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Abstract
In this paper we investigate the asymptotic structure of a random

mapping model with preferential attachment, T ρ
n , which maps the set

{1, 2, ..., n} into itself. The model T ρ
n was introduced in a companion

paper [11] and the asymptotic structure of the associated directed
graph Gρ

n which represents the action of T ρ
n on the set {1, 2, ..., n} was

investigated in [11] and [12] in the case when the attraction parameter
ρ > 0 is fixed as n → ∞. In this paper we consider the asymptotic
structure of Gρ

n when the attraction parameter ρ ≡ ρ(n) is a function
of n as n →∞. We show that there are three distinct regimes during
the evolution of Gρ

n: (i) ρn → ∞ as n → ∞, (ii) ρn → β > 0 as
n →∞, and (iii) ρn → 0 as n →∞. It turns out that the asymptotic
structure of Gρ

n is, in some cases, quite different from the asymptotic
structure of well-known models such as the uniform random mapping
model and models with an attracting center. In particular, in regime
(ii) we obtain some interesting new limiting distributions which are
related to the incomplete gamma function.
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1 Introduction

In this paper we investigate a random mapping model, T ρ
n : {1, 2, ..., n} →

{1, 2, ..., n}, with ‘preferential attachment’. This model was first introduced
in a companion paper [11] and is defined as follows: For positive parameter

ρ and 1 ≤ k ≤ n, we define T ρ
n(k) = ξ

(ρ,n)
k where ξ

(ρ,n)
1 , ξ

(ρ,n)
2 , ..., ξ

(ρ,n)
n is a

sequence of random variables whose distributions depend on the evolution of
an urn scheme. The distribution of each ξ

(ρ,n)
k is determined by a (random)

n-tuple of non-negative weights ~a(k) = (a1(k), a2(k), ..., an(k)) where, for
1 ≤ j ≤ n, aj(k) is the ‘weight’ of the jth urn at the start of the kth round of
the urn scheme. Specifically, given ~a(k) = ~a = (a1, ..., an), we define

Pr
{
ξ

(ρ,n)
k = j

∣∣ ~a(k) = ~a
}

=
aj∑n
i=1 ai

.

The random weight vectors ~a(1), ~a(2), . . . , ~a(n) associated with the urn
scheme are determined recursively. For k = 1, we set a1(1) = a2(1) = · · · =
an(1) = ρ > 0. For k > 1, ~a(k) depends on both ~a(k − 1) and the value

of ξ
(ρ,n)
k−1 as follows: Given that ξ

(ρ,n)
k−1 = j, we set aj(k) = aj(k − 1) + 1 and

for all other i 6= j, we set ai(k) = ai(k − 1) (i.e. if ξ
(ρ,n)
k−1 = j then a ‘ball’

with weight 1 is added to the jth urn). We note that since, for 1 ≤ k ≤ n,

T ρ
n(k) = ξ

(ρ,n)
k , and since the (conditional) distribution of ξ

(ρ,n)
k depends on

the state of the urn scheme at the start of round k, it is clear that k is
more likely to be mapped to j if the weight aj(k) is (relatively) large, i.e. if
several of the set {1, 2, ..., k − 1} have already been mapped to j. We note
that T ρ

n is the random mapping analogue of the random graph models with
‘preferential attachment’ that have been constructed in order to model the
evolving structure of complex networks. In a similar way, T ρ

n may also be
useful as a model in some applications of random mapping models.

It is important to note that the preferential model T ρ
n is fundamentally

different from the ‘classical’ random mapping model Tp(n), special cases of
which have been studied extensively since the 1950’s and which can be defined
as follows: For n ≥ 1, let Mn denote the set of all mappings f : [n] →
[n], where [n] ≡ {1, 2, ..., n}. We note that any mapping f ∈ Mn can be
represented as a directed graph G(f) on a set of vertices labelled 1, 2, ..., n,
such that there is a directed edge from vertex i to vertex j in G(f) if and
only if f(i) = j. Now for each n ≥ 1, let p(n) = {pij(n) : 1 ≤ i, j ≤ n} be
an array such that pij(n) ≥ 0 for 1 ≤ i, j ≤ n and

∑n
j=1 pij(n) = 1 for every
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1 ≤ i ≤ n, and let Xn
1 , Xn

2 , ..., Xn
n be independent random variables such

that Pr{Xn
i = j} = pij(n) for all 1 ≤ i, j ≤ n. Then the random mapping

Tp(n) : [n] → [n] is defined (in terms of the variables Xn
1 , Xn

2 , ..., Xn
n ) by

Tp(n)(i) = j iff Xn
i = j (1.1)

for all 1 ≤ i, j ≤ n. It follows from (1.1) that the distribution of Tp(n) is
given by

Pr
{
Tp(n) = f

}
=

n∏
i=1

pif(i)(n)

for each f ∈ Mn. The example of Tp(n) which is best understood is the
uniform random mapping, Tn ≡ Tp(n), where pij(n) = 1

n
for all 1 ≤ i, j ≤ n

(see for example the monograph by Kolchin [18] and also the references in
[11]). Berg, Jaworski, and Mutafchiev (see [5, 13, 15, 16, 17] ) have also
investigated the structure of the digraph associated with the model T (n; q) ≡
Tp(n,q) where p(n, q) is given by pii(n, q) = q for some 0 ≤ q ≤ 1 and all
1 ≤ i ≤ n, and pij(n, q) = 1−q

n−1
for all 1 ≤ i, j ≤ n such that i 6= j. In another

direction, Stepanov [22], Burtin [7], Mutafchiev [20] and Berg, Mutafchiev
[6] have considered the component structure of the digraph associated with
the model Tn(λ) ≡ Tp(n,λ) where λ ≥ 1 is a model parameter and p(n, λ) is
given by pi1(n, λ) = λ

λ+n−1
and pij(n, λ) = 1

λ+n−1
for all 1 ≤ i, j ≤ n such

that j 6= 1. The model Tn(λ) is called a random mapping with attracting
center and the parameter λ determines the strength of the attraction to the
center. The last two models are of special interest because we can consider
the evolution of the digraphs representing them, i.e. the changes in the
typical structure of the digraph, when the model parameter changes as a
function of the number of vertices. The evolution of the digraph representing
T (n; q) can be considered as an analogue of the evolution of the classical
random graph since the number of edges in the underlying simple graph grows
when the parameter q decreases from 1 to 0 (see also [14] for corresponding
uniform random graph process). The evolution of random mappings with
attracting center is somewhat different since the number of edges in the
digraph representing Tn(λ) remains fixed as the parameter λ tends to ∞ .
Finally, Aldous, Miermont, and Pitman (see [1] and [2]) have investigated the
asymptotic structure of G(Tp(n)), where p(n) is given by pij(n) = pj(n) > 0
for all 1 ≤ i, j ≤ n, by using an ingenious coding of the mapping Tp(n) as
a stochastic process on the interval [0, 1]. Their results are closely related
to earlier work on the relationship between random mappings and random

3



forests (see Pitman [21] and references therein). In this model pj(n) > 0
can be viewed as a measure of the relative strength of attraction which is
‘assigned’ to the vertex j.

Now it follows from the definition of classical model Tp(n) that the vari-
ables Xn

1 , Xn
2 , . . . Xn

n defined above can be interpreted as the independent
‘choices’ of the vertices 1, 2, . . . , n in the random digraph Gp(n) ≡ G(Tp(n))
(see, in addition, Mutafchiev [19] and Jaworski [13]). In other words, for
1 ≤ i, j, k, m ≤ n, i 6= k, the events {Tp(n)(i) = j} and {Tp(n)(k) = m}
are independent. In contrast, it is clear from the definition of T ρ

n that the
events {T ρ

n(i) = j} and {T ρ
n(k) = m} are correlated and the strength of

the correlation depends on the magnitude of the parameter ρ relative to n.
For example, for any 1 ≤ j ≤ n and ρ > 0, we have Pr{T ρ

n(2) = j} = 1
n

whereas for j > 1, Pr{T ρ
n(2) = j |T ρ

n(1) = 1} = ρ
1+nρ

. In this paper we are
interested in how the relative values of ρ and n determine the structure of
Gρ

n ≡ G(T ρ
n) and in what ways the structure of Gρ

n differs from the structure
of both the uniform digraph Gn ≡ G(Tn) and the attracting center digraph
Gn(λ) ≡ G(Tn(λ)).

Our investigation of the structure of Gρ
n is based on a result from [11]

where we show that the random mapping T ρ
n has the same distribution as a

random mapping model T D̂
n with exchangeable in-degrees. To describe the

exchangeable in-degree model we adopt the following notation. For any f ∈
Mn and 1 ≤ i ≤ n, let di(f) denote the in-degree of vertex i in the digraph

G(f), and ~d(f) ≡ (d1(f), ..., dn(f)). Also, for any vector ~d ≡ (d1, d2, ..., dn)
of non-negative integers such that

∑n
i=1 di = n, let

Mn(~d ) ≡ {f ∈Mn : ~d(f) = ~d}.

Now to define T D̂
n , we start with a collection of non-negative integer-valued

exchangeable random variables D̂1, D̂2, ..., D̂n such that
∑n

i=1 D̂i = n. Given

the event
{
D̂i = di, i = 1, 2, . . . , n

}
(with Pr

{
D̂i = di, i = 1, 2, ..., n

}
> 0),

we define the conditional distribution of T D̂
n by

Pr{T D̂
n = f | D̂i = di, i = 1, 2, ..., n} =

{Qn
i=1 di!

n!
if di(f) = di, i = 1, 2, ..., n

0 otherwise.

(1.2)

In other words, given (D̂1, D̂2, ..., D̂n) = (d1, d2, ..., dn) = ~d, T D̂
n is uniformly
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distributed over Mn(~d ). It follows from (1.2) that for any f ∈Mn,

Pr
{
T D̂

n = f
}

=

∏n
i=1(di(f))!

n!
Pr

{
D̂i = di(f), 1 ≤ i ≤ n

}
. (1.3)

In [11] and [12] we show that the distributions of many variables which

describe features of the structure of the digraph GD̂
n ≡ Gn(T D̂

n ) such as the

number of components in GD̂
n , the size of a typical component in GD̂

n , etc.
can be expressed relatively easily in terms of the variables D̂1, D̂2, ..., D̂n. In
particular, this gives us a convenient calculus for investigating the structure
of GD̂

n .

An important class of examples of T D̂
n can constructed as follows. Suppose

that D1, D2, . . . , Dn are i.i.d. non-negative integer-valued random variables
with Pr{∑n

i=1 Di = n} > 0, and let D̂1, D̂2, ..., D̂n be a sequence of random
variables with joint distribution is given by

Pr
{

D̂i = di, 1 ≤ i ≤ n
}

= Pr
{

Di = di, 1 ≤ i ≤ n
∣∣∣

n∑
i=1

Di = n
}

.

Clearly, the variables D̂1, D̂2, ..., D̂n are exchangeable with
∑n

i=1 D̂i = n, so

we can use D̂1, D̂2, ..., D̂n to construct T D̂
n and GD̂

n . We note that if the

variables D1, D2, ..., Dn are i.i.d Poisson variables then T D̂
n has the same

distribution as the uniform model Tn, i.e. the uniform model is a special case
of the exchangeable in-degree model. In the case where the underlying i.i.d.
variables D1, D2, ..., Dn have a generalised negative binomial distribution we
established in [11] the following result:

Fact 1. Suppose that Dρ
1, D

ρ
2, ... are i.i.d. random variables with a generalized

negative binomial distribution given by

Pr{Dρ
1 = k} =

Γ(k + ρ)

k!Γ(ρ)

(
ρ

1 + ρ

)ρ (
1

1 + ρ

)k

for k = 0, 1, ...,

where ρ is a positive parameter and Γ(·) denotes the usual Gamma function.
For n ≥ 1, let D̂ρ(n) =

(
D̂ρ

1,n, D̂ρ
2,n, . . . , D̂ρ

n,n

)
be a sequence of variables with

joint distribution given by

Pr
{

D̂ρ
i,n = di, 1 ≤ i ≤ n

}
= Pr

{
Dρ

i = di, 1 ≤ i ≤ n
∣∣∣

n∑
i=1

Dρ
i = n

}
.
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Then for every n ≥ 1, the random mappings T ρ
n and T

D̂ρ(n)
n have the same

distribution.

In [11] and [12] we used Fact 1 and the calculus for G
D̂ρ(n)
n ≡ G(T

D̂ρ(n)
n )

to obtain exact formulas for the distributions of various variables associated
with the structure of Gρ

n. We also investigated the asymptotic distributions
of these variables when ρ is fixed and n → ∞. In this paper we investigate
the asymptotic distributions of variables associated with the structure of Gρ

n

when the parameter ρ ≡ ρ(n) depends on n. In particular, it follows from
the definition of T ρ

n that when ρ is much larger then n, the distribution of
T ρ

n is ‘close’ to the uniform distribution on Mn. On the other hand, if ρ is
much smaller than n, then we would expect the digraph Gρ

n to consist of a
collection of large ‘attracting’ components. So, in some sense which will be
made precise by the results in this paper, the structure of Gρ

n ‘evolves’ from
the uniform digraph Gn (when ρ =‘∞’) to the ‘star’ graph as ρ → 0. We
note here that our investigation of the ‘evolution’ of Gρ

n as ρ → 0 is in the
same spirit as the results of Stepanov [22] on the evolution of Gn(λ) as λ goes
from 1 to ∞, where Gn(1) corresponds to the uniform model and G(‘∞’) is a
‘star’ graph. However, we will see that the evolution of Gρ

n is quite different
from the evolution of Gn(λ).

Finally, we mention that our investigation of the evolution of Gρ
n is also

related to our work on the Poisson–Dirichlet law for combinatorial structures
which arise from a cutting process for random mappings (see [10]). It also
turns out that exact and asymptotic results for the structure of Gρ

n provide
a natural way to introduce some interesting families of discrete distributions
(see [12]).

2 Results

To describe our results we begin by introducing some more notation. We
say that a vertex i ∈ {1, 2, ..., n} is a cyclic vertex for the mapping f ∈ Mn

(and for the corresponding digraph G(f)) if there is some k ≥ 1 such that
f (k)(i) = i, where f (k) is the kth iterate of the function f . We define Xn(f)
to be the number of cyclic vertices of f ∈ Mn and we let Xρ

n ≡ Xn(T ρ
n)

denote the number of cyclic vertices in Gρ
n. Given the distribution of Xρ

n,
it is straightforward to determine the distribution of Nρ

n, the number of
components in Gρ

n, as follows: Let Lρ
n denote the set of cyclic vertices of
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T ρ
n . It is known (see [11] for details) that given Lρ

n = L ⊆ {1, 2, ..., n}, then
T ρ

n restricted to L is a uniform random permutation on the set L. We also
note that each connected component in Gρ

n consists of a directed cycle with
directed trees attached. So Nρ

n = ` if and only if the mapping T ρ
n restricted

to L consists of ` cycles. Hence, for 1 ≤ ` ≤ k ≤ n,

Pr
{
Nρ

n = `
∣∣Xρ

n = k
}

= Pr
{
Nσ(k) = `

}

where σ(k) is a uniform random permutation on a k-element set and Nσ(k)

denotes the number of cycles in the random permutation σ(k). It follows
that for 1 ≤ ` ≤ n,

Pr
{
Nρ

n = `
}

=
n∑

k=`

Pr
{
Nρ

n = `
∣∣ Xρ

n = k
}
Pr

{
Xρ

n = k
}

=
n∑

k=`

Pr
{
Nσ(k) = `

}
Pr

{
Xρ

n = k
}
. (2.1)

Now suppose that ξ1, ξ2, . . . is a sequence of independent indicator variables
such that, for i ≥ 1, Pr{ξi = 1} = 1

i
. It is well-known (see [8]) that for k ≥ 1

Nσ(k)
d∼

k∑
i=1

ξi . (2.2)

So, by taking the variables ξ1, ξ2, . . . to be independent of Xρ
n, it follows from

(2.1) that

Nρ
n

d∼
XD̂

n (ρ,n)∑
i=1

ξi .

Thus, the distribution of Nρ
n is determined by the distribution of Xρ

n, which
was determined in [11] and is given by

Pr{Xρ
n = k} =

{
kρk(1 + ρ) (n)k

(nρ+k)k+1
for 1 ≤ k ≤ n− 1

ρnn! Γ(nρ)
Γ(n+nρ)

if k = n.
(2.3)

So, to determine the asymptotic distribution of Nρ
n, we first determine the

asymptotic distribution of Xρ
n in Theorem 1 below.

7



Theorem 1. Let Xρ
n denote the number of cyclic vertices in Gρ

n.

(i) Let R denote a Rayleigh distributed random variable with density given
by f(x) = x exp(−x2/2) for x ≥ 0 (and equals 0 otherwise). Suppose
that ρn →∞ as n →∞ and let φ(n) ≡ ρn/(1 + ρ). Then

Xρ
n√

φ(n)

d−→ R as n →∞,

and E(Xρ
n) ∼ √

π
2
φ(n).

(ii) Suppose that ρn → β > 0 as n →∞. Then for k = 1, 2, ...,

lim
n→∞

Pr
{
Xρ

n = k
}

=
kβk−1

(β + k)k

=
βk−1

(β + k − 1)k−1

− βk

(β + k)k

.

where (β)0 ≡ 1 . Moreover

lim
n→∞

E(Xρ
n) = 1 +

∞∑

k=1

βk

(β + k)k

.

(iii) Suppose that ρn → 0 as n →∞. Then

lim
n→∞

Pr
{
Xρ

n = 1
}

= 1

Proof. First, suppose that ρn → ∞ as n → ∞. To show that Xρ
n/

√
φ(n)

converges in distribution to R, it is enough to show that for any a > 0,

lim
n→∞

Pr
{ Xρ

n√
φ(n)

≤ a
}

=

∫ a

0

x exp(−x2/2)dx. (2.4)

So, it follows from (2.3) that

Pr
{ Xρ

n√
φ(n)

≤ a
}

=

a
√

φ(n)∑

k=1

Pr
{

Xρ
n = k

}

=

a
√

φ(n)∑

k=1

k

n

(
1 + ρ

ρ

)
(1− 1

n
) · · · (1− (k−1)

n
)

(1 + k
nρ

) · · · (1 + 1
nρ

)

=

a
√

φ(n)∑

k=1

k√
φ(n)

exp

( −k2

2φ(n)

)
1√
φ(n)

exp
(
ε(k, n, ρ)

)
(2.5)
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where |ε(k, n, ρ)| ≤ C(a)√
φ(n)

and C(a) is a constant depends on a but not on

n or ρ. Since φ(n) → ∞ as n → ∞, equation (2.4) now follows from (2.5).
Next, we consider

E
(
Xρ

n

)
=

n∑

k=1

k Pr
{
Xρ

n = k
}
.

First, let λ(n) ≡ min{n, ρn} and observe that all n ≥ 1, φ(n) ≤ λ(n). Now
it follows calculations similar to those above that

(λ(n))5/8∑

k=1

k Pr
{
Xρ

n = k
}

=
√

φ(n)

(λ(n))5/8∑

k=1

k2

φ(n)
exp

( −k2

2φ(n)

)
1√
φ(n)

(exp(ε(k, n, ρ))

∼
√

φ(n)

∫ (λ(n))5/8

(φ(n))1/2

0

x2e−x2/2dx ∼
√

π

2
φ(n)

where |ε(k, n, ρ)| ≤ C
(λ(n))1/8 and C is a constant which does not depend on n

or ρ. So it is enough to show that

lim
n→∞

∑

k>(λ(n))5/8

k Pr
{
Xρ

n = k
}

= 0. (2.6)

To bound the sum in (2.6) we divide it into two parts. First, it follows from
(2.3) that

λ(n)∑

k>(λ(n))5/8

k Pr
{
Xρ

n = k
}

=

λ(n)∑

k>(λ(n))5/8

k2

φ(n)

(1− 1
n
) · · · (1− (k−1)

n
)

(1 + k
nρ

) · · · (1 + 1
nρ

)

≤
λ(n)∑

k>(λ(n))5/8

(λ(n))2

(
1 +

dk/2e
λ(n)

)−bk/2c

≤ (λ(n))3 exp

(
−(λ(n))1/4

4

)
. (2.7)
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The last inequality above follows from the observation that for 0 < x < 1,
(1 + x)−1 ≤ 1− x/2 ≤ exp(−x/2). Next,

∑

k>λ(n)

k Pr
{
Xρ

n = k
} ≤ 1

φ(n)

n−1∑

k>λ(n)

k2

(
1 +

dk/2e
λ(n)

)−bk/2c
+ n Pr

{
Xρ

n = n
}

≤ 2

φ(n)

∑

k>λ(n)

k2

(
2

3

)k/2

+ n

(
1

2

)n/2

. (2.8)

Since φ(n), λ(n) →∞ as n →∞, (2.6) follows from (2.7) and (2.8) and case
(i) is proved.
Next, suppose that ρn → β > 0 as n → ∞. The second equality of (ii) is
immediate, while the first equality follows from (2.3):

lim
n→∞

Pr
{
Xρ

n = k
}

= lim
n→∞

kρk(1 + ρ)(n)k

(ρn + k)k+1

=
kβk−1

(β + k)k

. (2.9)

Similarly, it follows from (2.3), (2.9), and dominated convergence that

lim
n→∞

E
(
Xρ

n

)
= lim

n→∞

n−1∑

k=1

k2ρk−1(1 + ρ)(n− 1)k−1

(ρn + k)k

+ lim
n→∞

nρnn!Γ(ρn)

Γ(n + ρn)

=
∞∑

k=1

k2βk−1

(β + k)k

=
∞∑

k=1

kβk−1

(β + k − 1)k−1

−
∞∑

k=1

kβk

(β + k)k

. (2.10)

Since ∞∑

k=1

kβk−1

(β + k)k

= 1

we can rearrange the right-hand side of (2.10) to obtain the desired limit.
Finally, when ρn → 0 as n →∞ , again by (2.3), we have

lim
n→∞

Pr
{
Xρ

n = 1
}

= lim
n→∞

1 + ρ

nρ + 1
= 1 .
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Theorem 2. Let Nρ
n denote the number of components in Gρ

n.

(i) Suppose that ρn →∞ as n →∞ and φ(n) = ρn/(1 + ρ), then

Nρ
n − 1

2
log φ(n)√

1
2
log φ(n)

d−→ Z as n →∞,

where Z is a standard normal N(0, 1) variable.

(ii) Suppose that ρn → β > 0 as n →∞, and suppose that Xβ is a discrete
random variable with distribution given by

Pr
{
Xβ = k

}
=

kβk−1

(β + k)k

for k = 1, 2, . . . .

Also, suppose that ξ1, ξ2, . . . is a sequence of independent indicator
variables such that, for i ≥ 1, Pr{ξi = 1} = 1

i
and such that ξ1, ξ2, . . . .

and Xβ are independent. Then

Nρ
n

d−→ Nβ ≡
Xβ∑
i=1

ξi as n →∞.

(iii) Suppose that ρn → 0 as n →∞ and let Bρ
n denote the event that Gρ

n is
connected. Then

lim
n→∞

Pr
{
Nρ

n = 1
}

= lim
n→∞

Pr
{Bρ

n

}
= 1 .

Proof. Suppose first that ρn → ∞ as n → ∞ and φ(n) = ρn/(1 + ρ), and
fix −∞ < a < ∞. Then it follows from (2.1) that

Pr

{
Nρ

n − 1
2
log φ(n)√

1
2
log φ(n)

≤ a

}

=
n∑

m=1

Pr

{
Nσ(m) − 1

2
log φ(n)√

1
2
log φ(n)

≤ a

}
Pr

{
Xρ

n = m

}
. (2.11)

Now fix ε > 0. Then, it follows from Theorem 1 (i) that there exists
0 < δ(ε) < 1 < γ(ε) such that

Pr
{
δ(ε)

√
φ(n) ≤ Xρ

n ≤ γ(ε)
√

φ(n)
} ≥ 1− ε (2.12)
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for all large n. Also, for δ(ε)
√

φ(n) ≤ m ≤ γ(ε)
√

φ(n) we have

Nσ(m) − 1
2
log φ(n)√

1
2
log φ(n)

=
Nσ(m) − log m− ε(m,n)√

log m + ε(m,n)

where
|ε(m, n)| ≤ max

{| log δ(ε)|, | log γ(ε)|} .

So for all large n and m ≥ δ(ε)
√

φ(n), we have

Pr

{
Nσ(m) − log m√

log m
≤ a− ε

}
≤ Pr

{
Nσ(m) − 1

2
log φ(n)√

1
2
log φ(n)

≤ a

}

≤ Pr

{
Nσ(m) − log m√

log m
≤ a + ε

}
. (2.13)

Now it is known (see, for example [8]) that (Nσ(m)− log m)/
√

log m converges
in distribution to the standard normal N(0, 1) distribution as m → ∞. So
it follows from (2.11), (2.12) and (2.13) that

Φ(a− ε)− ε ≤ lim inf
n→∞

Pr

{
Nρ

n − 1
2
log φ(n)√

1
2
log φ(n)

≤ a

}

and

lim sup
n→∞

Pr

{
Nρ

n − 1
2
log φ(n)√

1
2
log φ(n)

≤ a

}
≤ Φ(a + ε) + ε

where Φ(·) is the distribution function of N(0, 1). Let ε → 0 to obtain part
(i).
Next suppose that ρn → β > 0 as n → ∞ and let ξ1, ξ2, . . . be a sequence
of independent indicator variables as described above which are independent
of Xβ. Now fix ` ≥ 1. Then it follows from (2.1) and (2.2) that for n ≥ `

Pr
{

Nρ
n = `

}
=

n∑

k=`

Pr
{ k∑

i=1

ξi = `
}

Pr
{

Xρ
n = k

}
.

Hence ∣∣∣Pr
{
Nρ

n = `
}− Pr

{
Nβ = `

}∣∣∣

≤
n∑

k=`

∣∣∣Pr
{
Xρ

n = k
}− Pr

{
Xβ = k

}∣∣∣ +
∞∑

k=n+1

Pr
{
Xβ = k

}
. (2.14)
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Since Xρ
n

d−→ Xβ as n →∞, it is straightforward to show that the right-hand
side of (2.14) tends to 0 as n →∞. This establishes part (ii).
Finally it follows from (2.1) and (2.3) that if ρn → 0 as n →∞ , then

lim
n→∞

Pr{Bρ
n} = lim

n→∞
Pr{Nρ

n = 1}

= lim
n→∞

n∑

k=1

Pr{Nσ(k) = 1}Pr{Xρ
n = k}

= lim
n→∞

n−1∑

k=1

ρk(1 + ρ)(n)k

(nρ + k)k+1

+ lim
n→∞

ρnn! Γ(nρ)

nΓ(n + nρ)

≥ lim
n→∞

1 + ρ

nρ + 1
= 1.

Next we consider the asymptotic distribution of Cρ
1 (n), the size of the

component in Gρ
n which contains the vertex labelled 1. It is clear from Theo-

rem 2 that when ρn →∞ as n →∞, the distribution of Nρ
n, when n is large,

depends on the speed at which φ(n) = ρn/(1 + ρ) tends to ∞. In particular,
when n is large, the number of components in Gρ

n is (with high probability)
of order 1

2
log φ(n). In light of this result, it seems reasonable to suppose

that for large n the distribution of Cρ
1 (n) would also depend on φ(n), but

in Theorem 3 we show that this is not the case. We also show that when
ρn → β as n → ∞, where β > 0, the asymptotic distribution of Cρ

1 (n)/n
can be expressed in terms of the incomplete gamma function γ[a, z] which
is defined by the following “incomplete” integral expression for the Gamma
function Γ(a)

γ[a, z
]

=

∫ z

0

ta−1e−tdt

and can also be expressed as

γ[a, z] = zae−z

∞∑

k=1

zk−1

(a− 1 + k)k

. (2.15)

Given identity (2.15), we note that the limit of the expected value in Theorem
2 (ii) can be expessed in terms of this function. One can also check that when
β →∞ we have

γ[β + 1, β] ∼ 1

2
ββe−β

√
2πβ . (2.16)
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Theorem 3. Let Cρ
1 (n) denote the size of the component in Gρ

n which con-
tains the vertex labelled 1.

(i) Suppose that nρ → ∞ as n → ∞ and let B be Beta(1/2) distributed
random variable with density given by f(u) = 1

2
√

1−u
on the interval

(0, 1). Then
Cρ

1 (n)

n

d−→ B as n →∞ .

(ii) Suppose that ρn → β > 0 as n →∞. Then

lim
n→∞

Pr{Cρ
1 (n) = n} = lim

n→∞
Pr{Bρ

n}

=
∞∑

k=1

βk−1

(β + k)k

= β−β−1eβ γ[β + 1, β]

where γ[a, z] is the incomplete gamma function.

Furthermore, suppose that 0 < x < 1 is fixed and let ` = bxnc. Then

Pr
{
Cρ

1 (n) = `
}

∼ 1

n

Γ(β)

Γ(xβ)Γ((1− x)β)

1

xβ
(1− x)(1−x)β−1

(
e

β

)xβ

γ[xβ + 1, xβ]

(iii) Suppose that ρn → 0 as n →∞. Then

lim
n→∞

Pr
{
Cρ

1 = n
}

= 1

Proof. Suppose first that nρ → ∞ as n → ∞ . To prove (i) it is enough to
show that for every 0 < a < b < 1, we have

lim
n→∞

Pr
{

a <
Cρ

1 (n)

n
≤ b

}
=

∫ b

a

dx

2
√

1− x
.

Fix 0 < a < b < 1, then

Pr
{

a <
Cρ

1 (n)

n
≤ b

}
=

bn∑

`>an

Pr
{

Cρ
1 (n) = `

}
. (2.17)
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Now in [11] we established that

Pr
{

Cρ
1 (n) = `

}
=

`

n
Pr

{
Bρ

`

}
Pr

{ ∑̀
i=1

Dρ
i = `

∣∣∣
n∑

i=1

Dρ
i = n

}
(2.18)

where the variables Dρ
1, ..., D

ρ
n are as defined in Fact 1. To evaluate the right

hand side of (2.18) we divide the calculation into two parts. First, it follows
from the Stirling’s formula that provided an < ` ≤ bn

Pr
{
Bρ

`

}
=

`−1∑

k=1

ρk(1 + ρ)
(`)k

(`ρ + k)k+1

+
ρ``!Γ(`ρ)

`Γ(` + `ρ)

=
`−1∑

k=1

1

`

(
1 + ρ

ρ

)
(1− 1

`
)(1− 2

`
) · · · (1− k−1

`
)

(1 + k
`ρ

)(1 + k−1
`ρ

) · · · (1 + 1
`ρ

)
+ ε1(`, n, ρ) (2.19)

where |ε1(`, n, ρ)| ≤ Ce−an
√

bn and C is a constant which does not depend
on a, b, or n. We divide the sum on the right hand side of (2.19) into two
parts. As in the proof of Theorem 1 (i), let λ(n) ≡ min{n, ρn} and consider

Σ(1) ≡ 1

`

(
1 + ρ

ρ

) `−1∑

k>(λ(n))5/8

(1− 1
`
)(1− 2

`
) · · · (1− k−1

`
)

(1 + k
`ρ

)(1 + k−1
`ρ

) · · · (1 + 1
`ρ

)
. (2.20)

Next, observe that for k > (λ(n))5/8 we have

(1− 1
`
)(1− 2

`
) · · · (1− k−1

`
)

(1 + k
`ρ

)(1 + k−1
`ρ

) · · · (1 + 1
`ρ

)

≤ (1− 1
n
) · · · (1− bλ(n)5/8c

n
)

(1 + dλ(n)5/8e
ρn

) · · · (1 + 1
ρn

)

(
1− dλ(n)5/8e

n

1 + dλ(n)5/8e
ρn

)k−dλ(n)5/8e

≤ exp(−C(λ(n))1/4)

(
1− dλ(n)5/8e

n

1 + dλ(n)5/8e
ρn

)k−dλ(n)5/8e

where C is a constant that does not depend on a, b, or n. Using this bound
for the terms in the summation on the right hand side of (2.20), we obtain,
after summing over k,

Σ(1) ≤
(

1 + ρ

ρ`

)
2(λ(n))3/8 exp(−C(λ(n))1/4). (2.21)
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On the other hand, provided an < ` ≤ bn and 1 ≤ k ≤ (λ(n))5/8, we have

(1− 1
`
)(1− 2

`
) · · · (1− k−1

`
)

(1 + k
`ρ

)(1 + k−1
`ρ

) · · · (1 + 1
`ρ

)
=

exp
(
−k(k−1)

2`
+ O

(
1

a(λ(n))1/8

))

exp
(

k(k+1)
2`ρ

+ O
(

1
a(λ(n))1/8

))

= exp

(
−

(
1 + ρ

ρ

)
k2

2`

)
(1 + ε3(k, `, ρ))

where |ε3(k, `, ρ)| ≤ C(a)(λ(n))−1/8 and C(a) is a constant which depends
on a but not on n or λ(n). It follows that

Σ(2) ≡
(λ(n))5/8∑

k=1

1

`

(
1 + ρ

ρ

)
(1− 1

`
)(1− 2

`
) · · · (1− k−1

`
)

(1 + k
`ρ

)(1 + k−1
`ρ

) · · · (1 + 1
`ρ

)

=

√
1 + ρ

ρ`

(λ(n))5/8∑

k=1

√
n

`

√
1 + ρ

ρ
exp

(
−

(
1 + ρ

ρ

)
k2

2`

)
1√
n

(1 + ε3(k, `, ρ))

=

√
1 + ρ

ρ`

∫ ∞

0

√
n

`
exp

(
−y2n

2`

)
dy · (1 + ε4(`, n, ρ))

=

√
π(1 + ρ)

2ρ`

(
1 + ε4(`, n, ρ)

)
(2.22)

where |ε4(`, n, ρ)| ≤ C(a)(λ(n))−1/8 and C(a) is a constant which depends
on a but not on n or λ(n). Combining (2.19), (2.21), and (2.22)

Pr
{Bρ

`

}
=

√
π(1 + ρ)

2ρ`

(
1 + ε5(`, n, ρ)

)
+ ε1(`, n, ρ) (2.23)

where
∣∣ε5(`, n, ρ)

∣∣ ≤ C(a)(λ(n))−1/8 and C(a) is a constant which depends
on a but not on n or λ(n).

Next, provided an < ` ≤ bn, we obtain using Stirling’s formula

Pr
{ ∑̀

i=1

Dρ
i = `

∣∣∣
n∑

i=1

Dρ
i = n

}
=

(
n

`

)
Γ(` + `ρ)Γ(n− ` + (n− `)ρ)Γ(nρ)

Γ(`ρ)Γ((n− `)ρ)Γ(n + nρ)

=
1√
2π

√
n

`(n− `)

√
ρ

1 + ρ

(
1 + ε6(`, n, ρ)

)
(2.24)
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where
∣∣ε6(`, n, ρ)

∣∣ ≤ C(a, b)/λ(n) and C(a, b) is a constant which depends on
a and b, but not on λ(n). It follows from (2.18), (2.23) and (2.24) that for
an < ` ≤ bn,

Pr
{
Cρ

1 (n) = `
}

=
1

2n

1√
1− `/n

(
1 + ε7(`, n, ρ)

)
+ ε8(`, n, ρ) (2.25)

where
∣∣ε7(`, n, ρ)

∣∣ ≤ C(a, b)(λ(n))−1/8,
∣∣ε8(`, n, ρ)

∣∣ ≤ C(a, b)e−an and C(a, b)
is a constant which depends on a and b but does not depend on n or λ(n).
Part (i) now follows from (2.17) and (2.25).

Suppose now that ρn → β > 0 as n →∞. First we show that the limiting
distribution of Cρ

1 (n)/n has an atom at 1. As in the proof of Theorem 2 (iii),
it follows from dominated convergence that

lim
n→∞

Pr
{
Cρ

1 (n) = n
}

= lim
n→∞

Pr
{Bρ

n

}

= lim
n→∞

n∑

k=1

Pr
{
Nσ(k) = 1

}
Pr

{
XD̂(ρ,n)

n = k
}

=
∞∑

k=1

βk−1

(β + k)k

. (2.26)

Next suppose 0 < x < 1 is fixed and ` = bxnc. Since ρn → β, we have
ρ` → xβ as n →∞. So it follows from (2.26), that

lim
n→∞

Pr
{Bρ

`

}
=

∞∑

k=1

(xβ)k−1

(xβ + k)k

. (2.27)

Now, using Stirling’s formula, we obtain

Pr
{ ∑̀

i=1

Dρ
i = `

∣∣∣
n∑

i=1

Dρ
i = n

}
=

(
n

`

)
Γ(` + `ρ)Γ(n− ` + (n− `)ρ)Γ(nρ)

Γ(`ρ)Γ((n− `)ρ)Γ(n + nρ)

∼ `xβ(n− `)(1−x)β

nβ

n

`(n− `)

Γ(β)

Γ(xβ)Γ((1− x)β)

∼ 1

xn

(
x

1− x

)xβ

(1− x)β−1 Γ(β)

Γ(xβ)Γ((1− x)β)
(2.28)

It follows from (2.18), (2.27) and (2.28) that

Pr
{
Cρ

1 (n) = `
} ∼ 1

n

Γ(β)

Γ(xβ)Γ((1− x)β)

(
x

1− x

)xβ

(1− x)β−1

∞∑

k=1

(xβ)k−1

(xβ + k)k

and (2.15) implies the result immediately.
Finally, part (iii) is equivalent to part (iii) of Theorem 2.
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We can generalise Theorem 3 (i) as follows. For n > 1 and k > 1, define
Cρ

k(n) recursively as follows: If [n] \ (Cρ
1(n) ∪ · · · ∪ Cρ

k−1(n)) 6= ∅, let Cρ
k(n)

denote the vertex set of the connected component in Gρ
n which contains the

smallest element of [n] \ (Cρ
1(n) ∪ · · · ∪ Cρ

k−1(n)); otherwise, set Cρ
k(n) = ∅.

For all k ≥ 1, let Cρ
k(n) =

∣∣Cρ
k(n)

∣∣. It follows from Theorem 3 in [11] that
for 1 ≤ k ≤ n and `1, `2, . . . , `k are such that `i ≥ 1 for i = 1, 2, ..., k, and∑k

i=1 `i ≤ n, we have

Pr
{
Cρ

1 (n) = `1, ..., C
ρ
k(n) = `k

}
=

k∏
i=1

Pr
{
Cρ

1 ( n− ti−1) = `i

}
, (2.29)

where t0 = 0 and ti ≡ `1 + ... + `i , i = 1, 2, ..., k. Thus from (2.25) and
(2.29) we obtain

lim
n→∞

Pr

{
ai <

Cρ
i (n)

n− Cρ
1 (n)− · · · − Cρ

i−1(n)
< bi, 1 ≤ i ≤ t

}

=
t∏

i=1

∫ bi

ai

1

2
√

1− x
dx ,

and hence, using tedious but standard arguments (see, for example [9]), one
can show the generalization of Theorem 5 from [11]:

Theorem 4. Suppose that ρn →∞ as n →∞ . Then the joint distribution
of the normalized order statistics for the component sizes in Gρ

n converges to
the Poisson-Dirichlet (1/2) distribution on the simplex

∇ =
{
{xi} :

∑
xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1

}
.

It follows from Theorem 3 (ii), that when ρn → β > 0 as n → ∞,
Cρ

1 (n)/n converges in distribution to a variable Zβ which has an atom at 1
and a density on the interval (0, 1) given by

f(x) =
Γ(β)

Γ(xβ)Γ((1− x)β)

(
x

1− x

)xβ

(1− x)β−1

∞∑

k=1

(xβ)k−1

(xβ + k)k

and we note that numerical calculation of
∫ 1

0
f(x)dx using Mathematica has

confirmed this result. We also note that it follows from Stirling’s formula
and (2.16) that Zβ converges in distribution as β → ∞ to the Beta( 1/2)
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distributed random variable B with density f(x) = 1/(2
√

1− x) on (0, 1),
which was defined in Theorem 3 (i).

It follows from Theorem 1 that as ρn → ∞, the number of cyclic points,
Xρ

n, is roughly
√

φ(n) whereas we see from Theorem 3 that Cρ
1 (n) is always

of order n, no matter how slowly φ(n) tends to ∞. This suggests that it is
the structure of the typical component which is sensitive to the rate at which
φ(n) tends to ∞, rather than the total size of the component. In order
to investigate more carefully the dependence of the structure of a typical
component on the parameter ρ, we introduce the following notation. For
any f ∈ Mn, let L1(f) denote the set of cyclic vertices in the component of
G(f) which contains the vertex 1. Define `(f) = |L1(f)| and define h(f), the
height of vertex 1 in G(f), by

h(f) = min{k ≥ 0 : f (k)(1) ∈ L(f)}.
We also define, for any f ∈Mn, the random mapping tree of vertex 1 in G(f)
as follows. Start with the digraph G(f). For every cyclic vertex v ∈ G(f),
delete the directed edge in G(f) from v to f(v). This yields a forest of
directed trees on n labelled vertices which are rooted at the cyclic vertices of
G(f). We say that the tree in this forest which contains the vertex labelled 1
is the random mapping tree of vertex 1 in G(f). Let Yn(f) denote the vertex
set of this tree and define Yn(f) ≡ |Yn(f)| to be its size. Finally, we define
the local structure random variables for Gρ

n by `ρ
n ≡ `(T ρ

n), hρ
n ≡ h(T ρ

n), and
tρn ≡ Yn(T ρ

n).

Theorem 5. Let `ρ
n denote the number of cyclic vertices of Gρ

n in the con-
nected component which contains the vertex labelled 1. Fix 0 < x < ∞.

(i) Suppose that ρn → ∞ as n → ∞ and let φ(n) = ρn/(1 + ρ). If
k = bx

√
φ(n)c, then

Pr
{
`ρ
n = k

} ∼ 1√
φ(n)

∫ ∞

x

e−u2/2du.

(ii) Suppose that ρn → β > 0 as n →∞, then for k ≥ 1

lim
n→∞

Pr
{
`ρ
n = k

}
=

∞∑

j=k

βj−1

(β + j)j

.
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(iii) Suppose that ρn → 0 as n →∞, then

lim
n→∞

Pr
{
`ρ
n = 1

}
= 1 .

Proof. We sketch the proof. It was shown in [12] that for ρ > 0 and for
1 ≤ k ≤ n

Pr
{
`ρ
n = k

}
=

1

n

n−1∑

j=k

ρj(1 + ρ)(n)j+1

(nρ + j)j+1

+
1

n

ρk(n)k

(nρ + k − 1)k

=
n−1∑

j=k

(1 + ρ)

nρ

(1− 1
n
)(1− 2

n
) · · · (1− j

n
)

(1 + j
nρ

)(1 + j−1
nρ

) · · · (1 + 1
nρ

)
+

1

n

ρk(n)k

(nρ + k − 1)k

.

In each of the three cases it is straightforward to establish the asymptotic
expression for the above sum by calculations similar to those in the proofs
of Theorem 1 and Theorem 2 (iii).

Theorem 6. Let hρ
n denote the height of vertex 1 in Gρ

n. Fix 0 < x < ∞.

(i) Suppose that ρn → ∞ as n → ∞ and let φ(n) = ρn/(1 + ρ). If
k = bx

√
φ(n)c, then

Pr
{
hρ

n = k
} ∼ 1√

φ(n)

∫ ∞

x

e−u2/2du .

(ii) Suppose that ρn → β > 0 as n →∞, then for k ≥ 1

lim
n→∞

Pr
{
hρ

n = k
}

=
∞∑

j=k

βj−1

(β + j)j

and lim
n→∞

Pr
{
hρ

n = 0
}

= 0 .

(iii) Suppose that ρn → β > 0 as n →∞, then

lim
n→∞

Pr
{
hρ

n = 1
}

= 1 .

Proof. This result follows from the following fact which was proved in [12]:
Suppose that ρ > 0, then for 1 ≤ k ≤ n− 1

Pr
{
hρ

n = k
}

=
1

n

n−1∑

j=k

ρj(1 + ρ)(n)j+1

(nρ + j)j+1
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and

Pr
{
hρ

n = 0
}

=
1

n

n∑
j=1

ρj(n)j

(nρ + j − 1)j

.

Again, like in the proof of the previous theorem, in all three cases one can
easily obtain the asymptotic expressions for the above sums by calculations
similar to those in the proofs of Theorem 1 and Theorem 2 (iii).

To investigate the distribution of tρn, we recall that it follows from Fact 1

that tρn
d∼ Y D̂ρ(n) and Xρ

n
d∼ XD̂ρ(n) where Y D̂ρ(n) ≡ Yn(T

D̂ρ(n)
n ) and XD̂ρ(n) ≡

Xn(T
D̂ρ(n)
n ). The distribution of tρn is obtained from the following lemma in

which we obtain the joint distribution of XD̂ρ(n) and Y D̂ρ(n).

Lemma 1. Let Y D̂ρ(n) denote the size of random mapping tree of vertex 1

in G
D̂ρ(n)
n .

(a) For 1 < ` < n and 1 < k ≤ n− ` + 1

Pr
{
Y D̂ρ(n) = `, XD̂ρ(n) = k

}

=
k`

n(`− 1)
E

(
D̂ρ

1,`(D̂
ρ
1,` − 1)

)
Pr

{
XD̂ρ(n−`) = k − 1

}
Pr

{∑̀
i=1

D̂ρ
i,n = `

}
.

(b) For ` = 1 and 1 < k ≤ n

Pr
{
Y D̂ρ(n) = 1, XD̂ρ(n) = k

}
=

k

n
Pr

{
XD̂ρ(n−1) = k − 1

}
Pr

{
D̂ρ

1,n = 1
}
.

(c)

Pr
{
Y D̂ρ(n) = n, XD̂ρ(n) = 1

}
= Pr

{
XD̂ρ(n) = 1

}
.

Proof. Let YD̂ρ(n) ≡ Yn(T
D̂ρ(n)
n ) denote the vertex set of the random mapping

tree in G
D̂ρ(n)
n which contains vertex 1 and let LD̂ρ(n) denote the set of cyclic

vertices in G
D̂ρ(n)
n . Also, for 1 ≤ ` ≤ n and 1 ≤ k ≤ n− ` + 1, let

E(k, `, n) ≡ {YD̂ρ(n) = [`], LD̂ρ(n) = {1} ∪ {` + 1, ` + 2, . . . , ` + k − 1}} ,
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where [`] = {1, 2, . . . , `}. We note that it follows from the exchangeability
of the variables D̂ρ

1,n, D̂ρ
2,n, ..., D̂

ρ
n,n and (1.2) that the distribution of the cor-

responding digraph G
D̂ρ(n)
n is invariant under re-labelling of the vertices of

the G
D̂ρ(n)
n . So, for 1 ≤ ` ≤ n and 1 ≤ k ≤ n− ` + 1, we have

Pr
{
Y D̂ρ(n) = `, XD̂ρ(n) = k

}
= `

(
n− 1

`− 1

)(
n− `

k − 1

)
Pr

{E(k, `, n)
}

(2.30)

where
(

n−1
`−1

)
is the number of ways to choose the vertices, other than vertex 1,

in the random mapping tree containing 1, ` is the number of ways to choose
the ‘root’ for this tree, and

(
n−`
k−1

)
is the number of ways to choose the other

vertices, in addition to the root of the tree, which form the cyclic vertices of

G
D̂ρ(n)
n . Given the event

{
D̂ρ(n) = ~d

}
where ~d = (d1, d2, . . . , dn) is a vector

of non-negative integers such that
∑n

i=1 di = n, the event E(k, `, n) occurs
only if it is possible to construct a directed tree, rooted at vertex 1, on the
vertices [`] with in-degree sequence (d1 − 1, d2, . . . , d`). In addition, there
must be a directed edge from a cyclic vertex to the root 1 (since 1 must also
be a cyclic vertex). It follows that we must have

∑`
i=1 di = ` and hence,

E(k, `, n) ⊆
{ ∑̀

i=1

D̂ρ
i,n = `

}
=

{ ∑̀
i=1

D̂ρ
i,n = `,

n∑

i=`+1

D̂ρ
i,n

}
.

So

Pr
{
E(k, `, n)

}
= Pr

{
E(k, `, n)

∣∣ ∑̀
i=1

D̂ρ
i,n = `

}
Pr

{ ∑̀
i=1

D̂ρ
i,n = `

}
. (2.31)

Now in the first case, when 1 < ` < n and 2 ≤ k ≤ n− `− 1 we have

Pr
{
E(k, `, n)

∣∣ ∑̀
i=1

D̂ρ
i,n = `

}
(2.32)

=
∑

~d: d1+...+d`=`,
d`+1+...+dn=n−`, d1≥2

Pr
{
E(k, `, n)

∣∣ D̂ρ(n) = ~d
}

Pr
{

D̂ρ(n) = ~d
∣∣ ∑̀

i=1

D̂ρ
i,n = `

}
.

To compute Pr
{E(k, `, n) | D̂ρ(n) = ~d

}
for some fixed ~d, recall that given

the event
{
D̂ρ(n) = ~d

}
, the distribution of T

D̂ρ(n)
n is uniform on Mn(~d ). So
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it is enough to count the number of mappings f in Mn(~d ) such that the
corresponding digraph Gn(f) has the required structure.

Let T`(d1 − 1, d2, ..., d`) denote the set of directed trees on the vertices
{1, 2, . . . , `} which are rooted at the vertex 1 and have in-degree sequence
(d1−1, d2, . . . , d`), and letMk−1

n−`(d`+1, d2, . . . , dn) denote the set of mappings
from

{
`+1, `+2, . . . , n

}
into

{
`+1, `+2, . . . , n

}
with in-degree sequence

(d`+1, . . . , dn) and cyclic vertices
{
` + 1, ` + 2, . . . , ` + k − 1

}
. Given t ∈

T`(d1−1, d2, . . . , d`) and g ∈Mk−1
n−`(d`+1, . . . , dn) there are k−1 ways to map

the root 1 of t to a cyclic vertex of g to create a mapping f ∈ Mn(~d ) such
that Gn(f) has the required structure. Specifically, if i is a cyclic vertex for g,
we map 1 to g(i) and i to 1. In addition, by mapping root 1 to itself, the tree
t becomes a random mapping component and, with g, this also determines a
mapping f ∈Mn(~d ) with the required structure. It follows that

Pr
{
E(k, `, n)

∣∣ D̂ρ(n) = ~d
}

=
k ·

∣∣T`(d1 − 1, d2, ..., d`)
∣∣ ·

∣∣Mk−1
n−`(d`+1, ..., dn)

∣∣
n!(

∏n
i=1 di!)−1

=

(
n

`

)−1
k

`(`− 1)
· d1(d1 − 1)

∣∣Mk−1
n−`(d`+1, ..., dn)

∣∣
(n− `)!(

∏n
i=`+1 di!)−1

(2.33)

where the last equality follows from the identity

∣∣T`(d1 − 1, d2, ..., d`)
∣∣ =

(`− 2)!

(d1 − 2)!d2! · · · d`!

(see [12], Lemma 3.1). Next, it follows from the construction of the variables
D̂ρ

1,n, D̂ρ
2,n, ..., D̂ρ

n,n and the independence of the variables Dρ
1, D

ρ
2, .. that

Pr
{

D̂ρ(n) = ~d
∣∣∣
∑̀
i=1

D̂ρ
i,n = `

}
= Pr

{
D̂ρ(n) = ~d

∣∣∣
∑̀
i=1

D̂ρ
i,n = `,

n∑

i=`+1

D̂ρ
i,n = n− `

}

= Pr
{

Dρ
i = di, 1 ≤ i ≤ `

∣∣∣
∑̀
i=1

Dρ
i = `

}
Pr

{
Dρ

i = di, ` + 1 ≤ i ≤ n
∣∣∣

n∑

i=`+1

Dρ
i = n− `

}
.
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Hence, it follows from (2.32) and (2.33) that

Pr
{
E(k, `, n)

∣∣∣
∑̀
i=1

D̂ρ
i,n = `

}
= (2.34)

(
n

`

)−1
k

`(`− 1)

∑
(d1,...,d`):

d1+...+d`=`, d1≥2

d1(d1 − 1) Pr
{

Dρ
i = di, 1 ≤ i ≤ `

∣∣∣
∑̀
i=1

Dρ
i = `

}
×

∑
(d`+1,...,dn):

d`+1+...+dn=n−`

∣∣Mk−1
n−`(d`+1, ..., dn)

∣∣
(n− `)!(

∏n
i=`+1 di!)−1

Pr
{

Dρ
i = di, ` + 1 ≤ i ≤ n

∣∣∣
n∑

i=`+1

Dρ
i = n− `

}
.

Now it follows from the construction of the variables D̂ρ(`) = (D̂ρ
1,`, . . . , D̂ρ

`,`)
in terms of the conditional distribution of Dρ

1, D
ρ
2, . . . , Dρ

` given the event∑`
i=1 Dρ

i = ` that

∑
(d1,...,d`):

d1+...+d`=`, d1≥2

d1(d1 − 1)Pr
{

Dρ
i = di, 1 ≤ i ≤ `

∣∣∣
∑̀
i=1

Dρ
i = `

}

= E
(
D̂ρ

1,`(D̂
ρ
1,` − 1)

)
. (2.35)

Also, by re-labelling the vertices ` + 1, ` + 2, . . . , n by 1, 2, . . . , n − `, it

follows from the construction of T
D̂ρ(n−`)
n−` that

∑
(d`+1,...,dn):

d`+1+...+dn=n−`

∣∣Mk−1
n−`(d`+1, ..., dn)

∣∣
(n− `)!(

∏n
i=`+1 di!)−1

Pr
{

Dρ
i = di, ` + 1 ≤ i ≤ n

∣∣
n∑

i=`+1

Dρ
i = n− `

}
.

= Pr
{LD̂ρ(n−`) = [k − 1]

}
(2.36)

So, now (a) of Lemma 1 follows from (2.30), (2.31) and (2.34) – (2.36).
The proof of (b) of Lemma 1 follows by a similar argument. In the case

` = 1 and 2 ≤ k ≤ n, the random mapping tree which contains vertex 1
consists of only vertex 1, which is also a cyclic vertex. So we must have
D̂ρ

1,n = 1 and equation (2.32) becomes

Pr
{E(k, 1, n)

∣∣ D̂ρ
i,n = 1

}

=
∑

~d: d1=1,
d2+...+dn=n−1

Pr
{E(k, 1, n)

∣∣ D̂ρ(n) = ~d
}
Pr

{
D̂ρ(n) = ~d

∣∣D̂ρ
1,n = 1

}
. (2.37)
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Also, since there is only one random mapping tree of size one with root 1,
equation (2.33) becomes

Pr
{
E(k, 1, n)

∣∣ D̂ρ(n) = ~d
}

=
k

n
·
∣∣Mk−1

n−1(d2, . . . , dn)
∣∣

(n− 1)!(
∏n

i=2 di!)−1
. (2.38)

Since

Pr
{

D̂ρ(n) = ~d
∣∣ D̂ρ

1,n = 1
}

= Pr
{

Dρ
i = di, 2 ≤ i ≤ n

∣∣
n∑

i=2

Dρ
i = n− 1

}
,

the part (b) of Lemma 1 now follows from (2.30), (2.31) (with ` = 1), (2.37),
and (2.38).

Finally, we note that if XD̂ρ(n) = 1 then the digraph G
D̂ρ(n)
n consists of

a directed tree rooted at the one cyclic vertex of G
D̂ρ(n)
n , i.e.

{
XD̂ρ(n) = 1

}
=

{
XD̂ρ(n) = 1, Y D̂ρ(n) = n

}
,

and so the part (c) of Lemma 1 holds, too.

It is straightforward to check that for any n > 1

E
(
D̂ρ

1,n(D̂ρ
1,n − 1)

)
=

(n− 1)(1 + ρ)

nρ + 1
,

so we obtain from Fact 1 and Lemma 1

Corollary 1. Let tρn denote the size of random mapping tree of vertex 1 in
Gρ

n. For 1 < n and 1 < ` < n

Pr
{

tρn = `
}

=
`(1 + ρ)

n(`ρ + 1)

(
1 + E(Xρ

n−`)
)
Pr

{ ∑̀
i=1

Dρ
i = `

∣∣∣
n∑

i=1

Dρ
i = n

}
.

Also

Pr
{

tρn = 1
}

=
1

n

(
1 + E(Xρ

n−1)
)
Pr

{
Dρ

1 = 1
∣∣∣

n∑
i=1

Dρ
i = n

}

and

Pr
{

tρn = n
}

=
1 + ρ

nρ + 1
.
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This leads to our last result concerning the asymptotic distribution of tρn.

Theorem 7. Let tρn denote the size of random mapping tree of vertex 1 in
Gρ

n. Fix 0 < x < 1.

(i) Suppose that ρn →∞ as n →∞, then

Pr
{
tρn = bxnc} ∼ 1

n

1

2
√

x
.

(ii) Suppose that ρn → β > 0 as n →∞, then

Pr
{
tρn = bxnc} ∼ 1

n
f(x) ,

where

f(x) =

Γ(β)

Γ(xβ)Γ((1− x)β)

1

xβ + 1

(
x

1− x

)xβ

(1− x)β−1

(
2 +

∞∑

k=1

((1− x)β)k

((1− x)β + k)k

)

and

lim
n→∞

Pr{tρn = n} =
1

β + 1
.

(iii) Suppose that ρn → 0 as n →∞, then

lim
n→∞

Pr{tρn = n} = 1 .

Proof. In the case where ρn →∞ as n →∞ and ` = bxnc, (i) follows from
Theorem 1 (i), (2.24), and Corollary 1.

Now suppose that ρn → β > 0 as n →∞ and ` = bxnc. It follows from
Theorem 1 (ii)

lim
n→∞

E(Xρ
n−`) = 1 +

∞∑

k=1

((1− x)β)k

((1− x)β + k)k

. (2.39)

So, (ii) now follows from Corollary 1, (2.28) and (2.39). Lastly, it is clear
that

lim
n→∞

Pr
{
tρn = n

}
= lim

n→∞
1 + ρ

nρ + 1
=

1

β + 1
.

Part (iii) follows immediately from the above.
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It follows from Theorem 7, that when ρn → β > 0 as n → ∞, tρn/n
converges in distribution to a random variable Wβ which has an atom at 1
and a density on the interval (0, 1) given by f(x) for 0 < x < 1 defined in
Theorem 7 (ii). Again, we have confirmed this result by numerical calculation

of
∫ 1

0
f(x)dx using Mathematica.

3 Final Remarks

Given the results above, we can now describe the ‘evolution’ of the structure
of Gρ

n when n is large and ρ → 0. Roughly speaking, when ρ =‘∞’, Gρ
n

is just the uniform random mapping digraph. Then, as long as 1
n

= o(ρ),
the structure of a typical component in Gρ

n changes as ρ decreases but the
(asymptotic) distribution of the total size of the typical component remains
the same. In particular, with high probability, the typical component in
Gρ

n has O(
√

φ(n)) cyclic vertices with directed trees attached to the cycle,
and since the size of the typical component is O(n), some of these trees are
‘large’. On the other hand, the height of a typical vertex in the component is
also O(

√
φ(n)), so the large trees in the typical component become shorter

and ‘bushier’ as ρ → 0. It also follows from Theorems 2 and 4 that with
high probability the number of components in Gρ

n is O(1
2
log(φ(n))) whereas

the (asymptotic) joint distribution of the order statistics of the normalised
component sizes is Poisson-Dirichlet(1/2) as long as 1

n
= o(ρ). Hence, as

ρ → 0, the number of components of size o(n) in Gρ
n must be decreasing

- i.e. the ‘small’ components of Gρ
n ‘coagulate’ to form larger components

as ρ → 0. Finally, it follows from Theorem 4 that Pr{Bρ
n} ∼ 0 as long as

1
n

= o(ρ).
Next, a ‘phase transition’ occurs in the structure of Gρ

n when ρ = O( 1
n
).

In this phase, with high probability, Gρ
n has O(1) components and all compo-

nents are of size O(n). On the other hand, with high probability, the height
of a typical vertex is O(1) and the typical component consists of a very small
cycle with short, large trees attached. In addition, at this threshold, we have
Pr{Bρ

n} > 0 and Pr{Bρ
n} → 1 as ρ decreases to 0. We also note that in this

phase, we have obtained some limiting distributions which are new in the
context of random mapping models. Finally, once ρ = o( 1

n
), Gρ

n is a ‘star’
graph with 1 cyclic vertex and all other vertices attached to this cyclic vertex.

It is interesting to compare the evolution of the structure of Gρ
n as ρ ↓ 0

to the evolution of the structure of Gn(λ), the random mapping with at-
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tracting center at 1, as λ ↑ ∞. First, recall that Gn(1) is just the uniform
random mapping. Now provided that λ = o(

√
n), the (asymptotic) structure

of Gn(λ) is the same as the (asymptotic) structure of the uniform model Gn.
In particular, the asymptotic distribution of the normalized size of the ‘at-
tracting’ component in Gn(λ) is the same as the asymptotic distribution of
the normalised size of the typical component in Gn (i.e. it is a Beta(1/2)) dis-
tribution). When λ = O(

√
n) the attracting component begins to ‘grow’ and

the asymptotic distribution of its normalised size is no longer Beta(1/2). In
this phase there are still O(n) vertices outside the attracting component. We
also note that the random mapping Tn(λ) restricted to the vertices outside
the attracting component is just a uniform random mapping on that subset
of vertices. Once

√
n = o(λ) but still λ = o(n) the number of vertices outside

the attracting component is O(n2/λ2) and the attracting component is the
dominant component. Finally, once λ = O(n) with high probability there
are only O(1) vertices outside the attracting component and when n = o(λ),
Gn(λ) is a ‘star’ graph.

So the evolution of both Gρ
n and Gn(λ) starts at the uniform random

mapping and ends with a ‘star’ graph. However because the structure of
Gρ

n is determined by a preferential attachment process, there is no ‘favoured’
vertex in Gρ

n at the start of the attachment process. In particular, as edges
are added to Gρ

n there is ‘competition’ between the vertices to become the
‘most attractive’ vertex. As a result, we do not see the dominance of a single
component in Gρ

n until the phase ρ = o( 1
n
). We also note that, roughly

speaking, the phase λ = O(
√

n) in the evolution of Gn(λ) is comparable to
the phase ρ = O( 1√

n
) in the evolution of Gρ

n. At this stage the Poisson-

Dirichlet limit law no longer holds for Gn(λ) whereas it continues to hold for
Gρ

n until the phase ρ = O( 1
n
). Finally, another important difference is that

Gρ
n is, in some sense, homogeneous whereas Gn(λ) is not, i.e. if we choose a

vertex v at random and remove its component from Gρ
n then conditioned on

m, the size of the removed component, the remaining subgraph will have the
same structure as Gρ

n−m. The ‘homogeneity’ of Gρ
n may partly explain the

persistence of the Poisson-Dirichlet limit law in the evolution of Gρ
n.

The persistence of the Poisson-Dirichlet(1/2) limit law for Gρ
n until the

phase ρ = O( 1
n
) is intriguing in other respects. In particular, we obtain the

Poisson-Dirichlet limit law even when 1
2
log(φ(n)) (i.e. the asymptotic av-

erage number of components in Gρ
n) tends to ∞ but φ(n) = o(n). This is

very different from the usual structure for logarithmic combinatorial struc-
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tures where the number of components in the structure is asymptotic to
θ log n and the order statistics for the normalised component sizes have a
Poisson-Dirichlet(θ) limit distribution (see [3], [4] and references therein). It
is also interesting to compare our results for Gρ

n to those obtained in [10]
via a cutting process for random mappings. In particular, we show in [10]
that once the order of the number of cyclic vertices in a random mapping
is greater than

√
n, the limit law for the order statistics of the normalized

component sizes is Poisson-Dirichlet(1) (rather than Poisson-Dirichlet(1/2)).
In contrast, our results for Gρ

n show that even when Gρ
n has o(

√
n) cyclic

vertices the Poisson-Dirichlet(1/2) limit law can still hold.
Finally, we mention some possible directions for future work on random

mappings with preferential attachment. First, we note that our results do
not yield much information about the distribution of number component of
size o(n). However, in light of Theorems 2 and 4, it seems unlikely that we
can approximate the joint distribution of numbers of ‘small’ components by a
logarithmic structure. In a different direction, it would be interesting to use
the ‘regression’ approach (see, for example [5] and [6]) to study the structure
of a connected component conditioned on the size of the component. Lastly,
we note that the preferential attachment process ends when n directed edges
have been added to the digraph on n vertices. By considering the number of
edges as an additional parameter in the attachment process and by letting
the number of directed edges grow one can investigate the hitting time of
connectedness, the time that the first cycle appears, etc. Note that in this
case the attachment process does not need to finish once the the random
mapping digraph has been constructed. This approach was successfully de-
veloped in [14] for the uniform graph process associated with uniform random
mappings.
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