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Abstract

Dai, Li, and Wu proposed Rule k, a localized approximation algorithm
that attempts to find a small connected dominating set in a graph. In this
paper we consider the “average case”performance of two closely related
versions of Rule k for the model of random unit disk graphs constructed
from n random points in an `n × `n square. We show that, if k ≥ 3 and
`n = o(

√
n), then for both versions of Rule k, the expected size of the

Rule k dominating set is Θ(`2n) as n → ∞. It follows that, for `n in a
suitable range, the expected size of the Rule k dominating sets are within
a constant factor of the optimum.

Keywords and phrases: dominating set, localized algorithm, approx-
imation algorithm, performance analysis, probabilistic analysis, Rule k,
unit disk graph,
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1 Introduction

In this paper we consider the problem of finding a small connected dominating
set for a unit disk graph G = (V,E), where the vertex set, V , is a set of points
in <2. Given the vertex set V , the edge set E is determined as follows: an
undirected edge e ∈ E connects vertices u, v ∈ V (and in this case we say that
u and v are adjacent) iff the Euclidean distance between them is less than or
equal to one. Unit disk graphs have been used by many authors as simplified
mathematical models for the interconnections between hosts in a wireless net-
work, and random unit disk graphs have been used as stochastic models for
these networks. e.g. [9],[13], [16],[17],[23],[24], [19],[20].

A dominating set in any graph G = (V,E) is a subset C ⊆ V such that every
vertex v ∈ V either is in the set C, or is adjacent to a vertex in C. We say C is a
connected dominating set if C is a dominating set and the subgraph induced by
C is connected. Obviously G cannot have a connected dominating set if G itself
is not connected. We use the acronym “CDS”for a dominating set C such that
the subgraph induced by C has the same number of components that G has. In
this paper we consider a random unit disk graph model, Gn, which is connected
with asymptotic probability one. So, in this case, any CDS for Gn will also be
connected with high probability.

There has been considerable interest in designing good approximation al-
gorithms for finding small connected dominating sets [2],[6],[8],[15],[25],[28].
One motivation for studying connected dominating sets is that there are CDS-
based broadcasting mehods that are appear to be better than simple flooding
[10],[27],[28], [30]. There have been various efforts to determine the average-case
performance of such algorithms using simulations. However, with the exception
of the mathematical parts of [4],[19],and [20], we are not aware of any

probabilistic analysis that is mathematically rigorous. In this paper we con-
sider a family of localized approximation algorithms, called “Rule k”, which were
proposed by Dai, Li, and Wu [11],[30] and which find a CDS in a graph. To an-
alyze the average-case performance of the Rule k algorithms, we first choose an
appropriate probability model. Then, in the context of the probability model,
we prove explicit asymptotic bounds on the expected size of the dominating set
that is selected by (strict and relaxed versions of ) Rule k.

2 The Algorithms

Some notation is needed first to describe the algorithms. We assume that each
vertex has a unique identifier taken from a totally ordered set. For convenience,
when |V | = n, we will use the numbers 1, 2, . . . , n as IDs, and will number the
vertices accordingly. If xi is a vertex whose ID is i, let let N(xi) be the set
consisting of xi and any vertices that are adjacent to xi. The CDS constructed
by the (Strict) Rule k algorithm is denoted Ck(V ), and its cardinality is Ck =
|Ck(V )|. The set Ck(V ) consists of all vertices xi ∈ V that are not excluded
under the following “strict”version of Rule k:
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Rule k: Vertex xi is excluded from Ck(V ) iff N(xi) contains at least one set
of k vertices xi1 , xi2 , . . . xik

such that

• i1 > i2 > · · · > ik > i, and

• The subgraph induced by
{
xi1 , xi2 , · · · , xik

}
is connected, and

• N(xi) ⊆
k⋃

t=1
N(xit

).

Wu Li and Dai proved that Ck(V ) is a CDS, and they conjectured that its
cardinality Ck is, in some sense, small on average. Theorem 4 of this paper
confirms their conjecture, for a suitable model, for any k ≥ 3. If k < 3, then the
performance of the strict Rule k is not as good, and the analysis is considerably
more complicated[18]. We therefore omit the cases k = 1 and k = 2 from
consideration in this paper.

For each vertex xi let N+(xi) consist of those neighbors of xi with ID’s
larger than i. The following “Relaxed Rule k”was suggested to us by a referee
and attributed to Wu and Dai. The Relaxed Rule k has also been referred to as
the “k = ∞”version, although “k < ∞”would be a more consistent terminology.
For the remainder of the paper, we refer to it as the Relaxed Rule k, but let
C∞(V ) denote the dominating set that it selects.

Relaxed Rule k: Vertex xi is excluded from C∞(V ) iff

• N+(xi) is connected, and

• all the neigbors of xi are covered by higher numbered neighbors of xi, i.e.
N(xi) ⊆

⋃
w∈N+(xi)

N(w)

The rest of this paper is organized as follows. In the next section we specify
the model and define the random unit disk graph, Gn. In Sections 3 we prove
a local coverage theorem that is needed in section 4 to prove an upper bound
for E(Ck)). The results in section 4 are used in section 5 to analyze Relaxed
Rule k. Finally, in the remainder of the paper, we discuss lower bounds and
optimality issues.

3 Choice of Models

Before estimating the expected size of the Rule k dominating set, we must spec-
ify the underlying probability model. For any real number ` > 1, let Q(`) be
an ` × ` square in <2. The particular choice of a square will be immaterial,
but its size will be very important. Let Ωn,` = Q(`) × Q(`) × ... × Q(`) be
the n-fold product space with the usual product topology. For each n ≥ 1, let
Xn,`,1, Xn,`,2, . . . , Xn,`,n be a sequence of random points selected independently
from a uniform distribution on Q(`) and let Pn,` denote the uniform probabil-
ity measure on Ωn,` induced by the random variables Xn,`,1, Xn,`,2, . . . , Xn,`,n.
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Finally, let G(n, `) be the random unit disk graph with vertex set Vn,` =
{Xn,`,1, Xn,`,2, ...., Xn,`,n} that is formed from these vertices by putting an edge
between two vertices iff the Euclidean distance between the two vertices is less
than or equal to one.

We want to estimate the “average”size of Ck(Vn,`) for large networks. As it
stands, the expected value En,`(Ck) [= E(Ck(Vn,`))] is defined with respect to
the probability measure Pn,` on Ωn,` and depends on both n and `. We shall
not however attempt any multivariate asymptotic estimates. Instead, we choose
a suitable sequence, 〈`n〉∞n=1, and consider the expected value En,`n

(Ck) with
respect to Pn,`n

as n → ∞. To simplify notation throughout, we will (usually)
suppress the dependence on the choice of a sequence 〈`n〉∞n=1. Thus we write Gn

instead of G(n, `n), and write En(Ck) instead of En,`n
(Ck). Suppressing even n,

we write Q instead of Q(`n), and P instead of Pn,`n
.

Conditions on the growth rate of `n will be clear from the statements of
theorems. However, to provide some perspective on our choice of growth rates
for `n, we mention that it is known that the threshold for connectivity is `n =
Θ(

√
n/ log n); if `n grows faster than this, then the random unit disk graph Gn

will be disconnected with probability 1 − o(1) as n → ∞. In this case, with
high probability, Ck(Vn,`) will not be a connected dominating set for Gn. More
precise versions of these remarks are provided in the new book by Penrose[26]
which gives an up to date survey of random geometric graphs.

Finally, throughout the remainder of this paper we adopt the following
notation. For any points p and q in <2, let d(p, q) denote the ordinary Eu-
clidean distance between p and q in <2. Also, for any v ∈ <2 and r > 0, let
Dr(v) = {w ∈ <2 : d(v, w) ≤ r}.

4 Local Coverage by exactly k vertices

The next lemma is a purely geometric result which we require for the proof of
Theorem 2. To state the lemma, we need some notation. Let δ = 1

2 −
√

3
4 =

.0669 . . . , and let ρ =
√

3
2 = .866 . . . . (so ρ + 2δ = 1). Let p be any point in Q,

and let D
′
1(p) = D1(p)

⋂Q be the set of points in the square Q whose distance
from p is one or less.

Lemma 1 There exist points z0, z1, z2 ∈ D
′
(p) such that the following two con-

ditions are satisfied:

• for s = 0 and s = 1, d(zs, zs+1) ≤ 1 − 2δ

• D
′
1(p) ⊆

2⋃
s=0

Dρ(zs).

Proof: Consider first the case where D′
1(p) = D1(p) ⊆ Q, i.e. p is a point that

is not near the boundary of the square. We may, without loss of generality,
choose the coordinate system such that p = (0, 0) and such that the axes are
parallel to the sides of the square Q. For s = 0, 1, 2, let Ss be the sector of
D1(p) consisting of those points whose polar coordinates (r, θ) satisfy r ≤ 1 and
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(2s−1)π
3 ≤ θ ≤ (2s+1)π

3 . Let zs be the point in Ss whose polar coordinates are
( 1
2 , 2πs

3 ). Then the first condition is satisfied: d(zs, zs+1) = sin π
3 = 1 − 2δ. It is

also straightforward to check that for s = 0, 1, 2, Ss ⊆ Dρ(zs) and so the second
condition is satisfied.

Now consider the remaining case D′
1(p) 6= D1(p), i.e. where D1(p) meets the

boundary of Q. Choose points z0, z1, z2 as before so that D1(p) ⊆
2⋃

s=0
Dρ(zs)

and d(zs, zs+1) ≤ 1− 2δ. We are not done because one or more of the points zs

may not lie in Q. In particular, if zs /∈ Q, then there is a (unique) z′s ∈ Q such
that d(zs, z

′
s) = inf{d(zs, z) : z ∈ Q}. We replace zs by z′s and observe that

every point of D
′
1(p) is closer to z

′
s than it is to the original point zs. Hence

Ss

⋂Q ⊆ Dρ(z
′
s). After replacing all zs such that zs /∈ Q by the corresponding

z′s we obtain three points that satisfy the conditions of the lemma. 2

Fix k ≥ 3, the k in “Rule k”. Suppose m points P1, P2, . . . , Pm are selected
independently and uniform randomly in D

′
(p). Let Km(k) be the event that,

for some 1 ≤ i0 < i1 < i2 < . . . < ik−1 ≤ m, we have:

• D
′
1(p) ⊆

k−1⋃
s=0

D1(Pis
), and

• the unit disk graph with vertices Pi0 , Pi1 , . . . , Pik−1 is connected.

We note that event Km(k) implies that the random unit disk graph which is
formed from the vertices P1, P2, ..., Pm has a k-point connected dominating set.
With this notation we can state

Theorem 2 There is a positive constant α < 1 and a positive constant mk such
that, for all m > mk, Pr(Km(k)) > 1 − 3αm.

Proof: Choose points z0, z1, z2 as in the proof of Lemma 1. If z is any point in
Dδ(zs), then for all y ∈ Ss, d(z, y) ≤ d(z, zs) + d(zs, y) ≤ δ + ρ < 1. Let Es be
the event that none of the m random points P1, P2, . . . , Pm lies in Dδ(zs). Then

Pr(Es) =
(

1 − Area(Dδ(zs)
⋂Q)

Area(D′(p)

)m

.

Note that Area(Dδ(zs)
⋂Q) ≥ 1

4Area(Dδ(zs)) = πδ2

4 , and that Area(D
′
(p)) ≤

Area(D1(p)) = π. If we let α = 1− δ2

4 = .998 . . ., then α < 1, and for s = 0, 1, 2,

Pr(Es) ≤ αm. (1)

It follows from(1) that Pr(Km) ≥ 1− 3αm since Ec
0 ∩ Ec

1 ∩ Ec
2 ⊆ Km, and the

proof is complete if k = 3.
Now suppose that k > 3. In this case, Km(3) ⊆ Km(k) whenever m ≥ k. To

see this, suppose for some 1 ≤ i0 < i1 < i2 ≤ 1:

• D
′
1(p) ⊆

2⋃
s=0

D1(Pis
), and

• the unit disk graph with vertices Pi0 , Pi1 , Pi2 is connected.
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Choose any 1 ≤ i3 < ... < ik−1 ≤ m such that ij /∈ {i0, i1, i2} for 3 ≤ j ≤ k − 1.
Then we also have:

• D
′
1(p) ⊆

k−1⋃
s=0

D1(Pis
), and

• the unit disk graph with vertices Pi0 , Pi1 , . . . , Pik−1 is connected (since, for
3 ≤ j ≤ k − 1, each Pij

is connected to either Pi0 , Pi1 , or Pi2).

It follows that Pr(Km(k)) ≥ Pr(Km(3)) > 1 − 3αm for all sufficiently large m.
2

5 Strict Rule k Analysis

In this section, we assume that `n = o(
√

n) as n → ∞. Also, in this section,
let Uk =

∑n
i=1 Ii be a sum of indicator variables where Ii = 1 iff node i is not

included in Ck(V ) under Rule k. Thus Rule k selects a dominating set Ck(V )
having Ck = n − Uk vertices, and it is desirable for Uk to be large. Our goal in
this section is to prove that, for all k > 2, E(Uk) ≥ n − O(`2n).

Let λn = n − `2n, and let let X1, X2, ..., Xn be independent, uniformly dis-
tributed random points in Q, namely the locations of vertices. (Here we are
again simplifying notation by writing Xi instead of Xn,`n,i.) Let ρi be the num-
ber of neighbors of vertex i having a larger ID, i.e. the number of j > i such
that d(Xi, Xj) ≤ 1.

Lemma 3

P
(
ρi <

(n − i)π
8`2n

)
≤ exp(

−(n − i)π
32`2n

).

Proof: Let |D′
1(Xi)| = Area(D1(Xi)

⋂Q) be the area of the set of points in Q
whose distance from Xi is one or less. Thus |D′

1(Xi)| = π unless Xi happens to
fall near the border, and in all cases |D′

1(Xi)| ≥ π
4 . Given |D′

1(Xi)|, the variable

ρi has a Binomial
(
n − i,

|D′
1(Xi)|
`2n

)
distribution. Therefore Chernoff’s bound on

the lower tail distribution gives

P
(

ρi <
(n − i)π

8`2n

∣∣∣∣ |D′
1(Xi)|

)
=

P
(

ρi <
π

8|D′
1(Xi)| ·

|D′
1(Xi)|(n − i)

`2n

∣∣∣∣|D′
1(Xi)|

)

≤ exp
(
−

(
1 − π

8|D′
1(Xi)|

)2

· |D1′(Xi)|(n − i)
2`2n

)

≤ exp
(−(n − i)π

32`2n

)
.

2
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Theorem 4 If k > 2, then E(Ck) = E(|Ck(V )|) = O(`2n).

Proof: Let Bi be the event that ρi ≥ (n−i)π
8`2n

. By Lemma 3,

P(Ii = 1) ≥ P(Ii = 1|Bi)P(Bi) ≥ P(Ii = 1|Bi)
(
1 − exp

(−(n − i)π
32`2n

)
)

(2)

Now suppose that i ≤ λn = n − `2n, and observe that

P(Ii = 1|Bi) =
∑

v≥ (n−i)π

8`2n

P(Ii = 1|ρi = v)P(ρi = v|Bi). (3)

To estimate this, observe that

P(Ii = 1|ρi = v) =
∫
Q

P(Ii = 1|ρi = v,Xi = ~x)fXi
(~x|ρi = v)d~x (4)

where fXi
(~x|ρi = v) is the conditional density of Xi on the square Q given that

ρi = v. For v > (n − i)π/8`2n, Theorem 2 yields

P(Ii = 1|ρi = v,Xi = x) ≥ 1 − 3αv ≥ 1 − 3α(n−i)π/8`2n . (5)

Putting this back into (4) and then (3), we get

P(Ii = 1|Bi) ≥ 1 − 3α(n−i)π/8`2n , (6)

and therefore

P(Ii = 1) ≥ P(Ii = 1|Bi)P(Bi) ≥ (1− 3α(n−i)π/8`2n)
(
1− exp(− (n − i)π

32`2n
)
)

(7)

≥ 1 − 3α(n−i)π/8`2n − exp(− (n − i)π
32`2n

). (8)

Recall that λn = n − `2n, and that the foregoing estimates were valid for all
i ≤ λn. Putting j = n − i, we get

E(Uk) ≥
λn∑
i=1

P(Ii = 1) =
λn∑
i=1

(
1 − 3α(n−i)π/8`2n − exp(− (n − i)π

32`2n
)
)

(9)

≥ λn − 3
∑
j≥`2n

(
απ/8`2n

)j −
∑
j≥`2n

(exp(−π/32`2n)
)j (10)

= n − O(`2n). (11)

2
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6 Relaxed Rule k Analysis

The following lemma is straight-forward, but is essential for the analysis of the
Relaxed Rule k.

Lemma 5 C∞(V ) ⊆ Ck(V ).

Proof: Suppose x 6∈ Ck, i.e. x is removed from Ck(V ) by the strict version
of Rule k. This means there is a connected set S of k vertices in N(x) that
dominate N(x) and have higher ID’s than x has. Because S ⊆ N+(x), it is clear
N+(x) also dominates N(x). We need only check that N+(x) is connected. Let
u, v ∈ N+(x). Since S dominates N(x), there are vertices y, z ∈ S such that
d(u, y) ≤ 1 and d(v, z) ≤ 1. Because S is connected, there must be a path γ
from y to z in S. Since S ⊆ N+(X), this is also a path from y to z in N+(X).
Let Γ be the path that consists of u, followed by the path γ, followed by v.
Then Γ is a path from u to v in N+(x). Since u and v were arbitrary elements
of N+(x), it follows that N+(x) is connected. So x is also removed from C∞(V ).
The result follows. 2

Now let C∞ = |C∞(V )| be the size of the Relaxed Rule k dominating set.
Since C∞(V ) ⊆ Ck(V ), we certainly have C∞ ≤ Ck. The following theorem is
therefore an immediate corollary to Theorem 4:

Theorem 6 E(C∞) = O(`2n).

7 Lower Bound

If a vertex v has higher ID than any of its neighbors, then it cannot be eliminated
under either version of Rule k. This simple observation is the basis for

Theorem 7 If `n = o(
√

n), then, for all sufficiently large n, the expected size
of the Relaxed Rule k dominating set is more than `2n/4.

Proof:
Let Ln =

n∑
i=1

Ii, where Ii = 1 iff node i has a higher ID that all the nodes

in D′
1(Xi) = D1(Xi) ∩Q. Note that Ii = 1 iff the nodes Xi+1, Xi+2, . . . , Xn all

fall outside D′
1(Xi). Therefore

P(Ii = 1) = (1 − |D′
1(Xi)|
`2n

)n−i ≥ (1 − π

`2n
)n−i (12)

Therefore

E(Ln) ≥
n∑

i=1

(1 − π

`2n
)n−i =

`2n
π

(1 − (1 − π

`2n
)n) =

`2n
π

(1 − o(1)). (13)

The result follows since C∞ ≥ Ln always. 2

Corollary 8 If `n = o(
√

n), then, for all sufficiently large n, the expected size
of the Strict Rule k dominating set is more than `2n/4.
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8 Optimality

For this section, `n ≤
√

n
a log n , where a is a constant greater than 9. It is

easy to verify that, with asymptotic probability one, there exists a CDS, Crand,
having O(`2n) vertices: simply partition the square Q into b3`nc2 equal-sized
squares,each with sides of length sn = `n

b3`nc = 1
3 + O( 1

`n
), and then pick one

node from each of these small squares. More explicitly, for 0 ≤ i, j < b3`nc,
let Qi,j =

{
(x, y) : isn ≤ x < (i + 1)sn and jsn ≤ x < (j + 1)sn

}
. Let B be

the event that each of the b3`nc2 small squares contains one or more nodes. By
Boole’s inequality,

P(Bc) ≤ 9`2nP(Q1,1 is empty) = 9`2n(1 − 1
b3`nc2 )n (14)

= 9`2n exp
(− n

9`2n
(1 + O(

1
`2n

)
)

(15)

<
n

log n
e− log n = O(

1
log n

). (16)

Now given the vertices V = {X1, X2, ..., Xn}, we construct Crand ⊆ V as follows:
For each 1 ≤ i, j ≤ b3`nc, if Qi,j contains at least one vertex, then select one
vertex Vi,j uniform randomly from among the vetices in Qi,j , and include Vi,j

in Crand. Thus Crand is a (random) set of at most b3`nc2 nodes. It can contain
fewer nodes (possibly as few as one), but with asymptotic probability 1, Crand

contains exactly b3`nc2 vetices and is a CDS.
It is worth pointing out that this existence argument cannot be used in a

straight-forward way as the basis for a localized algorithm because the nodes
do not know their own locations in the network. One of the main advantages of
the Rule k algorithm is that a vertex makes its decision based on very limited
information, namely its list of neighbors and their lists of neighbors. Neverthe-
less, the existence argument is useful for us because it leads to a lower bound
the size that a CDS can have. In particular, Theorem 9 below is based on from
the following observation: If v is any point in Q, then at most 81 nodes of Crand

are in D1(v). In particular, if Copt is a minimum sized CDS, and v is a node in
Copt, then N(v) includes at most 81 nodes of Crand. But Copt is a dominating
set; therefore every node in Crand must be in N(v) for at least one v ∈ Copt.
We therefore have a lower bound of the size of Copt :

|Copt| ≥ 1
81

|Crand|. (17)

Combining (17) with (16), we get

Theorem 9 Suppose a > 9, and `n ≤
√

n
a log n for all n. Then there is a

constant B > 0 such that, for all n > 1,

Pn,`n

(
|Copt| <

1
10

`2n

)
<

B

log n
.

8



The argument given above was influenced by [22]. The appendix of [11] is also
pertinent, but we do not see how to turn the discussion there into a mathemat-
ically rigorous proof.

Corollary 10 E(|Copt|) = Θ(`2n)

Proof: For the upper bound, note that |Copt| ≤ Ck, and consequently E(|Copt|) ≤
E(Ck) = O(`2n) by Theorem 4. For the lower bound, we use (17) to get

E(|Copt|) ≥ 1
81

E(|Crand|)

≥ 1
81

P
(
|Crand| = b3`2nc

)
· b3`2nc

=
1
81

(1 − O(
1

log n
))b3`2nc = Θ(`2n).

2

9 Discussion

We analyzed, for every k > 2, the strict version Rule k in which a node x is
excluded from the dominating set Ck(V ) iff it has a set of k higher numbered
neighbors that dominate its entire neighborhood N(x). We also analyzed the
practical “k = ∞”variant of Rule k in which a node x is excluded from the
connected dominating set C∞(V ) iff the subset N+(x) of its neighbors with
greater IDs is connected and dominates the entire neighborhood of N(x). The
conclusion of this paper is that both the strict and relaxed versions of Rule k
are optimal insofar as they yield a CDS whose expected size is bounded by a
constant multiple of the size of the minimum CDS.
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