on S \ {0} does not form a category. Denote
by G ∗ S the set of pairs (g, x) such that g−1g = x+. We suppose that there is a
function G ∗ S → S, denoted by (g, x) 7→ g · x, and a function G ∗ S → G, denoted
by (g, x) 7→ g|x, such that

(C1): (g · x)+ = gg−1.
(C2): (g · x)∗ = g|x(g|x)−1.
(C3): x∗ = (g|x)−1g|x.

This information is summarised by the following diagram

g·x
oo

g

OO

x
oo

g|x

OO

We also require that the following axioms are satisfied:

(SS1): x+ · x = x.
(SS2): If gh is defined in the groupoid G then (gh) · x = g · (h · x).
(SS3): gg−1 = g · g−1g.
(SS4): x+|x = x∗.
(SS5): g|g−1g = g.
(SS6): If xy 6= 0 and gg−1 = x+ then g|xy = (g|x)|y.
(SS7): If gh is defined in the groupoid and h−1h = x+ then (gh)|x = g|h·xh|x.
(SS8): If xy 6= 0 and gg−1 = x+ then g · (xy) = (g · x)(g|x · y).

We shall say that if there are maps g · x and g|x satisfying (C1)–(C3) and
(SS1)–(SS8) then there is a ZS action of G on S. Let

S ⊲⊳ G = {(x, g) ∈ S \ {0} ×G : x∗ = gg−1} ∪ {0}

where we define

(x, g)(y, h) = (x(g · y), g|yh)

if x(g · y) 6= 0 and g|yh is defined, and zero otherwise. The zero acts as a zero. A
necessary condition for (x, g)(y, h) 6= 0 is that g−1g = y+. If this condition holds
then the product is non-zero precisely when x(g · y) 6= 0. If we represent (x, g) by



SEMIGROUPS RELATED TO SUBSHIFTS OF GRAPHS 11

the diagram

x
oo

g

OO

then this necessary condition is represented by the following diagram

x
oo

g

OO

y
oo

h

OO

Theorem 4.2. Let G be a groupoid having a ZS action on the semigroup S
which is 0-left cancellative arrow semigroup.

(1) S ⊲⊳ G is a 0-left cancellative arrow semigroup.
(2) S ⊲⊳ G contains copies S′ and G′ of S \ {0} and G respectively such that

each non-zero element of S ⊲⊳ G can be written as a product of a unique
element from S′ followed by a unique element from G′.

(3) If S has trivial regular elements then the set of non-zero regular elements
of S ⊲⊳ G is G′.

(4) If S is 0-equidivisible so too is S ⊲⊳ G.

Proof. (1) We begin by proving associativity. Suppose first that

[(x, g)(y, h)](z, k)

is non-zero. The product (x, g)(y, h) is non-zero and so we have the following
diagram

x
oo

g·y
oo

g

OO

g|y

OO

y
oo

h

OO
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similarly [(x, g)(y, h)](z, k) is non-zero and so we have the following diagram

x(g·y)
oo

(g|yh)·z
oo

g|yh

OO

(g|yh)|z

OO

z
oo

k

OO

resulting in the product

(x(g · y)[(g|yh) · z], (g|yh)|zk).

By assumption, x(g · y)[(g|yh) · z] is non-zero and so (g · y)[(g|yh) · z] is non-zero.
We now use (SS8) and (SS4) and (SS7), to get that y(h · z) is non-zero, and we use
(SS7) and (SS6) to show that

(g|yh)|zk = g|y(h·z)h|zk.

By (SS2),
x(g · y)[(g|yh) · z] = (x(g · y)((g|y · (h · z)).

It now follows that
(y, h)(z, k) = (y(h · z), h|zk)

is non-zero. It also follows that (x, g)[(y, h)(z, k)] is non-zero and equal to

[(x, g)(y, h)](z, k).

Next suppose that
(x, g)[(y, h)(z, k)]

is non-zero. This multiplies out to give (x[g · (y(h · z))], g|y(h·z)h|zk). By (SS6) and
(SS7) we get that

g|y(h·z)h|zk = (g|yh)|zk,

and by (SS8) and (SS2) we get that x[g · (y(h · z))] = x(g · y)[(g|yh) · z]. This
completes the proof that S ⊲⊳ G is a semigroup with zero.

It is easy to check that it is 0-left cancellative.
We now locate the non-zero idempotents. We have that (x, g)2 = (x, g) iff both

x and g are idempotents. Thus idempotents have the form (e, e) where e is an
idempotent. It is now easy to check that distinct idempotents multiply to zero.
Define (x, g)∗ = (g−1g, g−1g) and (x, g)+ = (x+, x+). Then S ⊲⊳ G is an arrow
semigroup.

(2) Define ιS : S \ {0} → S ⊲⊳ G by ιS(x) = (x, x∗). Let xy 6= 0. Then in
particular x∗ = y+. It is easy to check using (SS4) and (SS1) that ιS(x)ιS(y) =
ιS(xy). In fact, ιS(x)ιS(y) 6= 0 iff xy 6= 0. Thus the partial semigroups S \ {0} and
S′ are isomorphic. Now define ιG : G → S ⊲⊳ G by ιG(g) = (gg−1, g). Then once
again the partial semigroups G and G′ are isomorphic. Finally, if we now pick an
arbitrary non-zero element (x, g), then we can write it as (x, g) = (x, x∗)(gg−1, g)
using the fact that gg−1|gg−1 = gg−1 and x∗ · gg−1 = gg−1.

(3) Suppose that S has trivial regular elements. It is not hard to check that
(x, g) is regular precisely when x is a non-zero idempotent.
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(iv) Suppose now that S is 0-equidivisible. We prove that S ⊲⊳ G is 0-
equidivisible. Suppose that

(x, g)(y, h) = (u, k)(v, l) 6= 0.

From the definition of the product it follows that x(g ·y) = u(k ·v) and g|yh = k|vl.
From the first equation we know that xS and uS are comparable. Suppose that x =
uw (the other case, where u = xw, follows similarly). Then by 0-left cancellation
w(g · y) = k · v. Observe that k−1 · (k · v) is defined and so k−1 · (w(g · y)) is defined
by (SS2). Thus by (SS8), k−1 · w is defined. It is now easy to check that

(x, g) = (u, k)(k−1 · w, (k|k−1·w)−1g).

�

We call S ⊲⊳ G the Zappa-Szép product of the semigroup S by the groupoid G
[1, 8].

For later reference, it is worth observing that the axioms (C1)–(C3) and (SS1)–
(SS8) can be modified in the obvious way to define the notion of the Zappa-Szép
product of a category by a groupoid.

Lemma 4.3. Let S = MG where M is a 0-left cancellative arrow semigroup
and G is a groupoid, and each non-zero element of S can be written uniquely as
a product of an element of M followed by an element of G. Then the posets of
principal right ideals of S and M are isomorphic.

Proof. Let xg ∈ S where x ∈M and g ∈ G. Then xgS = xS. We prove that
xS ⊆ yS iff xM ⊆ yM . Suppose that xS ⊆ yS. Then x = y(wh) where w ∈M and
h ∈ G. By uniqueness, h must be an idempotent. Thus x = yw and so xM ⊆ yM .
The converse is clear. �

Theorem 4.4. A semigroup S is a left Krieger semigroup iff it is isomorphic
to a Zappa-Szép product of a left Krieger semigroup with trivial regular elements by
a groupoid.

Proof. Let S be a left Krieger semigroup. By Theorem 4.1, each non-zero
element can be written uniquely as product of an element of X⋆ followed by an
element of Reg(S). Put G = Reg(S) \ {0}, regarded as a groupoid (see the first
paragraph of Section 2). If g ∈ G and x ∈ X⋆ and gx 6= 0 then we know that
gx = x′g′ where x′ ∈ X⋆ and g′ ∈ G. Define g · x = g′ and g|x = x′. Taking into
account Lemma 2.4, it is routine to check that (C1)–(C3) and (SS1)–(SS8) all hold.
Thus there is a ZS action of G on X⋆. According to Theorem 4.2, we can form the
Zappa-Szép product X⋆ ⊲⊳ G. We show that S is isomorphic to X⋆ ⊲⊳ G. Clearly,
the nonzero element xg is mapped to (x, g). We therefore have a bijection, and it
is a homomorphism by construction.

Conversely, a Zappa-Szép product of a left Krieger semigroup with trivial
regular elements by a groupoid is a left Krieger semigroup by Theorem 4.2 and
Lemma 4.3. �

The results of this section show that the structure of left Krieger semigroups
is determined by ZS actions of groupoids on left Krieger semigroups with trivial
regular elements. We now look at some special cases.



14 MARK V. LAWSON

We first determine the structure of left Krieger semigroups having trivial regular
elements generalising slightly Theorem 2.2 of [7].

Theorem 4.5.

(1) A semigroup S is a left Krieger semigroup having trivial regular elements
iff it is isomorphic to an ideal quotient of a free category with an adjoined
zero.

(2) A semigroup S is a left Krieger semigroup having trivial regular elements
which is categorical at zero iff it is isomorphic to a free category with an
adjoined zero.

Proof. (1) The proof in one direction is straightforward and was essentially
covered in Section 2.

Let S be a left Krieger semigroup having trivial regular elements. By Lemma 3.1,
and the fact that the set of regular elements is trivial, the set X in Theorem 4.1 is
just the set of generators of the submaximal principal right ideals. The semigroup
X⋆ is equal to S.

Define a graph G as follows. The vertices are labelled by the non-zero idem-
potents of S. For each x ∈ X there is an edge x that starts at the vertex labelled
x∗ and ends at the vertex labelled x+. Let G∗ be the free category on G where
the identity arising from the vertex labelled e is denoted by e. An element of G∗

is a finite sequence of composable edges x1 . . . xr which we also denote by x1 . . . xr.
Adjoin a zero to get the semigroup (G∗)0. Let I be the set of elements x (finite
composable sequences) of (G∗)0 such that x = 0 in S. Then I is an ideal of (G∗)0.
We may therefore form the semigroup S′ = (G∗)0/I. The elements of S′ are in
bijective correspondence with the elements of S by means of the obvious map. By
construction, this map is a homomorphism and so S and S′ are isomorphic, as
required.

(2) By (1) and Lemma 2.2. �

By Lemma 2.2, a left Krieger semigroups which is categorical at zero is a
category with a zero adjoined, so by omitting the zero such a semigroup can be
described in purely categorical terms: it is a left cancellative category which is
equidivisible, and in which each element is contained in only a finite number of
principal right ideals. In view of the semigroups introduced in Section 1, it is
natural to call such categories left Rees categories. A Rees category is a category
which is both a left Rees category and a right Rees category. By Lemma 3.6, a left
Rees category is a Rees category precisely when it is cancellative. The following
can be deduced from Theorem 4.4 and Theorem 4.5(2) together with a suitable
definition of the Zappa-Szép product of two categories which follows readily from
axioms (C1)–(C3) and (SS1)–(SS8).

Theorem 4.6. A left Rees category is isomorphic to the Zappa-Szép product of
a free category by a groupoid, and conversely. �

We shall refer to a Rees category with a zero adjoined as a Rees semigroup. Such
semigroups are in fact of a type considered in Section 1. Recall that a semigroup
is said to be right abundant if each element is L∗-related to an idempotent. Left
abundant is defined dually, and a semigroup which is left and right abundant is said
to be abundant.
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Lemma 4.7. Let S be 0-left cancellative having left and right identities which
is categorical at zero. Then S is right abundant.

Proof. Suppose that ab = ac. Assume first that ab = ac 6= 0. Then a = aa∗

and so a(a∗b) = a(a∗c) 6= 0 giving a∗b = a∗c by 0-left cancellation. Conversely,
suppose that a∗b = a∗c 6= 0. Then aa∗ 6= 0 and a∗b 6= 0 implies that aa∗b = ab 6= 0.
Thus ab = ac 6= 0. Now suppose that ab = ac = 0. I claim that a∗b = a∗c = 0,
but this is immediate from the fact that aa∗ = a and the fact that the semigroup
is categorical at zero. Conversely, if a∗b = a∗c = 0 then ab = ac = 0. It follows
that aL∗ a∗, and so S is right abundant. �

The above lemma and its dual yield the following.

Corollary 4.8. Let S be a 0-cancellative semigroup having left and right
identities which is categorical at zero. Then S is abundant. �

The following now follows by the above result and Proposition 5.5 of [4].

Proposition 4.9. Let S be a 0-left cancellative arrow semigroup. Then S is
also 0-right cancellative and categorical at zero if and only if S is a primitive abun-
dant semigroup whose idempotents commute. �

Thus the 0-cancellative arrow semigroups which are categorical at zero are
precisely the primitive adequate semigroups of Fountain [4]. It follows that Rees
semigroups are examples of primitive adequate semigroups.

We can construct simple examples of Rees semigroups as follows. Let M =
M0(S0; I, I;P ) be a Rees matrix semigroup with zero over the Rees monoid S with
zero adjoined. Here I is a non-empty set and each diagonal entry of the I× I sand-
wich matrix P is the identity and all off-diagonal entries are zero. Such semigroups
are primitive adequate semigroups and they satisfy the conditions on the principal
right ideals that ensure they are Rees semigroups. The subsemigroup, G, of regular
elements of M is just M0(G0; I, I;P ), where G is the group of units of S. Thus
it is a 0-bisimple primitive inverse semigroup. Let X∗ be a free monoid such that
S = X∗G uniquely. Put X = {(i, x, i) : x ∈ X, i ∈ I} ∪ {0}. Then X is isomorphic
to the disjoint union of |I| copies of the free monoid X∗ — a free category — with
a zero adjoined. The fact that S = X∗G uniquely implies thatM = XG, with each
non-zero element being uniquely represented.

Acknowledgement I am grateful to the referee for a number of useful suggestions.
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