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SUBADDITIVE ERGODIC THEOREMS FOR RANDOM SETS

IN INFINITE DIMENSIONS

JENNIE C. HANSEN1 and PAUL HULSE2

Abstract

We prove pointwise and mean versions of the subadditive ergodic theorem for super-
stationary families of compact, convex random subsets of a real Banach space, extending
previously known results that were obtained in finite dimensions or with additional hy-
potheses on the random sets. We also show how the techniques can be used to obtain the
strong law of large numbers for pairwise independent random sets, as well as results in the
weak topology.

1. Introduction

One of the most fundamental questions of probability theory concerns the asymptotic be-
haviour of sequences of random variables. The classic result is the strong law of large numbers for
independent, identically distributed sequences. This was superseded by Birkhoff’s ergodic theorem
for stationary sequences. A substantial generalisation of Birkhoff’s result was obtained by Kingman
[10], who proved an ergodic theorem for subadditive stationary processes. Further generalisations
involved relaxing the stationarity properties: Krengel [11] extended Birkhoff’s theorem to super-
stationary sequences, then Abid [1] obtained Kingman’s theorem for subadditive superstationary
processes. In another direction, Liggett [13] obtained Kingman’s result under weaker subadditivity
conditions. There is also a corresponding relaxation of the stationarity conditions, although not
to include superstationary processes. However, it is worth noting that, with no more than the
obvious modifications to the proof, one can obtain a superstationary version of Liggett’s result,
which includes Abid’s result as a special case. Further generalisations were obtained by Derriennic
[6] and Schürger [16], who considered different notions of almost subadditivity.

Various analogues of these results have been obtained for random sets. Artstein and Vitale [3]
proved a strong law for random compact subsets of Euclidean space. Puri and Ralescu [14] extended
this to any Banach space, under the additional assumption that the sets are convex. Artstein and
Hansen [2] deduced the non-convex case, reducing it to the convex case by a convexification lemma.
The same lemma was obtained independently by Hiai [9]; it is quite general and can be applied,
for example, to the ergodic theorem obtained by Hess [8] for the convex case.

In [15], Schürger obtained pointwise and mean versions of the subadditive ergodic theorem
for superstationary families of random compact convex subsets in finite dimensions. The extra
assumption of convexity is necessary in this case, as Schürger demonstrated. Indeed, the example
given shows that the assumption is needed even when the sets are non-random. Whereas the idea of
the proofs of the strong law in [3] and [14] was to embed the sets in a suitable Banach space and use
the strong law for vector-valued processes, Schürger used support functions to reduce the problem
to an application of Abid’s version of the subadditive ergodic theorem for random variables. More
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recently, Krupa [12] used a similar approach to extend Schürger’s results to infinite dimensions,
but with an additional compactness condition on the random sets.

In this paper, we extend these results to obtain pointwise and mean ergodic theorems valid
for any subadditive superstationary collection of random compact convex subsets of a real Banach
space; in particular, the Banach space can be infinite-dimensional and there is no need for any
additional conditions on the random sets. The general approach is similar to that of Schürger
and Krupa in that the problem is reduced to an application of the subadditive ergodic theorem for
random variables. However, it differs in that this is done using a distance function instead of support
functions. This gives a more elementary proof in the sense that it uses only basic properties of the
distance function, whereas the support function approach relies ultimately on the Hahn-Banach
Theorem, or some equivalent result. The key to obtaining a more general result, however, is a
compactness lemma (Lemma 3.2), which says, in effect, that any sequence of random compact sets
with the appropriate stationarity properties is contained (with probability 1) in a compact set. This
and other preliminary results needed to carry out the reduction are in §2 and §3. The statement
and proofs of the theorems are in §4. We note that our subadditivity and stationarity hypotheses
are also weaker than those in [12] and [15]. This is accounted for by the fact that the subadditivity
and stationarity hypotheses needed to prove an ergodic theorem for random sets are essentially
determined by the corresponding theorem for random variables. Thus, we are able to relax these
hypotheses by using the superstationary version of Liggett’s result instead of Abid’s result.

While the main purpose of this paper is to prove the aforementioned subadditive theorems, the
methods used are fairly general and can be applied in other contexts to extend results for random
variables to random sets. For example, the same approach can be used to obtain analogues of the
results in [6] and [16] for almost subadditive processes. In the remainder of the paper, we consider
two other such situations.

In general, the ergodic theorem and strong law can be viewed as corollaries of the subadditive
ergodic theorem. However, this is not always the case; for example, Etemadi [7] has shown that
the strong law holds for pairwise independent, identically distributed random variables, but no
corresponding subadditive theorem is known. Our methods apply equally well in such a situation,
and in §5 we show how Etemadi’s result can be obtained for random sets. One difference with the
subadditive case is that, in order to preserve additivity, we have to use linear functionals instead
of the distance function, effectively equivalent to using support functions.

In all the results mentioned so far, pointwise convergence has been in the Hausdorff metric. If
one is willing to accept weaker forms of convergence, then results can be obtained for a wider class
of random sets. For example, the scalar convergence of subadditive families of weakly compact
random sets was studied by Krupa in [12]. In §6, we outline how our methods can be applied in
this situation.

2. The space (C(B), ρ)

Throughout this paper, B denotes a real Banach space with norm ‖ · ‖, and C(B) denotes the
set of non-empty compact subsets of B. Addition and scalar multiplication on C(B) are defined by

C +D = {x+ y : x ∈ C, y ∈ D}, αC = {αx : x ∈ C}
(
C,D ∈ C(B), α ∈ R

)
.

The Hausdorff metric ρ on C(B) is defined as follows. For C,D ∈ C(B), let

d(C,D) = inf{ε : C ⊆ D +B(ε)},

where B(ε) = {x ∈ B : ‖x‖ ≤ ε}; then

ρ(C,D) = sup{d(C,D), d(D,C)}.
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The metric space (C(B), ρ) is complete.
The closure of C ⊆ B is denoted by cl C, and the convex hull by coC. If C ∈ C(B), then

‖C‖ = sup{‖x‖ : x ∈ C}. The mapping C → ‖C‖ from C(B) into R is continuous.
The following result was proved for convex sets in [5]. For completeness, we include a proof;

note that it is valid for non-convex sets.

Lemma 2.1. If K ∈ C(B) then {C ∈ C(B) : C ⊆ K} is compact in C(B).

Proof. Let {Cn} be a sequence in {C ∈ C(B) : C ⊆ K}; we show that {Cn} is sequentially
compact. Given ε > 0, let {Bj}kj=1 be a finite cover of K by open balls of radius ε. We construct

subsequences {n(j)
i }∞i=1, 1 ≤ j ≤ k, as follows: given {n(j−1)

i }, choose {n(j)
i } ⊆ {n

(j−1)
i } such that

either Bj ∩ Cn(j)
i

6= ∅ for all i ≥ 1, or Bj ∩ Cn(j)
i

= ∅ for all i ≥ 1. Then for each 1 ≤ j ≤ k,
either Bj ∩ Cn(k)

i

6= ∅ for all i ≥ 1, or Bj ∩ Cn(k)
i

= ∅ for all i ≥ 1. Let D be the union of all
the Bj such that Bj ∩ Cn(k)

i

6= ∅ for all i ≥ 1 (note that D is non-empty, since the Bj ’s cover

K). Clearly, ρ
(
C
n

(k)
i

,D
)
≤ 2ε for all i ≥ 1, and so ρ

(
C
n

(k)
i

, C
n

(k)
j

)
≤ 4ε for all i, j ≥ 1. Note that

this construction works for any sequence in {C ∈ C(B) : C ⊆ K} and any ε > 0; thus we can
use a standard diagonalisation argument to obtain a Cauchy subsequence of {Cn}. Since C(B) is
complete, the subsequence is convergent, and since K is closed, the limit is a subset of K. This
proves the result.

Lemma 2.2. Let K be a closed subset of C(B), and let {Kn}∞n=1 be a sequence in K such that
cl (
⋃
nKn) is compact, and {d(Kn, C)} is convergent for all C ∈ K. Then {Kn} is convergent in

(C(B), ρ).

Proof. It follows from Lemma 2.1 that
{
C ∈ C(B) : C ⊆ cl

(⋃
nKn

)}
is compact in C(B). Therefore,

there exists a subsequence {ni} and C ∈ K such that Kni → C as i → ∞. Since {d(Kn, C)} is
convergent, it follows that limn→∞ d(Kn, C) = 0. We claim that limn→∞ d(C,Kn) = 0 also, in
which case, Kn → C as n → ∞. Suppose not; then there exists ε > 0, D ∈ K and a subsequence
{mi} such that d(C,Kmi) ≥ ε for all i, and Kmi → D as i → ∞. It follows that d(C,D) ≥ ε;
moreover,

d(C,D) ≤ d(C,Kni) + d(Kni ,D),

and so lim infi→∞ d(Kni ,D) ≥ ε, whereas limi→∞ d(Kmi ,D) = 0. This is a contradiction; hence
limn→∞ d(C,Kn) = 0, as required.

3. Random sets

Let (Ω,F , µ) be a probability space. A random compact set is a mapping X : Ω→ C(B) which
is measurable with respect to the Borel σ-algebra of (C(B), ρ). We note that if E

(
‖X‖

)
<∞, there

is a separable subspace of B which contains, with probability one, all the values taken by X.
It is implicitly assumed throughout that any given countable collection of random (compact)

sets is defined on a common probability space (Ω,F , µ) and takes values in C(B). Furthermore, in
view of the previous remark, we can assume without loss of generality that B is separable, in which
case, so is C(B).

Recall that a sequence of random variables {Xn}∞n=1 (on (Ω,F , µ)) is superstationary if∫
f(X1,X2, . . .) dµ ≥

∫
f(X2,X3, . . .) dµ for all bounded Borel functions f :RN → R which are

increasing with respect to the usual partial ordering on R
N (that is, x ≤ y if xi ≤ yi for all i ∈ N).

Set inclusion induces a similar partial ordering on C(B)N : if C = (C1, C2, . . .), D = (D1,D2, . . .) ∈
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C(B)N, then C ≤ D if Ci ⊆ Di for all i ∈ N. A sequence of random sets {Xn}∞n=1 is super-
stationary if

∫
f(X1,X2, . . .) dµ ≥

∫
f(X2,X3, . . .) dµ for all increasing, bounded Borel functions

f : C(B)N → R.
We have the following corollary to Lemma 2.2.

Lemma 3.1. Let K be a closed subset of C(B), and let {Yn} be a sequence of K-valued random
sets such that cl (

⋃
n Yn) is compact a.e. If {d(Yn, C)} is convergent a.e. whenever C ∈ K, then

{Yn} is convergent in (C(B), ρ) a.e.

Proof. Let D be a countable, dense subset of K, and choose Ω′ ⊆ Ω, µ(Ω′) = 1, so that cl
(⋃

n Yn
)

is compact and {d(Yn, C)} is convergent for all ω ∈ Ω′ and C ∈ D. Since |d(Yn, C)− d(Yn, C ′)| ≤
ρ(C,C ′) for any C, C ′ ∈ C(B), it follows that {d(Yn, C)} is convergent for all C ∈ K whenever
ω ∈ Ω′. Then by Lemma 2.2, {Yn} is convergent for all ω ∈ Ω′.

The next result is the key to removing the need for additional compactness conditions on the
random sets.

Lemma 3.2. Let {Xn}∞n=1 be a superstationary sequence of C(B)-valued random sets such that
E
(
‖X1‖

)
<∞. Then cl

(⋃∞
n=1 n

−1
∑n
i=1Xi

)
is compact a.e.

Proof. Let {xk}∞k=0 be a countable dense subset of B, with x0 = 0. Let Ck = co{x0, . . . , xk}
(k ≥ 1) and dk(C) = d(C,Ck) (C ∈ C(B)). Then for each k,

{
dk(Xn)

}∞
n=1

is a superstationary
sequence of random variables, and dk(X1) ≤ ‖X1‖ (since 0 ∈ Ck). Moreover, since X1 is compact
a.e., limk→∞ dk(X1) = 0 a.e.; hence, limk→∞E

(
dk(X1)

)
= 0. Given ε > 0, choose k such that

E
(
dk(X1)

)
≤ ε2/4. By the superstationary ergodic theorem [11], there exists f ∈ L1(Ω,F , µ) such

that n−1
∑n
i=1 dk(Xi)→ f a.e.(µ). By Ergoroff’s theorem, there exists N such that

µ
{
ω : sup

n≥N

∣∣∣ n−1
n∑
i=1

dk
(
Xi(ω)

)
− f

∣∣∣> ε/2
}
≤ ε/2.

Moreover, E(f) ≤ ε2/4, and so µ{f > ε/2} ≤ ε/2. Therefore,

µ
{
ω : sup

n≥N
n−1

n∑
i=1

dk
(
Xi(ω)

)
> ε
}
≤ ε,

and so, since Ck is convex,

µ
{
ω : sup

n≥N
dk
(
n−1∑n

i=1Xi(ω)
)
> ε
}
≤ ε.

Hence, if
Aε =

⋃
k,N

{
ω :
⋃∞
n=N n

−1
∑n
i=1Xi(ω) ⊆ Ck +B(ε)

}
,

then µ(Aε) ≥ 1 − ε, and ε ≤ ε′ ⇒ Aε ⊆ Aε′ . Thus, µ
(⋂

ε>0Aε
)

= 1. Now, given ε > 0 and
ω ∈

⋂
ε>0Aε, choose k,N such that⋃∞

n=N n
−1
∑n
i=1Xi(ω) ⊆ Ck +B(ε/2).

Since Ck is totally bounded, it follows that Ck +B(ε/2) is contained in a finite number of balls of
radius ε. Clearly,

⋃N−1
n=1 n

−1
∑n
i=1Xi is contained in a finite number of balls of radius ε, and so,

since ε is arbitrary,
⋃∞
n=1 n

−1
∑n
i=1Xi is totally bounded, and the result follows.

Remark . The above proof could be simplified slightly by using the maximal ergodic theorem instead
of the ergodic theorem and Ergoroff’s theorem. However, the latter approach illustrates the point
that Lemma 3.2 holds whenever n−1

∑n
i=1 dk(Xi) converges a.e. (k ≥ 1).
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4. The subadditive ergodic theorem

We start by defining what we mean by a subadditive superstationary process. As before,
all countable collections of random variables and random sets are assumed to be defined on a
common probability space (Ω,F , µ). A collection of random variables {Xm,n}0≤m<n (m,n ∈ Z) is
subadditive if X0,n ≤ X0,m +Xm,n a.e. for all 0 < m < n; and {Xm,n}0≤m<n is superstationary if
(i) {X(m−1)k,mk}∞m=1 is a superstationary sequence for each k ≥ 1,
(ii) for each m ≥ 0, the joint distributions of {Xm,m+n}∞n=1 dominate those of {Xm+1,m+1+n}∞n=1;

that is,
∫
f(Xm,m+1,Xm,m+2, . . .) dµ ≥

∫
f(Xm+1,m+2,Xm+1,m+3, . . .) dµ for all increasing,

bounded Borel functions f :RN → R.
The following subadditive ergodic theorem was proved by Liggett in [13] under more restrictive
stationarity hypotheses; however, we note that the same proof with no more than the obvious
modifications works for this version.

Theorem 4.1. If {Xm,n}0≤m<n is a subadditive, superstationary collection of random variables
such that E|X0,n| <∞ for all n, and there exists a constant c such that E(X0,n) ≥ −cn for all n,
then limn→∞ n−1X0,n exists a.e. If the sequences {Xmk,(m+1)k}∞m=1 (k ≥ 1) are ergodic, then the
limit is constant a.e.

Now let {Xm,n}0≤m<n be a collection of random sets. Then {Xm,n}0≤m<n is subadditive if
X0,n ⊆ X0,m +Xm,n a.e. for all 0 < m < n, and superstationary if
(i) {X(m−1)k,mk}∞m=1 is a superstationary sequence for each k ≥ 1,
(ii) for each m ≥ 0, the joint distributions of {Xm,m+n}∞n=1 dominate those of {Xm+1,m+1+n}∞n=1;

that is,
∫
f(Xm,m+1,Xm,m+2, . . .) dµ ≥

∫
f(Xm+1,m+2,Xm+1,m+3, . . .) dµ for all increasing,

bounded Borel functions f : C(B)N → R.
Let K(B) = {C ∈ C(B) : C is convex}; note that K(B) is a closed subset of C(B).

Theorem 4.2. Let {Xm,n}0≤m<n be a subadditive, superstationary collection of K(B)-valued
random sets such that E‖X0,1‖ <∞. Then there exists a K(B)-valued random set X∞ such that
n−1X0,n → X∞ in (C(B), ρ) a.e. as n→∞.

Proof. Note that X0,n ⊆
∑n
i=1Xi−1,i and {Xn−1,n}∞n=1 is a superstationary sequence. Hence, by

Lemma 3.2, cl
(⋃∞

n=1 n
−1X0,n

)
is compact. Therefore, by Lemma 3.1, it is enough to show that

{d(n−1X0,n, C)} is convergent a.e., for all C ∈ K(B). To this end, note that the random variables{
d
(
Xm,n, (n −m)C

)}
0≤m<n are subadditive and superstationary. The superstationarity follows

immediately from that of {Xm,n}0≤m<n, since d( · , C ′) is an increasing function for any C ′ ∈ C(B).
For subadditivity, note that if 0 < m < n and x ∈ X0,n, there exist x1 ∈ X0,m, x2 ∈ Xm,n such
that x = x1 + x2. Then for any c1, c2 ∈ C, we have c = n−1

(
mc1 + (n −m)c2

)
∈ C since C is

convex, and ‖x− nc‖ ≤ ‖x1 −mc1‖+ ‖x2 − (n−m)c2‖. It follows that

d(X0,n, nC) ≤ d(X0,m, mC) + d
(
Xm,n, (n−m)C

)
.

Moreover, d(X0,n, nC) ≤ ‖X0,n‖+ ‖nC‖ and ‖X0,n‖ ≤
∑n
i=1 ‖Xi−1,i‖ a.e. Hence,

E
(
d(X0,n, nC)

)
≤ n

(
E
(
‖X0,1‖

)
+ ‖C‖

)
<∞.

Therefore, by Theorem 4.1, d(n−1X0,n, C) converges, and the result follows.

The question arises as to when the limit in Theorem 4.2 is constant. It follows from the more
or less obvious observation that C = C ′ (C,C ′ ∈ K(B)) if and only if d(C,D) = d(C ′,D) for all
D ∈ K(B), that X∞ is constant a.e. provided there is a set of measure 1 on which d(n−1X0,n, C)
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converges to a constant for each C ∈ K(B). This will be the case if it is true for all C in some
countable, dense subset of K(B). Hence, it follows from Theorem 4.1 that X∞ is constant a.e. if
the sequences

{
d
(
Xmk,(m+1)k, kC

)}∞
m=1

(k ≥ 1, C ∈ K(B)) are ergodic.
As a corollary to Theorem 4.2, we have the following mean ergodic theorem.

Theorem 4.3. Let {Xm,n}0≤m<n and X∞ be as in Theorem 4.2, and let 1 ≤ p < ∞. If
E
(
‖X0,1‖p

)
<∞, then

lim
n→∞

∫
ρ(n−1X0,n, X∞)p dµ = 0.

Proof. Given ε > 0, there exists A ∈ F and N ∈ N such that µ(A) ≥ 1−ε and ρ(n−1X0,n, X∞) ≤ ε
for all n ≥ N and ω ∈ A. Then

∫
A
ρ(n−1X0,n, X∞)p dµ ≤ εp(1− ε). Now,(∫

Ac
ρ(n−1X0,n, X∞)p dµ

)1/p

≤
(∫

Ac
‖n−1X0,n‖p dµ

)1/p

+
(∫

Ac
‖X∞‖p dµ

)1/p

.

Note that ‖n−1X0,n‖ ≤ n−1
∑n
i=1 ‖Xi−1,i‖ a.e., and {‖Xn−1,n‖}∞n=1 is a superstationary sequence

of random variables. Hence, by the mean ergodic theorem for superstationary processes (which
can easily be deduced from Krengel’s pointwise result [11]), there exists f ∈ Lp(Ω,F , µ) such that∫
|f |p dµ ≤ E

(
‖X0,1‖p

)
and n−1

∑n
i=1 ‖Xi−1,i‖ converges to f in Lp(Ω,F , µ). Therefore,

lim sup
n→∞

∫
Ac
‖n−1X0,n‖p dµ ≤

∫
Ac
fp dµ.

Moreover,by Fatou’s Lemma,∫
Ac
‖X∞‖p dµ ≤ lim inf

n→∞

∫
Ac
‖n−1X0,n‖p dµ,

and so

lim sup
n→∞

(∫
Ac
ρ(n−1X0,n, X∞)p dµ

)1/p

≤ 2
(∫

Ac
fp dµ

)1/p

.

Letting ε→ 0 gives the result.

As mentioned in the introduction, weaker notions of subadditivity have been studied: Derri-
ennic [6] and Schürger [16] have both obtained ergodic theorems for random variables which are
almost subadditive, that is, subadditive with respect to another family of random variables. The
above methods can be used to obtain versions of these theorems for random sets. For example, in
[16], {Xm,n}0≤m<n is said to be subadditive with respect to {Um,n}0≤m<n if

Xm0,mk ≤
k∑
i=1

(Xmi−1,mi + Umi−1,mi)

for all m0 < . . . < mk. If almost subadditivity of random sets is defined analogously and the K(B)-
valued random sets {Xm,n}0≤m<n are subadditive with respect to the C(B)-valued {Um,n}0≤m<n,
where limn→∞ n−1U0,n = {0} a.e., then, for any C ∈ K(B),

{
d
(
Xm,n, (n−m)C

)}
0≤m<n is subad-

ditive with respect to
{
d
(
Um,n, {0}

)}
0≤m<n and hence (under suitable conditions) {d(n−1X0,n, C)}

is convergent a.e. Moreover,

Xm,n ⊆
n∑

i=m+1

(Xi−1,i + Ui−1,i)

for all 0 ≤ m < n. Thus, under suitable stationarity conditions, one can apply Lemma 3.2 to the
sequence {Xi−1,i+Ui−1,i} and, as in the proof of Theorem 4.2, deduce the convergence of n−1X0,n.
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5. The strong law

If {Xn} is a superstationary sequence of random compact sets, it follows immediately from
Theorem 4.2 (and the convexification result in [2] and [9]) that n−1

∑n
i=1Xi converges a.e. However,

there are situations where these averages converge but there is no corresponding version of the
subadditive ergodic theorem from which this can be deduced. One such situation is when the
Xn are identically distributed and pairwise independent (i.e., Xi and Xj are independent for all
i, j ∈ N, i 6= j). In the corresponding case for random variables, Etemadi [7] has shown that the
strong law holds. The techniques of §3 can be used to extend this result to random sets.

Theorem 5.1. Let {Xn}∞n=1 be a sequence of pairwise independent, identically disributed random
compact sets, such that E

(
‖X1‖

)
<∞. Then there exists C ∈ K(B) such that n−1

∑n
i=1Xi → C

a.e. as n→∞.

Proof. It follows from the convexification result in [2] and [9] that it is enough to prove the result
when the Xn are convex, and that any limit takes values in K(B). Note that if f ∈ B∗, then
sup f(C + D) = sup f(C) + sup f(D) and sup f(αC) = α sup f(C) for all C, D ∈ C(B), α > 0.
Moreover, the random variables

{
sup f(Xn)

}
are pairwise independent and identically distributed,

as are the
{
dk(Xn)

}∞
n=1

(k ≥ 1), defined in the proof of Lemma 3.2. Let Λ be a countable, dense
subset of B∗. Then it follows from Etemadi’s result [7] and the remark after Lemma 3.2 that there
exists Ω′ ⊆ Ω, µ(Ω′) = 1, such that, for all f ∈ Λ and ω ∈ Ω′, n−1

∑n
i=1 sup f(Xi) converges

to a constant and cl
(⋃

n n
−1
∑n
i=1Xi

)
is compact. Fix ω ∈ Ω′. By Lemma 2.1,

{
C ∈ C(B) :

C ⊆ cl
(⋃

n n
−1
∑n
i=1Xi

)}
is compact in C(B). Therefore, there exists a convergent subsequence of

n−1
∑n
i=1Xi. Suppose C, D ∈ K(B) are limit points for the subsequences {mk}, {nk} respectively.

Then for all f ∈ Λ, m−1
k

∑mk
i=1 sup f(Xi) → sup f(C) and n−1

k

∑nk
i=1 sup f(Xi) → sup f(D) as

k →∞, and so, sup f(C) = sup f(D). It follows from the Hahn-Banach theorem that C = D, and
so n−1

∑n
i=1Xi is convergent. It also follows that if the limit is X∞, then X∞ is constant a.e.,

because limn→∞ n
−1
∑n
i=1 sup f(Xi) = sup f(X∞) is constant on Ω′, for all f ∈ Λ.

Remark . The limit in Theorem 5.1 is E(coX1); for the definition of the expectation of a random
set, see [4].

6. Scalar convergence

A sequence {Cn}∞n=1 of subsets of B converges to C in the scalar topology if limn→∞ s(f,Cn) =
s(f,C) for all f ∈ B∗, where s(· , ·) is the support function; that is, s(f,C) = supx∈C f(x)
(f ∈ B∗, C ⊆ B). We can deduce a scalar convergence version of Theorem 4.2 for subaddi-
tive families of weakly compact random sets. If {Xm,n}0≤m<n is a subadditive, superstationary
collection of weakly compact, convex random sets such that E

(
‖X0,1‖

)
< ∞, and f ∈ B∗, then

it follows immediately from Theorem 4.1 that supn−1f(X0,n) converges a.e., as does n−1‖X0,n‖.
By considering a countable, dense subset of B∗ and using a standard approximation argument, we
deduce that there is a subset Ω′ of measure 1 on which supn−1f(X0,n) is convergent for all f ∈ B∗.
The convergence of {n−1X0,n}, on a set of measure 1, follows from weak compactness versions of
Lemma 2.1 (see [5, Lemma 3.2]) and Lemma 3.2. Since B∗ is separable, the set of weakly compact
subsets of B with the scalar topology is metrisable, and so the required version of Lemma 3.2 can
be obtained by replacing the function d(· , ·) by a suitable metric in the proof of Lemma 3.2.
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