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Abstract

In this paper we characterise the distributions of the number of predecessors and
of the number of successors of given set of vertices, A, in the random mapping

model, T D̂
n , (see [10]) with exchangeable in-degree sequence (D̂1, D̂2, ..., D̂n).

We show that the exact formulas for these distributions and their expected
values can be given in terms of the distributions of simple functions of the
in-degree variables D̂1, D̂2, ..., D̂n. As an application of these results, we

consider two special examples of T D̂
n which correspond to random mappings

with preferential and anti-preferential attachment, and determine the exact
distributions for the number of predecessors and the number of successors
in these cases. We also characterise, for these two special examples, the
asymptotic behaviour of the expected numbers of predecessors and successors
and interpret these results in terms of the threshold behaviour of epidemic
processes on random mapping graphs. The families of discrete distributions
obtained in this paper are also of independent interest.
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1. Introduction

In this paper we investigate the distribution of the number of predecessors and
successors of vertices from a given set in random mappings with exchangeable in-
degrees. In order to describe such mappings, we begin with a general definition of
a random mapping model. For positive integer n, let [n] denote the set of integers
{1, 2, . . . , n} and let Mn denote the set of all functions from [n] into [n]. A random
mapping T : [n] → [n] is a random element of the space of mappings Mn. We note
that any f ∈Mn can be represented as a directed graph, G(f), on vertices 1, 2, . . . , n
such that there is a directed edge from vertex i to j if and only if f(i) = j. So, if
T is a random mapping on [n], then G(T ) is a random directed graph on n labelled
vertices. Since each vertex in G(T ) has out-degree 1, the components of the random
digraph G(T ) consist of directed cycles with directed trees attached to the cycles.
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Various random mapping models have been studied since the 1950s and the structure
of their corresponding digraphs have received much attention in the literature, see for
example [6, 15, 19, 23, 24, 27, 29] and the references therein. In particular, these
models have been considered as models for epidemic processes and they have a natural
applications in the analysis of cryptographic systems (e.g. DES), in applications of
Pollard’s algorithm, and in random number generation. In the context of applications,
two statistics of particular interest for a random mapping T are the number of prede-
cessors and the number of successors in the digraph G(T ) of a set of vertices A ⊆ [n].
In the case of the uniform mapping Tn : [n] → [n], where Pr{Tn = f} = 1

nn for
each f ∈ Mn, the exact and asymptotic distributions of the number of predecessors
and the number of successors of vertices from a given set in Gn have been extensively
investigated (see [3, 4, 6, 8, 21, 22, 25]). In another direction, these variables have been
also investigated for the evolutionary model, Tn,q : [n] → [n], which is a generalization
of the uniform model. The model Tn,q depends on an additional parameter 0 ≤ q ≤ 1
and is defined so that for 1 ≤ i ≤ n, Pr{Tn,q(i) = i} = q and for 1 ≤ i, j ≤ n such
that i 6= j, Pr{Tn,q(i) = j} = 1−q

n−1 . Clearly, for Tn,q the distributions of the numbers
of predecessors and of successors will also depend on the parameter 0 ≤ q ≤ 1 and this
dependence has been characterised in [16, 17].

Both the uniform model Tn and the evolutionary model Tn,q described above are
examples of random mappings with independent vertex choices. In this article we
consider, instead, the structure of random mappings with exchangeable in-degrees
where vertex choices are not necessarily independent. This class of random mappings
was introduced in [10] (see also [11, 12]) and can be defined as follows: Suppose thatf ∈
Mn, then for 1 ≤ i ≤ n, we let di(f) denote the in-degree of vertex i in the functional
digraph G(f) which represents the mapping f , and define ~d(f) ≡ (d1(f), . . . , dn(f)).
Also, given a vector ~d ≡ (d1, d2, . . . , dn) of non-negative integers such that

∑n
i=1 di = n,

define
Mn(~d ) ≡

{
f ∈Mn : ~d(f) = ~d

}
to be the set of all mappings f ∈Mn with in-degree sequence ~d and note that the size
of the set Mn(~d ) is given by

|Mn(~d )| = n!∏n
i=1 di!

.

Now suppose that D̂1, D̂2, . . . , D̂n is a collection of non-negative integer-valued ex-
changeable random variables such that D̂1 + D̂2 + . . . + D̂n = n. Then, given the
event {D̂i = di, i ∈ [n]} (with Pr{D̂i = di, i = 1, 2, . . . , n} > 0), we define the
conditional distribution of the random mapping T D̂

n with exchangeable degree sequence
(D̂1, D̂2, . . . , D̂n) to be the uniform distribution over Mn(~d ). So, the distribution of
T D̂

n is given by

Pr
{
T D̂

n = f
}

=
∏n

i=1

(
di(f)

)
!

n!
Pr
{
D̂i = di(f), 1 ≤ i ≤ n

}
for any f ∈Mn.

One of the most important and attractive features of the random mapping T D̂
n ,

as defined above, is that many distributions of statistics related to the structure of
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GD̂
n ≡ G(T D̂

n ) (e.g. number of components in GD̂
n , size of a typical component in GD̂

n ,
etc) can be expressed in terms of a calculus based on the joint distribution of the
variables (D̂1, ..., D̂n). In addition, this calculus turns out to be straightforward to
use for a large class of random mappings with exchangeable in-degrees which can be
constructed as follows: Suppose that D1, D2, . . . , Dn are i.i.d. non-negative integer-
valued random variables with Pr

{∑n
i=1 Di = n

}
> 0, and let D̂1, D̂2, . . . , D̂n be

a sequence of random variables with joint distribution given by

Pr
{

D̂i = di, 1 ≤ i ≤ n
}

= Pr
{

Di = di, 1 ≤ i ≤ n
∣∣∣ n∑

i=1

Di = n
}

.

Clearly, the variables D̂1, D̂2, . . . , D̂n are exchangeable with
∑n

i=1 D̂i = n, so we can
use D̂1, D̂2, . . . , D̂n to construct T D̂

n and GD̂
n . In the special case when the underlying

i.i.d. variables D1, D2, . . . , Dn have a generalised negative binomial distribution
we obtain a random mapping with ‘preferential attachment’, and when they have
a binomial Bin(m, p) distribution we obtain a random mapping with ‘anti-preferential
attachment’. For both of these natural and interesting examples, the calculus developed
for random mappings with exchangeable in-degrees has been used to obtain the ex-
act and asymptotic distributions for various structure variables associated with these
models. We also note that when the the underlying i.i.d. variables D1, D2, . . . , Dn

have a Poisson distribution, then T D̂
n corresponds to the uniform random mapping

model. So, random mappings with exchangeable in-degrees can also be viewed as
a generalisation, in a different direction, of the classical uniform model Tn.

In this paper we show that there is also a calculus for the distributions of the
number of predecessors and the number of successors of a set of vertices A ⊆ [n]
in GD̂

n ≡ G(T D̂
n ), where T D̂

n is a random mapping with exchangeable in-degrees. In
Section 2 we show exactly how these distributions depend on the joint distribution of
the exchangeable in-degree variables D̂1, D̂2, ..., D̂n for T D̂

n . In Section 3, we apply this
calculus to obtain exact formulas for the distributions of the number of predecessors and
the number of successors in the special examples of mappings with preferential and anti-
preferential attachment, respectively. We also investigate the asymptotic behaviour of
the expected value of these distributions. We also note that the discrete distributions
obtained in Section 3 are of general independent interest. Finally, in Section 4 we
discuss the application of our results to the characterisation of the threshold behaviour
of epidemic processes on random mapping digraphs and we suggest directions for
further research.

2. Main Results

For any f ∈Mn, we note that every component of G(f) consists of a directed cycle
with trees, directed towards the cycle, attached to it. Recall that if there exists an
oriented path from i to j in G(f), then j is said to be a successor of i while i is said
to be a predecessor of j. More formally, for any f ∈ Mn and any positive integer `,
let f (`) denote the `th iterate of f , and for every i ∈ [n], define f (0)(i) ≡ i. Let

Sf (j) ≡
{
i ∈ [n] : f (`)(j) = i for some ` ≥ 0

}
,
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denote the successors of vertex j under f , and let

Pf (i) ≡
{
j ∈ [n] : f (`)(j) = i for some ` ≥ 0

}
,

denote the predecessors of vertex i under f . Moreover, let

Sf (A) =
⋃
j∈A

Sf (i); Pf (B) =
⋃
i∈B

Pf (i) ,

i.e., with respect to the mapping f , Sf (A) is the set of all successors of the vertices of
A ⊂ [n], and Pf (B) is the set of all predecessors of the vertices of B ⊂ [n].

In this paper we are interested in the properties of GD̂
n which are described by the

random variables

sD̂
n (A) =| ST D̂

n
(A) | , pD̂

n (B) =| PT D̂
n

(B) | .

We note that it follows from the definition of T D̂
n and the exchangeability of the

variables D̂1, D̂2, ..., D̂n that the distribution of GD̂
n is invariant under relabelling of

the vertices of GD̂
n . In particular, for any sets A,B ⊂ [n], we have

sD̂
n ([a]) d∼ sD̂

n (A), pD̂
n ([b]) d∼ pD̂

n (B) , (2.1)

where a =| A | and b =| B |. Throughout this paper, for any 1 ≤ a ≤ n, sD̂
n [a]

will denote the number of successors in GD̂
n of a given a-element subset of the vertex

set of GD̂
n . Similarly, for any 1 ≤ b ≤ n, pD̂

n [b] denote the number of predecessors in
GD̂

n of a given b-element subset of the vertex set of GD̂
n . We note from (2.1) that the

distributions of sD̂
n [a] and pD̂

n [b] depend only on the parameters a, b, and n and on the
distribution of the variables D̂1, D̂2, . . . , D̂n.

In this section we obtain exact formulae for the distributions of the variables sD̂
n [a]

and pD̂
n [b] defined above. We begin by adopting some additional notation. Given

1 ≤ b ≤ n, we define the “cut” digraph GD̂
n,b by deleting, for each 1 ≤ i ≤ b, the

edge from i to T D̂
n (i) in GD̂

n , and we let T D̂
n,b denote the mapping from [b + 1, n] ≡

{b+1, b+2, . . . , n} to [n] which corresponds to the directed edges of GD̂
n,b . For 1 ≤ i ≤ n,

we also introduce the “cut” variable D̃i(n, b) ≡ di(GD̂
n,b), the in-degree of vertex i in the

“cut” graph GD̂
n,b. Finally, let Mn,b denote the set of all mappings h : [b + 1, n] → [n],

and for any non-negative integers d̃1, d̃2, ..., d̃n such that
∑n

i=1 d̃i = n− b, let

Mn,b(d̃1, d̃2, ..., d̃n) =
{
h ∈Mn,b : di(G(h)) = d̃i, 1 ≤ i ≤ n

}
.

The conditional distribution of T D̂
n,b is given by the following lemma:

Lemma 2.1. Suppose that d̃1, d̃2, ..., d̃n are non-negative integers such that
∑n

i=1 d̃i =
n− b, then for every h ∈Mn,b(d̃1, d̃2, ..., d̃n),

Pr
{
T D̂

n,b = h
∣∣ D̃i(n, b) = d̃i, 1 ≤ i ≤ n

}
=
(

n− b

d̃1, d̃2, ..., d̃n

)−1

,

i.e. given {D̃i(n, b) = d̃i, 1 ≤ i ≤ n}, the distribution of T D̂
n,b is uniform over

Mn,b(d̃1, d̃2, ..., d̃n).
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Proof. Suppose that d̃1, d̃2, . . . , d̃n are non-negative integers such that
∑n

i=1 d̃i =
n − b, and d1, d2, . . . , dn are non-negative integers such that

∑n
i=1 di = n and di ≥ d̃i

for 1 ≤ i ≤ n. Then for every h ∈Mn,b(d̃1, d̃2, . . . , d̃n) we have

Pr
{

T D̂
n,b = h

∣∣∣D̂i = di, D̃i(n, b) = d̃i, 1 ≤ i ≤ n
}

=
Pr
{

T D̂
n,b = h

∣∣∣D̂i = di, 1 ≤ i ≤ n
}

Pr
{

D̃i(n, b) = d̃i, 1 ≤ i ≤ n
∣∣∣D̂i = di, 1 ≤ i ≤ n

}
=

b!
(d1−d̃1)!···(dn−d̃n)!(

(n−b)!

d̃1!···d̃n!

)(
b!

(d1−d̃1)!···(dn−d̃n)!

) =
(

n− b

d̃1, d̃2, ...., d̃n

)−1

(2.2)

since, given D̂i = di for 1 ≤ i ≤ n, the distribution of T D̂
n is uniform overMn(d1, d2, ..., dn).

It is also clear that∑
~d s.t.

P
di=n

di≥d̃i

Pr{D̂i = di, 1 ≤ i ≤ n | D̃i(n, b) = d̃i, 1 ≤ i ≤ n} = 1. (2.3)

The result now follows from (2.2), (2.3), and the Total Probability Theorem.

Next, we give an exact formula for the distribution of pD̂
n [b] in terms of the “cut”

variables D̃1(n, b), D̃2(n, b), ..., D̃n(n, b):

Proposition 2.1. Suppose that 1 ≤ b ≤ n and let pD̂
n [b] denote the number of prede-

cessors of a given b-element subset of the vertex set in GD̂
n . Then, for 0 ≤ t ≤ n− b,

Pr
{

pD̂
n [b] = b + t

}
=

b

b + t
Pr
{ b+t∑

i=1

D̃i(n, b) = t
}

.

Proof. It follows from (2.1) that we can assume throughout the proof that the given
b-element subset of vertices is [b] = {1, 2, ..., b}. Now consider the “cut” digraph GD̂

n,b.

Since GD̂
n,b is obtained by deleting edges from 1 ≤ i ≤ b to T D̂

n (i) in GD̂
n , it follows

that GD̂
n,b is, in general, a disjoint union of F(T D̂

n,b), a directed forest of trees rooted
at the vertices labelled 1, 2, ..., b, and of components which consist of directed cycles
with directed trees attached. It follows from the definition of GD̂

n,b that PT D̂
n

([b]) is the

vertex set of F(T D̂
n,b), and so

pD̂
n [b] =

∣∣F(T D̂
n,b)
∣∣. (2.4)

Now suppose that t = 0. It follows from (2.4) that

Pr{pD̂
n [b] = b} = Pr{

∣∣F(T D̂
n,b)
∣∣ = b}

= Pr{D̃i(n, b) = 0 for 1 ≤ i ≤ b}

= Pr
{ b∑

i=1

D̃i(n, b) = 0
}

.
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So the result holds for t = 0.
Next, suppose that 1 ≤ t ≤ n − b. Since the distribution of GD̂

n is invariant under
re-labelling of the vertices, we have

Pr{pD̂
n [b] = b + t} =

(
n− b

t

)
Pr{PT D̂

n
([b]) = [b + t]}. (2.5)

Let A(b, t, n, D̂) denote the event that F(T D̂
n,b) is a directed forest on [b + t] which is

rooted on [b]. Then we have

Pr{PT D̂
n

([b]) = [b + t]} = Pr{A(b, t, n, D̂)}

= Pr
{
A(b, t, n, D̂

∣∣∣ b+t∑
i=1

D̃i(n, b) = t
}

Pr
{ b+t∑

i=1

D̃i(n, b) = t
}

(2.6)

We use the following lemma to compute the right side of (2.6):

Lemma 2.2. Suppose that 1 ≤ b ≤ n and 1 ≤ t ≤ n − b and d̃1, d̃2, ..., d̃b+t are non-
negative integers such that

∑b
i=1 d̃i ≥ 1 and

∑b+t
i=1 d̃i = t, then the number of directed

forests on [b + t], rooted at [b], with in-degree sequence given by d̃1, d̃2, ..., d̃b+t, is equal
to

(t− 1)!
d̃1!d̃2! · · · d̃b+t!

b∑
i=1

d̃i

where we interpret 0! = 1.

Proof. Suppose that 1 ≤ b ≤ n and 1 ≤ t ≤ n − b and d̃1, d̃2, ..., d̃b+t are non-
negative integers such that

∑b
i=1 d̃i ≥ 1 and

∑b+t
i=1 d̃i = t. Let Tb,t(d̃1, d̃2, ..., d̃b+t)

denote the set of directed forests on 1, 2, ..., b + t, rooted at 1, 2, ..., b with in-degree
sequence d̃1, d̃2, ..., d̃b+t and let S(d̃1, d̃2, ..., d̃b+t) denote the set of sequences of length
t such that each 1 ≤ i ≤ b + t appears d̃i times in the sequence and the last term in
the sequence is some i ∈ [b]. Using a straightforward adaptation of the Prüfer tree
code (see [26] and also [11]), we obtain a bijection between Tb,t(d̃1, d̃2, ..., d̃b+t) and
S(d̃1, d̃2, ..., d̃b+t). The result now follows since

S(d̃1, d̃2, ..., d̃b+t) =
(t− 1)!

d̃1!d̃2! · · · d̃b+t!

b∑
i=1

d̃i.

We note that Lemma 2.2 can also be proved by appealing to Moon’s formula (see [20])
for the numer of trees with a given degree sequence.

To complete the proof of Proposition 2.1, suppose that d̃1, d̃2, ..., d̃n are non-negative
integers such that

(1)
∑b

i=1 d̃i ≥ 1
(2)

∑b+t
i=1 d̃i = t

(3)
∑n

i=b+t+1 d̃i = n− b− t.
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Then it follows from Lemma 2.1 and Lemma 2.2 that

Pr
{
A(b, t, n, D̂

∣∣ D̂i(n, b) = d̃i, 1 ≤ i ≤ n
}

=

(t−1)!
Pb

i=1 d̃i

d̃1!d̃2!···d̃b+t!
× (n−b−t)!

d̃b+t+1!···d̃n!

(n−b)!

d̃1!d̃2!···d̃n!

=
(

n− b

t

)−1 1
t

b∑
i=1

d̃i. (2.7)

Finally, let d̃(b, t, n) denote the set of vectors (d̃1, d̃2, ..., d̃n) that satisfy conditions
(1)–(3) above. Then it follows from (2.7) that

Pr
{
A(b, t, n, D̂

∣∣∣ b+t∑
i=1

D̃i(n, b) = t
}

=
∑

(d̃1,d̃2,...,d̃n)∈
d̃(b,t,n)

(
n− b

t

)−1
(

1
t

b∑
i=1

d̃i

)
Pr
{

D̃i(n, b) = d̃i, 1 ≤ i ≤ n
∣∣∣ b+t∑

i=1

D̃i(n, b) = t
}

=
(

n− b

t

)−1 1
t
E

(
b∑

i=1

D̃i(n, b)
∣∣∣ b+t∑

i=1

D̃i(n, b) = t

)

=
(

n− b

t

)−1
b

b + t
. (2.8)

The last equation in (2.8) follows from the exchangeability of the variables D̃1(n, b),
D̃2(n, b), . . . , D̃n(n, b). The result now follows from (2.5), (2.6), and (2.8).

Theorem 2.1. Let pD̂
n [b] denote the number of predecessors of a given b-element subset

of the vertex set in GD̂
n . Then, for 0 ≤ t ≤ n− b,

Pr
{

pD̂
n [b] = b + t

}
=
(

n− b

t

)
b

b + t

b∑
j=0

(
b
j

)(
n

t+j

) Pr
{ b+t∑

i=1

D̂i = j + t
}

.

Moreover

E
(
pD̂

n [b]
)

= b + b

n−b∑
k=1

(n− b)k

(n)k
E
(
D̂1D̂2 . . . D̂k

)
.

Proof. As in the proof of Proposition 2.1, we can assume without loss of generality,
that the given subset of vertices is [b] = {1, 2, . . . , b}. From Proposition 2.1, we have

Pr
{

pD̂
n [b] = b + t

}
=

b

b + t
Pr
{ b+t∑

i=1

D̃i(n, b) = t
}

=
b

b + t

b∑
j=0

Pr

{
b+t∑
i=1

D̃i(n, b) = t
∣∣∣ b+t∑

i=1

D̂i = j + t

}
Pr

{
b+t∑
i=1

D̂i = j + t

}
. (2.9)

To compute the conditional probability in (2.9), it is convenient to introduce the
following urn process: Start with an urn that contains D̂i balls labelled i for 1 ≤ i ≤ n.
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Select balls sequentially from the urn such that at each step a ball is selected uniformly
and at random from the balls still in the urn. This process generates a random mapping
from [n] to [n] which is defined by mapping k ∈ [n] to the label of the ball removed from
the urn at the k-th step. It is straightforward to check that this random mapping and
T D̂

n have the same distribution. It is also clear that we can define the “cut” variables
D̃i(n, b) in terms of this urn scheme. Specifically, for 1 ≤ i ≤ n, D̃i(n, b) equals the
number of balls labelled i that are left in the urn after the first b have been removed.
So, given that

∑b+t
i=1 D̂i = j + t, we obtain

∑b+t
i=1 D̃i(n, b) = t if and only if in the first

b draws from the urn, we choose exactly b − j balls with labels that are greater than
b + t (and j balls with labels that are not greater than b + t). It follows that

Pr

{
b+t∑
i=1

D̃i(n, b) = t
∣∣∣ b+t∑

i=1

D̂i = j + t

}
=

(
j+t
j

)(
n−t−j

b−j

)(
n
b

) =
(

n− b

t

) (
b
j

)(
n

j+t

)
The first result now follows by substitution into (2.9).

To get the formula for the expectation of the number of predecessors pD̂
n [b], we

define, for i = b+1, . . . , n, Ii[b] to be the indicator variable corresponding to the event
Ai[b] =

⋃b
j=1Ai,j [b] where Ai,j [b] is the event that there is a path from i to j in GD̂

n

for which all internal vertices are in {b + 1, ..., n}. It is clear that for b + 1 ≤ i ≤ n, the
events Ai,1[b],Ai,2[b], ...,Ai,b[b] are disjoint, so

E
(
pD̂

n [b]
)

= E
(
b +

n∑
i=b+1

Ii[b]
)

= b +
n∑

i=b+1

b∑
j=1

Pr
{
Ai,j [b]

}
(2.10)

= b + b(n− b) Pr
{
Ab+1,1[b]

}
Now observe that

Pr{Ab+1,1[b]} =
n−b∑
k=1

Pr{Ab+1,1(k, [b]) (2.11)

where Ab+1,1(k, [b]) denotes the event that there is a path with k directed edges from
b + 1 to 1 in GD̂

n for which all internal vertices are in {b + 1, ..., n}. Finally, we note
that using the same approach as in [11] we have

Pr{Ab+1,1(k, [b])} =
(

n− b− 1
k − 1

)
(k − 1)!

1
(n)k

E
(
D̂1D̂2 . . . D̂k

)
. (2.12)

The result now follows from (2.10)–(2.12).

To obtain the distribution of sD̂
n [a], we exploit the following ‘duality’ (see [16]) between

the successors and predecessors of T D̂
n : For any A ⊆ [n] and B ⊆ [n] \A, with |A| = a

and |B| = b,
B ⊆ [n] \ ST D̂

n
(A) iff A ⊆ [n] \ PT D̂

n
(B) (2.13)

since each of the inclusions in (2.13) is equivalent to the statement that no vertex in
B is “reachable” from A, and therefore

Pr{B ⊆ [n] \ ST D̂
n

(A)} = Pr{A ⊆ [n] \ PT D̂
n

(B)}. (2.14)
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We also note that since the distribution of GD̂
n is invariant under re-labelling the

vertices, we have

Pr{B ⊆ [n] \ ST D̂
n

(A)} = Pr{B′ ⊆ [n] \ ST D̂
n

(A)}. (2.15)

for any other B′ ⊆ [n]\A such that |B′| = b. It follows from (2.1) and (2.15) that, since
the random variable n − sD̂

n (A) can be expressed as sums of indicators of events
that a given vertex will not be a successor of A, we have

(n− a)b Pr{B ⊆ [n] \ ST D̂
n

(A)} = Eb(n− sD̂
n (A)) = Eb(n− sD̂

n [a]) , (2.16)

where Et(X) denotes the tth factorial moment of the random variable X. By a similar
argument, we also have

(n− b)a Pr{A ⊆ [n] \ PT D̂
n

(B)} = Ea(n− pD̂
n (B)) = Ea(n− pD̂

n [b]) (2.17)

Equations (2.14), (2.16) and (2.17) give us the following useful relation between the
number of successors of the vertices A ⊆ [n], |A| = a, and the number of predecessors
of the vertices B ⊆ [n] \A, |B| = b, in terms of factorial moments:

Ea(n− pD̂
n [b])

(n− b)a
=

Eb(n− sD̂
n [a])

(n− a)b
. (2.18)

Using Theorem 2.1 and (2.16)–(2.18), we obtain the exact formulas for the distribution
and expected value of the number of successors of the vertices labelled 1, 2, ..., a in GD̂

n :

Theorem 2.2. Let sD̂
n [a] denote the number of successors of a given a-element subset

of the vertex set in GD̂
n . Then for 0 ≤ s ≤ n− a,

Pr
{

sD̂
n [a] = a + s

}
=

(
n− a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s− j

t

)
n + j − a− s

n + j − a− s + t

×
n+j−a−s∑

i=0

(
n+j−a−s

i

)(
n

t+i

) Pr
{ n+j−a−s+t∑

k=1

D̂k = i + t
}

.

Moreover

E
(
sD̂

n [a]
)

= n −
n−1−a∑

j=0

(n− a)j+1

(n)j+1

n− j

j + 1
Pr
{ j+1∑

k=1

D̂k = j
}

−
n−1−a∑

j=0

(n− a)j+1

(n)j+1
Pr
{ j+1∑

k=1

D̂k = j + 1
}

Proof. Again, it follows from (2.1) that we can assume throughout the proof that
the given a-element subset of vertices is [a] = {1, 2, ..., a}. The result now follows from
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Inclusion-Exclusion, (2.14) and (2.16):

Pr
{
sD̂

n [a] = a + s
}
= Pr

{
n− sD̂

n [a] = n− a− s
}

=
n−a∑

b=n−a−s

(
b

n− a− s

)
(−1)b−n+a+s Eb(n− sD̂

n [a])
b!

=
n−a∑

b=n−a−s

(
n− a

b

)(
b

n− a− s

)
(−1)b−n+a+s Pr

{
[a] ⊆ [n] \ PT D̂

n
([a + 1, a + b])

}

=
n−a∑

b=n−a−s

(
n− a

b

)(
b

n− a− s

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n− a− b

t

)
Pr
{
PT D̂

n
([a + 1, a + b]) = [a + 1, a + b + t]

}
=

n−a∑
b=n−a−s

(
n− a

b

)(
b

n− a− s

)
(−1)b−n+a+s (2.19)

×
n−a−b∑

t=0

(
n− a− b

t

)(
n− b

t

)−1

Pr
{
pD̂

n [b] = b + t
}

=
(

n− a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s− j

t

)
n + j − a− s

n + j − a− s + t

×
n+j−a−s∑

i=0

(
n+j−a−s

i

)(
n

t+i

) Pr
{ n+j−a−s+t∑

k=1

D̂k = i + t
}

.

The formula for the expected value of sD̂
n [a] follows immediately from Theorem 2.1

since by (2.18) we have

E
(
sD̂

n [a]
)

= n−
n−1−a∑

j=0

(n− a)j+1

(n− 1)j
Pr
{

pD̂
n [1] = j + 1

}
. (2.20)

3. Examples

In this section we consider the application of our main results to the digraph
structure of random mappings with preferential attachment and anti-preferential at-
tachment.

3.1. Random mappings with preferential attachment

The definition of random mappings preferential attachment is based upon the fol-
lowing sequential urn scheme. Start with n urns, numbered 1 to n and each containing
a ball with weight ρ, where ρ > 0 is fixed. Urns are sequentially selected and balls are
added to the urns as follows: At each stage, for 1 ≤ i ≤ n, the probability that urn
i is selected is proportional to the weight of the balls in urn i. If urn i is selected at
some stage, then a ball of weight 1 is added to urn i before the next urn selection is
made. We define the random mapping T ρ

n : [n] → [n] based on the first n selections in
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the scheme defined above. Specifically, we define

T ρ
n(i) = j

for 1 ≤ i, j ≤ n, if on the ith selection, urn j is chosen.
In order to determine the distribution of the number of predecessors and successors

of a set of vertices in Gρ
n ≡ G(T ρ

n), we use the fact (see [10]) that T ρ
n has the

same distribution as a random mapping T
D̂(ρ,n)
n , with exchangeable in-degree sequence

D̂(ρ, n) = (D̂ρ
1,n, D̂ρ

2,n, ..., D̂ρ
n,n) defined as follows. Suppose that Dρ

1 , Dρ
2 , ... are i.i.d.

random variables with a generalized negative binomial distribution given by

Pr{Dρ
1 = k} =

ρ(k)

k!

(
ρ

1 + ρ

)ρ( 1
1 + ρ

)k

for k = 0, 1, . . . , (3.1)

where ρ is a positive parameter and x(j) = x(x + 1) · . . . · (x + j − 1). Then for n ≥ 1,
let D̂(ρ, n) = (D̂ρ

1,n, D̂ρ
2,n, ..., D̂ρ

n,n) be a sequence of variables with joint distribution
given by

Pr
{
D̂ρ

i,n = di, 1 ≤ i ≤ n
}

= Pr
{

Dρ
i = di, 1 ≤ i ≤ n

∣∣∣ n∑
i=1

Dρ
i = n

}
. (3.2)

We note that since T ρ
n

d∼ T
D̂(ρ,n)
n , we also have

sρ
n[a] d∼ sD̂(ρ,n)

n [a], pρ
n[b] d∼ pD̂(ρ,n)

n [b],

where sρ
n[a] and pρ

n[b] denote the number of successors and the number of predecessors,
respectively, of given a-element and b-element vertex subsets in Gρ

n. Thus, we can
determine the distributions of sρ

n[a] and pρ
n[b] by appealing to Theorems 2.1 and 2.2

applied to G
D̂(ρ,n)
n .

Theorem 3.1. Suppose that 1 ≤ b ≤ n and let pρ
n[b] denote the number of predecessors

of the vertices from a given b-element subset of the vertex set in Gρ
n. Then, for

0 ≤ t ≤ n− b,

Pr
{
pρ

n[b] = b + t
}

=
(

n− b

t

)
b

b + t

(
ρ(b + t)

)(t)(
ρ(n− b− t)

)(n−b−t)

(ρn)(n−b)

Moreover

E
(
pρ

n[b]
)

= b

n−b∑
k=0

ρk (n− b)k

(ρn)(k)
.

Proof. Suppose that 1 ≤ b ≤ n are fixed integers and ρ > 0 is fixed. Since
T ρ

n
d∼ T

D̂(ρ,n)
n , where the distribution of D̂(ρ, n) is given by (3.2) above, we have for

0 ≤ t ≤ n− b,
Pr
{
pρ

n[b] = b + t
}

= Pr
{
pD̂(ρ,n)

n [b] = b + t
}
. (3.3)

Next we note that it follows from the definition of the i.i.d. variables Dρ
1 , Dρ

2 , ..., that
for any integers k ≥ 0 and m ≥ 1

Pr
{ m∑

i=1

Dρ
i = k

}
=

(ρm)(k)

k!

(
ρ

1 + ρ

)ρm( 1
1 + ρ

)k

. (3.4)
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So, it follows from (3.2) and (3.4) that

Pr
{ b+t∑

i=1

D̂ρ
i,n = j + t

}
=

Pr
{∑b+t

i=1 Dρ
i = j + t

}
Pr
{∑n

i=b+t+1 Dρ
i = n− j − t

}
Pr
{∑n

i=1 Dρ
i = n

}
=
(

n

j + t

)
(ρ(b + t))(j+t) (ρ(n− b− t))(n−j−t)

(ρn)(n)

=
(

n

j + t

)
(ρ(b + t))(t) (ρ(n− b− t))(n−b−t)

(ρn)(n)
(3.5)

×(t + ρ(b + t))(j) (n− b− t + ρ(n− b− t))(b−j) .

The thesis now follows from (3.3) and (3.5), Theorem 2.1, and the identity

b∑
j=0

(
b

j

)
x(j)y(b−j) = (x + y)(b)

(which follows from the fact that rising factorials are Sheffer sequences of binomial
type, see [28]).

The formula for the expectation of pρ
n[b] follows from Theorem 2.1 since (see [11])

E
(
D̂ρ

1,nD̂ρ
2,n . . . D̂ρ

k,n

)
= ρk (n)k

(ρn)(k)
.

We note that the distribution above is closely related to quasi-hypergeometric distri-
bution I (see [7] and [18] and references therein). One can easily check that the results
for the moments obtained for this distribution formally coincide with the results for
the number of predecessors but the parameters in our model are outside the range of
parameters usually given for these distributions.

In order to describe the asymptotic behaviour of E
(
pρ

n[b]
)

as n →∞, we introduce
a function f : R2

+ → R which is defined by

f(c, α) = c exp
(

αc2

2

)∫ ∞

αc

exp
(
−u2

2α

)
du. (3.6)

We note that it is an exercise in calculus to show that, for α > 0 fixed, f(c, α) increases
to 1 as c →∞. Using this fact and straightforward asymptotic calculations, we obtain
the following result from Theorem 3.1.

Corollary 3.1. Suppose that ρ > 0 is fixed.
(i) If b = o(

√
n), then

E
(
pρ

n[b]
)
∼ b

√
ρπn

2(1 + ρ)
.

(ii) If c > 0 is fixed and b = bc
√

nc, then

E
(
pρ

n[b]
)
∼ f

(
c,

ρ

1 + ρ

)
n

where f is as defined by (3.6).
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Theorem 3.2. Let sρ
n[a] denote the number of successors of the vertices from a given

a-element subset of the vertex set in Gρ
n. Then for 0 ≤ s ≤ n− a,

Pr
{
sρ

n[a] = a + s
}
=
(

n− a

s

)
(a + s)(ρ + 1)− 1

(ρn)(a+s)

s∑
j=0

(
s

j

)
(−1)j

(
ρ(a + s− j)

)(a+s−1)
.

Moreover

E
(
sρ

n[a]
)

= n−
n−a∑
j=1

(
n− a

j

)(
ρj
)(j−1)(

ρ(n− j)
)(n−j)

(ρn)(n−1)
. (3.7)

Proof. The distribution for sρ
n[a] is obtained from (2.19) and Theorem 3.1 via some

manipulation of summations. For completeness, the main steps of these manipulations
are included for the reader.

Pr
{
sρ

n[a] = a + s
}
=
(

n− a

s

) n−a∑
b=n−a−s

(
s

n− a− b

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n− a− b

t

)
b

b + t

(
ρ(b + t)

)(t)(
ρ(n− b− t)

)(n−b−t)

(ρn)(n−b)

=
(

n− a

s

) s∑
j=0

(
s

j

)
(−1)j

s−j∑
t=0

(
s− j

t

)
n + j − a− s

n− a− t

×
(
ρ(n− a− t)

)(s−j−t)(
ρ(a + t)

)(a+t)

(ρn)(a+s−j)

=
(

n− a

s

) s∑
t=0

(
s

t

)(
ρ(a + t)

)(a+t)

×
s−t∑
j=0

(
s− t

j

)
(−1)s−t−j n + j − a− s

n− a− t

(
ρ(n− a− t)

)(j)
(ρn)(a+t+j)

=
(

n− a

s

) s∑
t=0

(
s

t

)
(−1)s−t

(
ρ(a + t)

)(a+t)

(ρn)(a+t)

×

s−t∑
j=0

(
s− t

j

)
(−1)j

(
ρ(n− a− t)

)(j)
(ρn + a + t)(j)

+
ρ(s− t)

ρn + a + t

s−t∑
j=1

(
s− t− 1

j − 1

)
(−1)j−1

(
ρ(n− a− t) + 1

)(j−1)

(ρn + a + t + 1)(j−1)
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=
(

n− a

s

) s∑
t=0

(
s

t

)
(−1)s−t

(
ρ(a + t)

)(a+t)

(ρn)(a+t)

×

s−t∑
j=0

(
s− t

j

)
(−1)j

(
ρ(n− a− t)

)(j)
(ρn + a + t)(j)

+
ρ(s− t)

ρn + a + t

s−t−1∑
j=0

(
s− t− 1

j

)
(−1)j

(
ρ(n− a− t) + 1

)(j)
(ρn + a + t + 1)(j)


Now using the following identity which follows from Gauss’s Hypergeometric Theorem
(see [1], and also Frisch’s identity in [9])

N∑
j=0

(
N

j

)
(−1)j x(j)

(x + y)(j)
=

y(N)

(x + y)(N)
, (3.8)

we obtain
s−t∑
j=0

(
s− t

j

)
(−1)j

(
ρ(n− a− t)

)(j)
(ρn + a + t)(j)

=
((1 + ρ)(a + t))(s−t)

(ρn + a + t)(s−t)
.

Similarly

s−t−1∑
j=0

(
s− t− 1

j

)
(−1)j

(
ρ(n− a− t) + 1

)(j)
(ρn + a + t + 1)(j)

=
((1 + ρ)(a + t))(s−t−1)

(ρn + a + t + 1)(s−t−1)
.

Hence

Pr
{
sρ

n[a] = a + s
}

=
(

n− a

s

) s∑
t=0

(
s

t

)
(−1)s−t

(
ρ(a + t)

)(a+t)

(ρn)(a+t)

× ((1 + ρ)(a + t))(s−t−1)

(ρn + a + t)(s−t)
[s + a + ρ(a + t)− 1 + ρ(s− t)]

=
(

n− a

s

)
(1 + ρ)(s + a)− 1

(ρn)(a+t)

s∑
j=0

(
s

j

)
(−1)j

(
ρ(a + s− j)

)(a+s−1)
.

Finally, the formula for the expectation of sρ
n[a] follows from (2.20) and Theorem 3.1

for b = 1.

Corollary 3.2. Suppose that a = o(n) and ρ > 0 is fixed, then

lim
n→∞

E
(
sρ

n[a]
)

n
= 0.

Proof. Suppose that ρ > 0 is fixed and a = o(n). Then we obtain from (2.20)

E
(
sρ

n[a]
)

= n− (n− a)
n−a−1∑

j=0

(n− a− 1)j

(n− 1)j
Pr{pρ

n[1] = j + 1}. (3.9)
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It also follows from Theorem 3.1, that for fixed ρ > 0 and any fixed integer j > 0,

lim
n→∞

Pr{pρ
n[1] = j+1} =

ρ

(ρ + 1)j + ρ

(
(ρ + 1)(j + 1)

j

)(
1

1 + ρ

)j (
ρ

ρ + 1

)(ρ+1)j+ρ−j

.

So, for any ε > 0, there is some integer `(ε) > 0 such that for all large n,

Pr{pρ
n[1] ≤ `(ε))} ≥ 1− ε, (3.10)

and it follows from (3.9) and (3.10) that

E
(
sρ

n[a]
)

≤ n− (n− a)
(n− a− 1)`(ε)

(n− 1)`(ε)
Pr{pρ

n[1] ≤ `(ε)},

≤ n− (n− a)
(n− a− 1)`(ε)

(n− 1)`(ε)
(1− ε). (3.11)

The result follows, since we obtain from (3.11)

lim
n→∞

E
(
sρ

n[a]
)

n
≤ ε.

3.2. Random mappings with anti-preferential attachment

In this section we consider the digraph structure of random mappings with anti-
preferential attachment. Random mappings with anti-preferential attachment were
introduced in [10] and can be described as follows: Start with n urns, numbered 1 to
n, each containing m ≥ 1 balls where m is a fixed integer. Balls are removed one at
a time and at random from the urns in such a way that the probability that a ball is
removed from urn j in a given draw is equal to the number of balls in urn j before the
draw divided by the total number of balls still in the urns before the draw. Then, for
1 ≤ i, j ≤ n, we define Tm

n (i) = j if a ball is removed from the jth urn on the ith draw.
As in the case of random mappings with preferential attachment, it is known

(see [10]) that Tm
n has the same distribution as a random mapping T

D̂(m,n)
n , with

exchangeable in-degree sequence D̂(m,n) = (D̂m
1,n, D̂m

2,n, ..., D̂m
n,n) defined as follows.

Suppose that Dm
1 , Dm

2 , . . . are i.i.d. random variables with a binomial distribution
Bin(m, p). Then for n ≥ 1, let D̂(m,n) = (D̂m

1,n, D̂m
2,n, ..., D̂m

n,n) be a sequence of
variables with joint distribution given by

Pr
{
D̂m

i,n = di, 1 ≤ i ≤ n
}

= Pr
{

Dm
i = di, 1 ≤ i ≤ n

∣∣∣ n∑
i=1

Dm
i = n

}
. (3.12)

Again, since Tm
n

d∼ T
D̂(m,n)
n , we also have

sm
n [a] d∼ sD̂(m,n)

n [a], pm
n [b] d∼ pD̂(m,n)

n [b],

where sm
n [a] and pm

n [b] denote the number of successors and the number of predecessors,
respectively, of given a-element and b-element vertex subsets in Gm

n ≡ G(Tm
n ). Thus,

as in the case of preferential mappings, we can determine the distributions of sm
n [a]

and pm
n [b] by appealing to Theorems 2.1 and 2.2 applied to G

D̂(m,n)
n .
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Theorem 3.3. Let pm
n [b] denote the number of predecessors of the vertices from a

given b-element subset of the vertex set in Gm
n . Then, for 0 ≤ t ≤ n− b,

Pr
{
pm

n [b] = b + t
}

=
(

n− b

t

)
b

b + t

(
m(b + t)

)
t

(
m(n− b− t)

)
n−b−t

(mn)n−b
.

Moreover

E
(
pm

n [b]
)

= b
n−b∑
k=0

mk (n− b)k

(nm)k
.

Proof. Suppose that 1 ≤ b ≤ n and m ≥ 1 are fixed integers. Since Tm
n

d∼ T
D̂(m,n)
n ,

where the distribution of D̂(m,n) is given by (3.12) above, we have for 0 ≤ t ≤ n− b,

Pr
{
pm

n [b] = b + t
}

= Pr
{
pD̂(m,n)

n [b] = b + t
}
. (3.13)

Next, we note that

Pr
{ b+t∑

i=1

D̂m
i,n = j + t

}
=

Pr
{∑b+t

i=1 Dm
i = j + t

}
Pr
{∑n

i=b+t+1 Dm
i = n− j − t

}
Pr
{∑n

i=1 Dm
i = n

}
=

(
(b+t)m

j+t

)
pj+t(1− p)(b+t)m−j−t

(
(n−b−t)m

n−j−t

)
pn−j−t(1− p)(n−b−t)m−n+j+t(

nm
n

)
pn(1− p)nm−n

=
(

n

j + t

)
((b + t)m)j+t ((n− b− t)m)n−j−t

(nm)n

=
(

n

j + t

)
((b + t)m)t ((n− b− t)m)n−b−t

(nm)n

×((b + t)m− t)j ((n− b− t)m− n + b + t)b−j .

Equation (3.13), Theorem 2.1 and the Vandermonde’s identity

b∑
j=0

(
b

j

)
(x)j(y)b−j = (x + y)b ,

(which follows from the fact that the falling factorials are also Sheffer sequences of
binomial type), lead immediately to the thesis. The formula for the expectation of
pρ

n[b] follows from Theorem 2.1 since (see [11])

E
(
D̂m

1,nD̂m
2,n . . . D̂m

k,n

)
= mk (n)k

(nm)k
.

We note that the distribution above is closely related to quasi–Polya distribution I
(see [7] and [18] and references therein). One can easily check that the results for
the moments obtained for this distribution formally coincide with the results for the
number of predecessors but the parameters in our model are outside the range of
parameters usually given for these distributions.

Using straightforward asymptotic calculations, we obtain the following result from
Theorem 3.3.
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Corollary 3.3. Suppose that m ≥ 2 is fixed integer.
(i) If b = o(

√
n), then

E
(
pm

n [b]
)
∼ b

√
mnπ

2(m− 1)
.

(ii) If c > 0 is fixed and b = bc
√

nc, then

E
(
pm

n [b]
)
∼ f

(
c,

m

m− 1

)
n

where f is as defined by (3.6).

Theorem 3.4. Let sm
n [a] denote the number of successors of the vertices from a given

a-element subset of the vertex set in Gm
n . Then for 0 ≤ s ≤ n− a,

Pr
{
sm

n [a] = a + s
}
=
(

n− a

s

) s∑
j=0

(
s

j

)
(−1)j (m− 1)(a + s) + j

(mn)a+s

(
m(a + s− j)

)
a+s−1

.

Moreover

E
(
sm

n [a]
)

= n−
n−a∑
j=1

(
n− a

j

)(mj
)
j−1

(
m(n− j)

)
n−j

(mn)n−1
.

Proof. First, we note that by (2.19) we have

Pr
{
sm

n [a] = a + s
}

=
n−a∑

b=n−a−s

(
n− a

b

)(
b

n− a− s

)
(−1)b−n+a+s

×
n−a−b∑

t=0

(
n− a− b

t

)(
n− b

t

)−1

Pr
{
pm

n [b] = b + t
}

Next, applying Theorem 3.3 and manipulating the summations above as in the proof
of Theorem 3.2, we obtain

Pr
{
sm

n [a] = a + s
}

=
(

n− a

s

) s∑
t=0

(
s

t

) (−1)s−t
(
m(a + t)

)
a+t

(mn)a+t

×

s−t∑
j=0

(
s− t

j

)
(−1)j

(
m(n− a− t)

)
j

(mn− a− t)j

+
m(s− t)

mn− a− t

s−t−1∑
j=0

(
s− t− 1

j

)
(−1)j

(
m(n− a− t)− 1

)
j

(mn− a− t− 1)j


Now using the following identity which also follows from Gauss’s Hypergeometric
Theorem (see [1]; see also [9])

N∑
j=0

(
N

j

)
(−1)j (x)j

(y + x)j
=

(y)N

(x + y)N
,
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we obtain

s−t∑
j=0

(
s− t

j

)
(−1)j

(
m(n− a− t)

)
j

(mn− a− t)j
=

(
(m− 1)(a + t)

)
s−t

(mn− a− t)s−t
.

Similarly

m(s− t)
mn− a− t

s−t−1∑
j=0

(
s− t− 1

j

)
(−1)j

(
m(n− a− t)− 1

)
j

(mn− a− t− 1)j

=
m(s− t)

mn− a− t

(
(m− 1)(a + t)

)
s−t−1

(mn− a− t− 1)s−t−1

= m(s− t)

(
(m− 1)(a + t)

)
s−t−1

(mn− a− t)s−t
.

Hence

Pr
{
sm

n [a] = a + s
}

=
(

n− a

s

) s∑
t=0

(
s

t

) (−1)s−t
(
m(a + t)

)
a+t

(mn)a+t

×
(
(m− 1)(a + t)

)
s−t−1

(mn− a− t)s−t
[(m− 1)(a + t)− s + t + 1 + m(s− t)]

=
(

n− a

s

)
(m− 1)(a + s) + 1

(mn)a+s

s∑
j=0

(
s

j

)
(−1)j

(
m(a + s− j)

)
a+s−1

.

Finally, the formula for the expectation of sm
n [a] follows from (2.20) and Theorem 3.3

for b = 1.

Corollary 3.4. Suppose that a = o(n) and m > 1 is a fixed positive integer, then

lim
n→∞

E
(
sm

n [a]
)

n
= 0.

Proof. The proof of the result is analogous to the proof of Corollary 3.2 and follows
from the fact that, in this case, for fixed j ≥ 0,

lim
n→∞

Pr{pm
n [1] = j + 1} =

1
(m− 1)j

(
mj + m

m

)
1

j + 1

(
1− 1

m

)mj+m

.

4. Final Remarks and Discussion

In this paper we have shown that for a random mapping, T D̂
n , with exchangeable

in-degrees, the exact distributions and expected values of the numbers of successors
and of predecessors of a set of vertices A in GD̂

n can be expressed in terms of the
joint distribution of the in-degree variables D̂1, D̂2, ..., D̂n. Since the uniform random
mapping Tn is a special case of the model T D̂

n , our results immediately generalise the
known results for Tn. As an application of these results, we have also obtained the
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distributions of these variables for the important special examples, T ρ
n and Tm

n , of
random mappings with preferential and anti-preferential attachment, respectively. We
note that these results generalise earlier work in [11] on the numbers of successors
and predecessors of a single vertex in T ρ

n and Tm
n , respectively. However, different

techniques were required in this paper and the results obtained above, along with
the results in [11], lead to interesting identitites when we consider the predecessors
and successors of a single vertex. In addition, we have characterised for T ρ

n and Tm
n ,

the asymptotic behaviour of the expected values of the numbers of predecessors and
successors. We note that for these models, one can also consider the asymptotic
distributions of these variables, but these calculations are outside the scope of this
paper.

In this paper, we are interested in the asymptotic behaviour of the expected value
for the numbers of predecessors and of successors in a random mapping because this
behaviour is closely related to the threshold behaviour of epidemic processes on random
mapping digraphs. Specifically, suppose that T̃n : [n] → [n] is a random mapping which
is represented by the random digraph G(T̃n) and suppose that some a-element subset
A of the vertices [n] are initially infected with a contagious disease and the disease
spreads to other elements of [n] along arcs of the random digraph G(T̃n). Three
types of epidemic process can be considered depending upon the way in which the
disease spreads. If it spreads only forward, that is, in direction of orientation of the
arcs, it is called a direct epidemic process (DEP ). If it spreads only backward it is
called an inverse epidemic process (IEP ). If spread may occur in both directions the
process is termed a two-sided epidemic process (TEP ). Clearly the total numbers of
elements which are eventually infected in DEP , IEP and TEP on a digraph G(T̃n)
are given as the cardinalities of sets of all successors, all predecessors of elements from
A and the set of all vertices in the connected components to which elements from A
belong, respectively. Following Gertsbakh [9], a function hIEP = hIEP (T̃n) is called
the threshold for IEP on G(T̃n) representing a random mapping T̃n if for a fixed
γ, 0 < γ < 1,

lim
n→∞

Pr{pT̃n
[h] > γn} =

{
0, if h = o(hIEP )
1, if hIEP = o(h) .

Similarly, threshold functions hDEP and hTEP can be defined for DEP and TEP ,
respectively. We note that for uniform random mappings, the exact and asymptotic
distributions for the number of predecessors of elements from a given set of vertices
for the uniform models were given by Burtin [6]. The respective results for successors
were given by Berg [3, 4] and Pittel [25] who also gave the results related to TEP . The
answer to the main problem stated by Gertsbakh, namely, to find the thresholds for
DEP , IEP and TEP , follows immediately from these results (some results concerning
the thresholds were given independently by Mutafchiev [21, 22]). In the case of random
mappings with preferential or anti-preferential attachment, we can conclude from the
asymptotic results for the expected value of the numbers of successors and predecessors,
that when the parameters ρ and m are fixed we obtain for both Gρ

n and Gm
n :

• hDEP = n, i.e. there is no proper threshold function for DEP on Gρ
n and Gm

n .
• hIEP =

√
n for both Gρ

n and Gm
n .

It is also known (see [10]) that for both Gρ
n and Gm

n , with ρ and m fixed, the size of
the component that contains vertex 1 is O(n). So for both Gρ

n and Gm
n we have
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• hTEP = 1, i.e. there is no proper threshold function for TEP on Gρ
n and Gm

n .

In light of the results obtained in this paper, it would be interesting to investi-
gate in more detail the asymptotic behaviour of the distributions of the numbers of
predecessors and of successors in the random digraphs Gρ

n and Gm
n . In particular,

we would like to study the how the limiting distributions depend on the parameters
ρ and m and on the size of the set of ‘infected’ vertices as n → ∞. For example,
complementary results (see [12]) on the component structure of Gρ

n suggest that the
limiting distributions for pρ

n[b] and sρ
n[a] will depend on whether ρn →∞ or ρn → β > 0

or ρn → β = 0 as n → ∞ as well as on the size of a and b as a function of n. In
the case of random mappings with anti-preferential attachment, there are qualitative
changes in the component structure in models which lie in a continuum between T 2

n

and T 1
n (see [13]) and we would expect that epidemic process threshold behaviour in

this continuum will differ from the threshold behaviour in Gm
n when m ≥ 2.

Finally, in another direction, we note that the epidemic process results for uniform
random mappings were generalized for epidemic processes associated with the evolu-
tionary model mentioned in the Introduction. The results obtained for the evolutionary
model are interesting for many reasons, e.g., they provide a full answer to questions
stated by Islam [14] (see also [2]) and they also lead to a very nice relation between
Abel sums and non-central Stirling numbers as well as to families of interesting discrete
distributions. Since our results for mappings with preferential and anti-preferential
attachment display a striking formal similarity to results for the uniform model, where
powers are replaced by rising or falling factorials respectively, it is likely that an
investigation of an evolutionary model related to the “cut” variables introduced in
Section 2, would lead to even more general families of discrete distributions. We also
note that it may be possible, to obtain exact and asymptotic results for TEP on Gρ

n

and Gm
n , with the help of results given in this paper although we cannot use directly

the relation which was the key to obtain the corresponding results for mappings with
independent choices of images (see [17]).
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