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Summary. In this paper we consider the component structure of decomposable combi-

natorial objects, both labeled and unlabeled, from a probabilistic point of view. In both

cases we show that when the generating function for the components of a structure is a

logarithmic function, then the joint distribution of the normalized order statistics of the

component sizes of a random object of size n converges to the Poisson-Dirichlet distribu-

tion on the simplex ∇ = {{xi} :
∑

xi = 1, x1 ≥ x2 ≥ ... ≥ 0}. This result complements

recent results obtained by Flajolet and Soria [9] on the total number of components in a

random combinatorial structure.
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1. Introduction and Examples

A class of combinatorial objects P is said to be “decomposable” over another class C of

combinatorial objects if each element of P may be uniquely decomposed into a multiset of

elements of C. In the labeled case, such structures are sometimes refered to as partitional

complexes. In both the labeled and unlabeled cases, a decomposable structure (P, C) is

characterized by equations which relate certain generating functions associated with the

classes P and C. The characterizing equations and some motivating examples are given

below. For further discussion, see Goulden and Jackson [11].

In the labeled case, Πn will denote the set of objects in the class P which are labeled

by the integers 1, 2, ..., n and we have P=
⋃
n≥1 Πn. In many examples Πn consists of all

labeled graphs on n vertices which satisfy some property, and the objects in the unique

decomposition of π ∈ Πn are the connected components of π. Let Cn ⊆ Πn denote the

objects in Πn whose decomposition consists of one object (so Cn ⊆ C). It is a feature

of partitional complexes that each “component” in the decomposition of π ∈ Πn can be

uniquely identified with some element of
⋃∞
k=1 Ck. In particular, a component of π of size

k and labeled by 1 ≤ l1 < l2 < ... < lk ≤ n can be identified with an element of Ck by

replacing the label li by i for 1 ≤ i ≤ k. Set pn = |Πn| for n ≥ 1, p0 = 1 and ck = |Ck| for

k ≥ 1, then the following equation between exponential generating functions holds

P̂ (z) =
∞∑
n=0

pnz
n

n!
= exp

( ∞∑
k=1

ckz
k

k!

)
= exp

(
Ĉ(z)

)
. (1)

In the unlabeled case, Πn will denote the set of objects in P of size n, and P =⋃∞
n=1 Πn. Again, Cn ⊆ Πn will denote the objects in Πn whose decomposition consists of

one object in C. It follows that C =
⋃∞
n=1 Cn. As before, for n ≥ 1, set pn = |Πn|, cn = |Cn|,

and p0 = 1 and c0 = 0. The following equations between ordinary generating functions

holds

P (z) =
∑
n≥0

pnz
n =

∏
n≥1

(1− zn)−cn = exp

∑
n≥1

C(zn)
n

 (2)

where C(z) =
∑

n≥1 cnzn. Although we use the same notation in the unlabeled case as in

the labeled case, it will always be clear which case we are considering.
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To illustrate these constructions, we consider some motivating examples. Other ex-

amples can be found in Flajolet and Soria [9].

Example 1. Let Πn be the set of all permutations of the set {1, 2, ..., n}. Every element

of Πn has a unique decomposition into cycles, so C consists of all cycles of permutatons

in P =
⋃
n≥1 Πn and Cn consists of all permutations in Πn which consist of one cycle. In

this case, P̂ (z) = (1− z)−1 and Ĉ(z) = log(1/(1− z)).

Example 2. Let Πn be the set of all mappings of the set {1, 2, ..., n} into {1, 2, ..., n}. Each

mapping in Πn can be represented as a directed graph on n labeled vertices such that

the out-degree of each vertex is one (i.e. in the graph which represents π ∈ Πn there

is an edge from i to j if π(i) = j). The graph representing π decomposes uniquely into

connected components which are also digraphs with out-degree one. Thus Cn consists

of all mappings of {1, 2, ..., n} whose representing graph is connected. In this example,

pn = nn and cn = (n− 1)!
∑n−1
k=0 nk/k! (see Bollabas [4]).

Example 3. Let Πn equal the set of all monic polynomials of degree n over the finite

field GF (q). We consider these polynomials to be unlabeled objects of size n. Each such

polynomial can be decomposed uniquely into its irreducible factors over GF (q). In this case

Cn consists of all irreducible polynomials in Πn. Clearly, pn = qn and P (z) = (1− qz)−1.

Moebius inversion can be used to determine C(z), the generating function for cn = |Cn|,
in terms of log P (z).

Now suppose that (P, C) is some “decomposable” structure, labeled or unlabeled, and

let µn denote the uniform measure on Πn, i.e. for each π ∈ Πn, µn(π) = 1/pn. Various

random variables defined on Πn can be investigated in order to obtain information about

the decompostion of a typical element of Πn. Much attention has been focused on the

asymptotic distribution of the number of components in a random element of Πn (see

[3],[5],[9],[10], and [19]). Typically the limiting distribution for the number of components

depends on the behaviour of the exponential generating function Ĉ(z), in the labeled case,

or the behaviour of the generating function C(z) in the unlabeled case. In this paper

we confine our attention to structures for which the (appropriate) generating function

for the sequence {cn} is a logarithmic function. Such structures have been investigated
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by Flajolet and Soria [9]. Their results and the definition of logarithmic function are

summarized below.

To define logarithmic functions, we introduce some notation. For % > 0 and η > 0,

let ∆(%, η) = {z ∈ C : |z| < % + η, z /∈ [%, % + η]}, i.e. ∆(%, η) is a disc with radius % + η

which is slit along the interval [%, % + η].

Definition. Suppose that G(z) is a generating function which is analytic at 0 and which

has a unique dominant singularity % > 0 on its circle of convergence. We say that G(z)

is a logarithmic function with multiplier θ > 0 and constant K if near this singularity

G(z) = θ log
(

1
1−z/%

)
+R(z) where R(z) is analytic on some set ∆(%, η) and R(z)=K+o(1)

as z → % in ∆.

Proposition 1.1. (Flajolet and Soria)

Suppose that the generating function G(z) is a logarithmic function with radius of conver-

gence % > 0, multiplier θ > 0 and constant K, then

[zn] exp(G(z)) ∼ %−nnθ−1eK

Γ(θ)

where [zn] exp(G(z)) denotes the coefficient of zn in the power series exp(G(z)).

Theorem 1.2. (Flajolet and Soria)

(i) Suppose (P, C) is a labeled decomposable structure and suppose that Ĉ(z) is a log-

arithmic function with multiplier θ > 0. For each n > 0 and π ∈ Πn, define Xn(π) to

be the number of components in the decomposition of π. Then Xn−θ logn√
θ logn

converges in

distribution to a standard normal distribution with mean 0 and variance 1.

(ii) Suppose that (P, C) is an unlabeled decomposable structure and C(z) is a logarithmic

function with multiplier θ > 0. For each n > 0 and π ∈ Πn, define Yn(π) to be the number

of components in the decomposition of π. Then Yn−θ logn√
θ logn

converges in distribution to the

standard normal distribution.

Remark. It can be shown that the examples given above satisfy the hypotheses of The-

orem 1.2. (see [9]). For random permutations θ = 1, for random mappings, θ = 1/2 and

for random polynomials over GF (q), θ = 1.
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Flajolet and Soria’s results focus on the number of components in the decomposition

of a random element of Πn. In this paper we investigate the asymptotic distribution of the

sizes of the large components in the decomposition of a random element of Πn. For m > 0

and any n > 0, define λm on Πn by setting λm(π) equal to the size of the mth largest

“component”in the decomposition of π (set λm(π) equal to zero if the decomposition of π

has fewer than m components). The sequence {λm(π)}m≥1 consists of the order statistics

of the sizes of the components of π. In order to study the limiting distribution of the order

statistic sequence, we introduce an infinite sequence space

∇ = {{xi} :
∑

xi ≤ 1, x1 ≥ x2 ≥ ... ≥ 0}.

The space ∇ is a subset of the product space
∏∞
i=1[0, 1] and the topology on ∇ is the

topology induced from the usual product topology on
∏∞
i=1[0, 1]. Let F denote the Borel

σ-algebra generated by the topology on ∇. For each n > 0, define Ln : Πn → ∇ by

Ln(π) = {λm(π)
n }∞m=1. Each map Ln induces a measure µn ◦L−1

n on ∇. Our main result is

that for structures which satisfy Flajolet and Soria’s logarithmic condition, the measures

µn ◦ L−1
n converge weakly to a nondegenerate measure on ∇. The limiting distribution is

the Poisson-Dirichlet distribution which is described in Section 2.

Our result in the labeled case unifies results which are known for particular examples

such as random permutations and random mappings (see [1], [20]). In the unlabeled case,

Arratia, Barbour, and Tavare [2] have recently obtained, with error estimates, the Poisson-

Dirichlet limit for the order statistics of the degree sequence of a random polynomial over

a finite field. Their methods are somewhat specific to the case of random polynomials,

whereas our result gives a general criterion for convergence to the Poisson-Dirichlet dis-

tribution. Our result and the results of Arratia, Barbour, and Tavare can also be applied

to the riffle shuffles studied by Diaconis, McGrath, and Pitman [6]. It is interesting to

contrast our results with those of Flajolet and Soria. One consequence of Theorem 1.2. is

that the number of components of a random element of Πn is roughly θ log n. Our results

imply that the largest k components of a random element of Πn are on the order of n,

not n/ log n. So the sizes of the components of a random π partition the integer n in a

very uneven way. For the examples given above even more is known. Furthermore, one
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can normalize a function which counts components of various sizes and obtain a Brownian

motion process as a limit (see [7], [12], and [13]).

2. Poisson-Dirichlet distribution

Before investigating the weak convergence of the measures µn ◦ L−1
n on ∇ we must

describe a particular distribution on ∇. The Poisson-Dirichlet distribution on ∇ was first

considered by Kingman (see [15],[16],[17]). It arises as a limiting distribution for certain

models in population genetics. It is also arises as the limiting distribution of a certain

urn model (see Hoppe [14]). Although the distribution is completely determined by its

finite-dimensional distributions, it is not easy or instructive to describe these distributions

explicitly. We outline two alternative descriptions of this distribution.

One way to obtain the Poisson-Dirichlet distribution on ∇ is via a Poisson point

process construction (for details, see Aldous [1]). Let γ denote the measure on (0,∞) with

density f(x) = θx−1e−x, and let Y1 > Y2 > ... denote the points in a Poisson point process

on (0,∞) with intensity γ. Let Σ =
∑
n≥1 Yn and let Pn = Yn/Σ, then (P1, P2, ...) ∈ ∇

and the distribution of the sequence (P1, P2, ...) is the Poisson-Dirichlet(θ) distribution on

∇. A key fact which facilitates calculations involving the Poisson-Dirichlet distribution is

that the distribution of Σ and the distribution of the sequence (P1, P2, ...) are independent.

The Poisson-Dirichlet distribution can also be obtained by first considering a sequence

of i.i.d. random variables Z1, Z2, Z3, ... such that each Zi has a beta distribution with

density f(z) = θ(1− z)θ−1. Now form the sequence (W1, W2, ...) where

Wn = Zn(1− Z1)(1− Z2) · · · (1− Zn−1) for n > 1 and W1 = Z1. We note that

(W1, W2, ...) ∈ ∇̃ = {{xi} : xi ≥ 0,
∑

xi ≤ 1} and the distribution of this sequence, Gθ,

on ∇̃ is called the GEM distribution. Finally, define V : ∇̃ → ∇ such that (V {xi})k is the

kth largest term in the sequence {xi} ∈ ∇̃, then Gθ ◦V −1, the distribution of the sequence

V ((W1, W2, ...)) = (Q1, Q2, ...), is the Poisson-Dirichlet(θ) distribution on ∇. For further

details of this construction, see Donnelly and Joyce [8].

In order to prove the convergence results in the next section, we use a principle

which follows from the second construction of the Poisson-Dirichlet (θ) distribution given

above. It is a consequence of the construction above, that if a sequence of measures
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Pn converge weakly to Gθ, then Pn ◦ V −1 converges weakly to Gθ ◦ V −1, the Poisson-

Dirichlet(θ) distribution on ∇. Furthermore, the following principle also holds. Define

T :
∏∞
i=1[0, 1] → ∇̃ by (T{xi})j = xj(1 − x1) · · · (1 − xj−1) and let ν∞θ = νθ × νθ × · · ·

denote the product measure on
∏∞
i=1[0, 1], (i.e. ν∞θ is the distribution of the sequence

(Z1, Z2, ...). Then T is a continuous map and Gθ = ν∞θ ◦T−1. It follows that if a sequence

of measures Qn converges weakly to ν∞θ on
∏∞
i=1[0, 1], then Qn ◦ T−1 ◦ V −1 converges

weakly to Gθ ◦ V −1, the Poisson-Dirichlet(θ) distribution on ∇. For further discussion of

this principle for establishing convergence in distribution can be found in Donnelly and

Joyce [8].

3. Main Results.

Our first result is a straightforward consequence of Proposition 1.1.

Proposition 3.1. Let (P, C) be a labeled partitional complex, and suppose that the

generating function Ĉ(z) =
∑∞
k=1

ckz
k

k! is a logarithmic function with multiplier θ > 0,

constant K > 0, and radius of convergence % > 0. In addition, suppose that ck%
k

k! ∼
θ
k .

Then the measures µn ◦ L−1
n converge weakly to the Poisson-Dirichlet(θ) distribution on

∇.

Proof: The first step, is to define a function Φn : Πn → ∇̃ which orders the normalized

component sizes of π ∈ Πn according to a size-biassed sampling scheme. We begin by

defining a sequence of functions φ1, φ2, φ3, ... on P as follows. For each π ∈ Πn, let φ1(π)

equal the size of the component in π which is labeled by a subset which contains 1. Call

this component π1. If π1 6= π, let a2 = inf{k ∈ Z : 1 ≤ k ≤ n, k /∈ π1} and define

φ2(π) to be the size of the component in π which contains a2; otherwise, set φ2(π) = 0. If

φ2(π) 6= 0, let π2 denote the component which contains a2; otherwise let π2=∅. Proceeding

inductively, if π1 ∪ π2 ∪ · · · ∪ πi−1 6= π, let ai = inf{1 ≤ k ≤ n : k /∈ π1 ∪ · · · ∪ πi−1} and

let φi(π) equal the size of the component in π which contains ai and label this component

πi. Otherwise, let φi(π) = 0 and set πi = ∅. Next, for each n > 0, define Φn : Πn → ∇̃
by Φn(π) = {φm(π)

n }∞m=1. We note that Φn(π) is simply a rearrangement of the ordered

sequence Ln(π) and, in particular, V ◦ Φn(π) = Ln(π). Thus µn ◦ Φ−1
n ◦ V −1 = µn ◦ V −1
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and suffices, by the principle discussed in Section 2, to show that µn ◦ Φ−1
n converges to

the GEM distribution Gθ.

We could proceed to establish the convergence of µn ◦Φ−1
n to Gθ by checking that the

finite-dimensional distributions of µn ◦ Φ−1
n converge to those of Gθ. However, although

the GEM distribution is elegantly defined as the distribution of the sequence (Z1, Z2(1−
Z1), ...), formulae for its finite dimensional distributions are still somewhat complicated

due to the dependence of the variables in the sequence (Z1, Z2(1 − Z1), ..). Instead, we

introduce another map T̃ : ∇̃1 →
∏∞
i=1[0, 1], where ∇̃1 = {{xi} ∈ ∇̃ :

∑
xi = 1},

which allows us to change the problem to one of checking the convergence of a sequence

of measures to the product measure ν∞θ on the product space
∏∞
i=1[0, 1]. This approach

is similar to the approach used by Vershik and Schmidt [20] in their study of random

permutations. We define T̃ : ∇̃1 →
∏∞
i=1[0, 1] by T̃ ({xj})i = xi(1 − x1 − · · −xi−1)−1 if∑i−1

j=1 xj < 1 and T̃ ({xj})i = 1 otherwise. The key features of T̃ are that T ◦ T̃ = id on

∇̃1 and V ◦T ◦ T̃ ◦Φn = Ln. Thus, letting Pn denote the induced measure µn ◦ (T̃ ◦Φn)−1

on
∏∞
i=1[0, 1], we have Pn ◦ (V ◦ T )−1 = µn ◦ L−1

n . Hence, by the convergence principle

discussed in Section 2, it suffices to show that Pn → ν∞θ weakly as n→∞.

To show that the measures Pn converge weakly to ν∞θ , it is enough to show that for

any 0 < α1, α2, ..., αm < 1,

Pm
n

(
m∏
i=1

[0, αi]

)
→ ν∞,mθ

(
m∏
i=1

[0, αi]

)
=

m∏
i=1

∫ αi

0

θ(1− z)θ−1dz

where Pm
n and ν∞,mθ are the projections of the measures Pn and ν∞θ on the first m coordi-

nates of the product space
∏∞
i=1[0, 1]. We do this for the case m = 2. The argument can

be easily generalized for any value of m ≥ 1.

Fix 0 < α, β < 1. Then

P 2
n([0, α]× [0, β]) = µn(π ∈ Πn :

φ1(π)
n
≤ α,

φ2(π)
n− φ1(π)

≤ β)

=
nα∑
k=1

β(n−k)∑
j=1

(
n− 1
k − 1

)(
n− k − 1

j − 1

)
ckcj

pn−k−j
pn

=
nα∑
k=1

β(n−k)∑
j=1

k

n

ck
k!

j

(n− k)
cj
j!

[
n!
pn

pn−k
(n− k)!

] [
(n− k)!
pn−k

pn−k−j
(n− k − j)!

]
.
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In order to determine the limit of this expression, we use the fact that ck%
k

k! ∼ θ
k , by

hypothesis, and pn ∼ n!%−nnθ−1eK

Γ(θ)
by Proposition 1.1. So

P 2
n([0, α]× [0, β]) =

nα∑
k=1

β(n−k)∑
j=1

θ2 1
n

1
(n− k)

(
1− k

n

)θ−1(
1− j

n− k

)θ−1

(1 + ε(n, k, j)).

(3)

For k, j > n/ log n we have |ε(n, k, j)| ≤ εn and εn → 0 as n→∞. Also, for all k, j, n > 0,

there is a constant C such that |1 + ε(n, k, j)| < C, where C is a constant which does not

depend on n, k, or j.

The limit of the sum on the right side of (3) can be computed by noting that

(i)
nα∑

k> n
logn

∑
j> n

logn

θ2 1
n

1
(n− k)

(
1− k

n

)θ−1(
1− j

n− k

)θ−1

(1 + ε(n, k, j))

∼
∫ ∫

∆n

θ2(1− z1)θ−1(1− z2)θ−1dz1dz2 = I1(n)

(ii) ∑
k≤ n

logn

β(n−k)∑
j=1

1
n(n− k)

(
1− k

n

)θ−1(
1− j

n− k

)θ−1

(1 + ε(n, j, k))

≤ C

∫ ∫
∆′n

θ2(1− z1)θ−1(1− z2)θ−1dz1dz2 = I2(n)

(iii)
nα∑

k> n
logn

∑
j≤ n

logn

θ2 1
n(n− k)

(
1− k

n

)θ−1(
1− j

n− k

)θ−1

(1 + ε(n, j, k))

≤ C

∫ ∫
∆
′′
n

θ2(1− z1)θ−1(1− z2)θ−1dz1dz2 = I3(n)

where

∆n = {(z1, z2) : 1/ log n ≤ z1 ≤ α, 1/ logn ≤ z2 ≤ β}

∆
′

n = {(z1, z2) : 0 ≤ z1 ≤
1

log n
+

1
n

, 0 ≤ z2 ≤ β +
1

n(1− α)
}

∆
′′

n = {(z1, z2) :
1

log n
− 1

n
≤ z1 ≤ α +

1
n

, 0 ≤ z2 ≤
1

log n
+

1
n(1− α)

}.

It is easy to check that I1(n)→
∫ α

0

∫ β
0 θ2(1− z1)θ−1(1− z2)θ−1dz1dz2 and both I2(n) and

I3(n) go to zero as n→∞. This completes the proof of the proposition.
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The corresponding result for the order statistics of unlabeled structures also depends

on the asymptotics of Proposition 1.1, but the proof is more complicated than the proof of

Proposition 3.1. In particular, the proof of the result depends on two additional lemmas

which we prove after giving the proof of the main result.

Theorem 3.2. Let (P, C) be an unlabeled decomposable combinatorial structure and

suppose that the generating function C(z) =
∑∞
k=1 ckz

k is a logarithmic function with

multiplier θ > 0, constant K > 0 and radius of convergence 1 > % > 0. In addition,

suppose ck%
k ∼ θ

k . Then the measures µn◦L−1
n converge weakly to the Poisson- Dirichlet(θ)

distribution on ∇.

Proof: We follow the general approach of previous proof. In the proof of Theorem 3.1,

we constructed a function Φn which reordered the normalized component sizes according

to a size-biassed permutation. The procedure that determined the new ordering involved

examining the labels associated with each component of the structure. In this case, there

are no labels attached to the components and there is no direct analogue of Φn. Although

one can still construct a size-biassed permutation of the components (see [2]), we take a

slightly different approach which allows us to to use the methods developed in the proof of

the previous theorem. We consider certain labelled structures and show that convergence

of a sequence of measures on ∇ associated with these new structures is equivalent to the

convergence of µn ◦ L−1
n to the Poisson-Dirchlet(θ) distribution.

Let Π̃n denote the set of all partitions of the set {1, 2, ..., n} into disjoint subsets . We

define the probability measure µ̃n on Π̃n by

µ̃n(π̃) =
1

n!pn

n∏
k=1

(
mk + ck − 1

mk

)
(k!)mk(mk)!

where mk equals the number of sets in the partition π̃ of size k. The vector (m1, m2, ..., mn)

is the type vector of π̃. Note that the measure µ̃n on Π̃n is not uniform. It has been

constructed so that

µ̃n(π̃ ∈ Π̃n : π̃ has type (m1, m2, ..., mn)) = µn(π ∈ Πn : αi(π) = mi, 1 ≤ i ≤ n). (4)

and so that for every m = (m1, m2, ..., mn) such that
∑n

k=1 kmk = n, the conditional

probability µn(·|Am) is uniform on Am, where
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Am = {π̃ ∈ Π̃n : π̃ has type m = (m1, m2, ..., mn)}. Define λ̃m : Π̃n → Z by setting

λ̃m(π̃) equal to the size of the mth largest set in the partition π̃ with λm(π̃) = 0 if π̃ is a

partition with fewer than m sets. Define L̃n : Π̃n → ∇̃ by L̃n(π̃) = { λ̃m(π̃)
n
}∞m=1. The key

observation, which follows from (4) and the definitions of Ln and L̃n, is that the induced

measures µ̃n ◦ L̃−1
n and µn ◦L−1

n are the same on ∇ (even though µn and µ̃n are measures

on different structures). Thus it suffices to show that µ̃n ◦ L̃−1
n converges to the Poisson-

Dirichlet (θ) distribution (where µ̃n ◦ L̃−1
n is the measure induced on ∇ from (Π̃n, µ̃n) via

the map L̃n).

As in the proof of Proposition 3.1, we define functions φ1, φ2, ... on each partition

space Π̃n such that φ1(π̃) equals the size of the set in π̃ which contains 1 and let π̃1 denote

the set which contains 1. If π̃1 6= π̃, let a2 = inf{1 ≤ k ≤ n : k /∈ π̃1} and let π̃2 denote

the set in π̃ which contains a2. Otherwise, set π̃2 = ∅. In both cases, define φ2(π̃) to

be equal to the size of π̃2, etc. Define Φn : Π̃n → ∇̃ by Φn(π̃) = {φm(π̃)
n }∞m=1. Then

V ◦ T ◦ T̃ ◦ Φn = L̃n, where V, T, and T̃ are as defined in Section 2 and the previous

proof. Let P̃n denote the measure induced on
∏∞
k=1[0, 1] from (Π̃n, µ̃n) via T̃ ◦ Φn, then

P̃n ◦ (V ◦T )−1 = µ̃n ◦ L̃−1
n . We show that P̃n converges weakly to ν∞θ as n→∞ and hence

µ̃n ◦ L̃−1
n = µn ◦L−1

n converges to ν∞θ ◦ (V ◦ T )−1, the Poisson-Dirichlet(θ) distribution on

∇. It suffices to show that the projection measures P̃m
n converge weakly to ν∞,mθ for each

m ≥ 1. We do this for m = 2. The calculations, though complicated, can be extended in

a straightforward manner to handle the general case.

Since [0, 1]× [0, 1] is a compact space, the measures {P̃ 2
n} are sequentially compact,

i.e. every subsequence {P̃ 2
ni} has a further subsequence which converges weakly to some

probability measure on [0, 1]× [0, 1]. Thus, to show that P̃ 2
n converges to ν∞,2θ it suffices

to show that each such convergent subsequence converges to ν∞,2θ . To prove this, we

show that for 0 < α < α′ < 1 and 0 < β < β′ < 1, P̃ 2
n((α, α′] × (β, β′]) converges to

ν∞,2θ ((α, α′] × (β, β′]). (In general, sets of the form (α, α′] × (β, β′] are not convergence

determining. However, in this case, convergence on these sets implies convergence of the

measures since the sequence of measures is sequentially compact and since ν∞,2θ does not

have atoms at 0 or 1.)
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Let 0 < α < α′ < 1 and 0 < β < β′ < 1 be fixed. Then

P̃ 2
n((α, α′]× (β, β′]) = µ̃n(π̃ ∈ Π̃n : α <

φ1(π̃)
n
≤ α′, β <

φ2(π̃)
n− φ1(π̃)

≤ β′)

=
nα′∑
k>nα

β′(n−k)∑
j>β(n−k)

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j).

We determine an expression for µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j). First suppose that k 6= j,

then

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j) =∑
mk,mj≥1

s.t.kmk+jmj≤n

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j, α̃k(π̃) = mk, α̃j(π̃) = mj) (5)

where α̃i(π̃) is defined to be the number of sets of size i in π̃. Now suppose that mk, mj ≥ 1

are fixed with kmk + jmj ≤ n, then

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j, α̃k(π̃) = mk, α̃j(π̃) = mj)

=
(n− k − j)!

n!pn

(
n− 1
k − 1

)(
n− k − 1

j − 1

)
k!j!mkmj ·

×
∑(mk + ck − 1

mk

)(
mj + cj − 1

mj

) ∏
n≥l≥1
l6=j,k

(
ml + cl − 1

ml

)

=
kj

pnn(n− k)
(mk+ck−1)(mj+cj−1)

∑(mk + ck − 2
mk − 1

)(
mj + cj − 2

mj − 1

) ∏
n≥l≥1
l6=j,k

(
ml + cl − 1

ml

)
where the sum is over all type vectors with mk and mj fixed and

∑n
l=1 lml = n. This

equality simplifies to

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j, α̃k(π̃) = mk, α̃j(π̃) = mj)

=
pn−k−j

pn

kj

n(n− k)
(mk+ ck−1)(mj + cj−1)µ̃n−k−j(π̃ : α̃k(π̃) = mk−1, α̃j(π̃) = mj−1).

Substituting this expression into (5), we get

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j)

12



=
pn−k−j

pn

ckk

n

cjj

(n− k)

∑
mk,mj≥1

s.t.kmk+jmj≤n

µ̃n−k−j(π̃ : α̃k = mk − 1, α̃j = mj − 1)

+
pn−k−j

pn

ckk

n

j

(n− k)

∑
mk,mj≥1

s.t.kmk+jmj≤n

(mj − 1)µ̃n−k−j(π̃ : α̃k = mk − 1, α̃j = mj − 1)

+
pn−k−j

pn

k

n

cjj

(n− k)

∑
mk,mj≥1

s.t.kmk+jmj≤n

(mk − 1)µ̃n−k−j(π̃ : α̃k = mk − 1, α̃j = mj − 1)

+
pn−k−j

pn

k

n

j

(n− k)

∑
mk,mj≥1

s.t.kmk+jmj≤n

(mk − 1)(mj − 1)µ̃n−k−j(π̃ : α̃k = mk − 1, α̃j = mj − 1).

The sums simplify and we have

µ̃n(π̃ : φ1(π̃) = k, φ2(π̃) = j) =
ckk

n

cjj

(n− k)
pn−k−j

pn
+

pn−k−j
pn

ckk

n

jEn−j−k(α̃j)
(n− k)

+
pn−k−j

pn

kEn−k−j(α̃k)
n

cjj

(n− k)
+

pn−k−j
pn

kjEn−k−j(α̃kα̃j)
n(n− k)

.

(6)

Now suppose that k = j, then Lemma 3.4., which is proved below, establishes that there

is a positive constant Cθ such that for all large n and k > αn,

µ̃n(π̃ : φ1(π̃) = φ2(π̃) = k) ≤ µ̃n(α̃k ≥ 2) ≤ Cθ

(
1
k

)2∧(1+θ/2)

.

Thus

lim
n→∞

∑
k>αn

µ̃n(π̃ : φ1(π̃) = φ2(π̃) = k) ≤ lim
n→∞

Cθ
∑
k>αn

(
1
k

)2∧(1+θ/2)

= 0.

13



It follows from this and equation (6) that

lim
n→∞

P̃ 2
n((α, α′]× (β, β′]) = lim

n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)

µ̃n(φ1(π̃) = k, φ2(π̃) = j)

= lim
n→∞

α′n∑
kαn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

kck
n

jcj
(n− k)

pn−k−j
pn

+ lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

kck
n

jEn−k−j(α̃j)
(n− k)

pn−k−j
pn

+ lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

jcjkEn−k−j(α̃k)
n(n− k)

pn−k−j
pn

+ lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

kjEn−k−j(α̃kα̃j)
n(n− k)

pn−k−j
pn

.

(7)

The first limit on the right side of (7) can be computed by appealing to the asymptotics

for pn and cn. In particular,

lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

kck
n

jcj
(n− k)

pn−k−j
pn

= lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)

kck%
k

n

jcj%
j

(n− k)
pn−k−j%

n−k−j

pn%n

= lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)

θ2

n(n− k)

(
1− k

n

)θ−1(
1− j

(n− k)

)θ−1

(1 + ε(n, j, k))

=
∫ α′

α

∫ β′

β

θ2(1− z1)θ−1(1− z2)θ−1dz1dz2

as in the proof of Proposition 3.1. Note that in computing this limit, we have included

some terms in the sum whose contribution is zero in the limit.

Next, it follows from the asymptotics for pn and cn and from bounds which are

established below in Lemma 3.3 that there exist positive constants B1 and B2 such that

pn−k−j
pn

kckjEn−k−j(α̃j) ≤
B1(1 ∨ n1−θ)%j

(1− %)

(
1− k

n

)θ−1(
1− j

n− k

)θ−1

(1 + ε(n, k, j))
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pn−j−k
pn

jcjkEn−k−j(α̃k) ≤
B1(1 ∨ n1−θ)%k

(1− %)

(
1− k

n

)θ−1 (
1 +

j

n− k

)θ−1

(1 + ε(n, k, j))

pn−k−j
pn

kjEn−k−j(α̃kα̃j) ≤
B2(1 ∨ n1−θ)%j+k

(1− %)2

(
1− k

n

)θ−1 (
1 +

j

n− k

)θ−1

(1+ε(n, k, j))

where αn < k ≤ α′n and β(n− k) < j ≤ β′(n− k). By hypothesis, there is a constant C

such that |(1 + ε(n, k, j))| ≤ C for all n, j, k > 0. Thus

0 ≤ lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

pn−k−j
pn

kck
n

jEn−k−j(α̃j)
(n− k)

≤ lim
n→∞

B1(1 ∨ n1−θ)
(1− %)

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)

C%j

n(n− k)

(
1− k

n

)θ−1 (
1− j

n− k

)θ−1

≤ lim
n→∞

B1(1 ∨ n1−θ)%β(1−α)n

(1− %)

α′n∑
k>αn

β′(n−k)∑
β(n−k)

C

n(n− k)

(
1− k

n

)θ−1 (
1− j

n− k

)θ−1

≤ lim
n→∞

B1C(1 ∨ n1−θ)%β(1−α)n

(1− %)
= 0.

The last inequality follows since

lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)

1
n(n− k)

(
1− k

n

)θ−1 (
1− j

n− k

)θ−1

=
∫ α′

α

∫ β′

β

(1− z1)θ−1(1− z2)θ−1dz1dz2

≤ 1.

Similarly,

lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

pn−k−j
pn

jcjkEn−k−j(α̃k)
n(n− k)

= 0

lim
n→∞

α′n∑
k>αn

β′(n−k)∑
j>β(n−k)
s.t.j 6=k

pn−k−j
pn

kjEn−k−j(α̃kα̃j)
n(n− k)

= 0.

This completes the proof of the theorem.

It remains to prove the bounds which were used in the proof of Theorem 3.2. To

obtain bounds for expectations with respect to µ̃n we construct a transform for computing
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such expectations. The transform itself is analogous to a transform construction used by

Shepp and Lloyd [18] in the study of the cycle structure of random permutations. Let

Ω = {{mk} : mk ∈ Z, mk ≥ 0, k = 1, 2, ...} and for 0 < z < 1, define the product measure

Pz on Ω so that for each i ≥ 0 and k ≥ 1,

Pz(ω ∈ Ω : mk = i) =
(

i + ck − 1
i

)
(1− (%z)k)ck(%z)ki.

In other words, the distribution of the kth coordinate of an element of Ω with respect to

Pz is negative binomial with parameters p = (1 − (%z)k), q = (%z)k and r = ck. Now

define ν : Ω → Z by ν(ω) =
∑∞

k=1 kmk, then ν is finite a.s. with respect to Pz provided

0 < z < 1. To see this, we compute the probability generating of ν,

Ez(uν) =
∞∏
k=1

Ez(ukmk) =
∞∏
k=1

(1− (%z)k)ck

(1− (%zu)k)ck
=

P (%zu)
P (%z)

.

The first equality follows from the independence of the coordinates of elements of Ω with

respect to Pz. The last equality follows from the basic equation (2) which characterizes

unlabeled structures. Evaluating P (%zu)/P (%z) at u = 1 shows that Pz(ν <∞) = 1, and

for k ≥ 0,

Pz(ν = k) =
pn%

n

P (%z)
.

The space (Ω, Pz) is useful because we can recover the joint distribution of the variables

α̃1, α̃2, ..., α̃n with respect to µ̃n by conditioning on the value of the variable ν. In partic-

ular,

Pz((m1, m2, ...)|ν = n) =

∏∞
k=1

(
mk+ck−1

mk

)
(1− (%z)k)ck(%z)kmk

pn%n(P (%z))−1

=
(%z)n

∏∞
k=1(1− (%z)k)ck

∏n
k=1

(
mk+ck−1

mk

)
pn(%z)n(P (%z))−1

=

∏n
k=1

(
mk+ck−1

mk

)
pn

= µ̃n(α̃1 = m1, ..., α̃n = mn).

(8)

Now suppose that Ψ : Ω → R, then Ψ induces a map Ψn : Π̃n → R which is defined
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by Ψn(π̃) = Ψ(α̃1(π̃), ..., α̃n(π̃), ...). It follows that

Ez(Ψ) =
∞∑
n=0

Ez(Ψ|ν = n)Pz(ν = n)

=
∞∑
n=1

En(Ψn)
pn%

n

P (%z)
+

Ψ(0)
P (%z)

where En is the expectation with respect to µ̃n on Π̃n. The second equation follows from

(8) and the defintion of Ψn. Thus

En(Ψn) =
[zn]P (%z)

pn%n
Ez(Ψ). (9)

So we can compute En(Ψn) by first computing Ez(Ψ) and then extracting the coefficient of

zn from the product P (%z)
pn%n

Ez(Ψ). When computing Ez(Ψ) we can exploit the independence

of the coordinates in the space Ω with respect to the measure Pz.

Lemma 3.3. Let the sets Π̃n, the measures µ̃n, and the functions α̃m be as defined above.

Suppose that the hypotheses of Theorem 3.2. hold, and in particular, that there are positive

constants A1, A2,and A3 such that A1n
θ−1 ≤ pn%

n ≤ A2n
θ−1 and cn%

n ≤ A3/n for all

n ≥ 1. Finally, suppose that k1, k2, ..., kl are integers such that 1 ≤ ki for i = 1, ..., l and

k1 + k2 + .. + kl = M ′ ≤M ≤ n− 1 for some integer n > 1. Then there exists a constant

Bl which depends on the constants A1, A2, A3, and l such that

En−M (α̃k1α̃k2 · · · α̃kl) ≤
Bl

(1− %)l
(1 ∨ n1−θ)
k1k2 · · · kl

where En−M denotes the expectation with respect to µ̃n−M .

Proof: Note that if k1 +k2 + · · ·+kl > n−M , then En−M (α̃k1 · · · α̃kl) = 0. Now suppose

that k1 + · · ·+ kl ≤ n−M . We use the transform to compute En−M (α̃k1 · · · α̃kl).

En−M (α̃k1 · · · α̃kl) =
[zn−M ]P (%z)
pn−M%n−M

Ez(mk1 · · ·mkl)

=
[zn−M ]P (%z)
pn−M%n−M

l∏
i=1

En−M (mki)

=
[zn−M ]P (%z)
pn−M%n−M

l∏
i=1

cki(%z)ki

(1− (%z)ki)
.

(10)
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The second equality follows from the independence of the coordinates mk1 , ..., mkl with

respect to Pz. The product on the right side of (10) is a power series with positive

coefficients. We write
∏l
i=1 cki(%z)ki(1− (%z)ki)−1 =

∑
j≥M ′ ajz

j . Thus

[zn−M ]P (%z)
pn−M%n−M

l∏
i=1

cki(%z)ki

(1− (%z)ki)
=

n−M∑
j≥M ′

ajpn−M−j%
n−M−j

pn−M%n−M

≤ (A2 ∨ 1)
A1

∑
j≥M ′

aj(1 ∨ (n−M)1−θ)

≤ (A2 ∨ 1)
A1

(1 ∨ n1−θ)
∑
j≥M ′

aj

=
(A2 ∨ 1)

A1
(1 ∨ n1−θ)

l∏
i=1

cki%
ki(1− %ki)−1

≤ (A2 ∨ 1)
A1

(
A3

1− %

)l (1 ∨ n1−θ)
k1 · · · kl

.

The first and third inequalities follow from the asymptotic bounds for pn and cn respec-

tively. The lemma is proved with Bl = (A2∨1)
A1

(A3)l.

Remarks. Lemma 3.3. is stated in the generality needed for the extension of the 2-

dimensional argument given in the proof of Theorem 3.2. to the m-dimensional case.

Lemma 3.4. Suppose that the hypotheses of Lemma 3.3. are satisfied. In particular,

suppose that A1, A2, A3 are constants as in Lemma 3.3. Let the sets Π̃n, the measures

µ̃n, and the functions α̃k be defined as above. Let M be such that for all k ≥ M ,

ck%
k ≤ A3

k ≤
1
2 . Suppose that n is such that logn

nθ/2 ≤ 1, then for all k ≥ n
logn ∨M ,

µ̃n(α̃k ≥ 2) ≤ Cθ(
1
k

)2∧(1+θ/2)

where Cθ is a constant that depends only on the constants A1, A2, A3 and the constant θ.

Proof: We know from the transform that
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µ̃n(αk ≥ 2) =
[zn]P (%z)

pn%n
µz(αk ≥ 2)

=
[zn]P (%z)

pn%n
(1− (1− (%z)k)ck − ck(%z)k(1− (%z)k)ck)

=
[zn]P (%z)

pn%n

 ck∑
j=2

(
ck
j

)
(−1)j+1(%z)kj + ck(%z)k

ck∑
i=1

(
ck
i

)
(−1)i+1(%z)ik


≤

n/k∑
j=1

(
ck
j

)
pn−kj

pn
+ ck

n/k−1∑
i=1

(
ck
i

)
pn−k(i+1)

pn
.

It follows from the asymptotics for pn and the asymptotics for ck%
k, that

n/k∑
j=2

(
ck
j

)
pn−kj

pn
≤

n/k∑
j=2

(ck)j
pn−kj

pn

≤
n/k∑
j=2

(
A3

k

)j (A2 ∨ 1)
A1

(1 ∨ n1−θ)

≤ (A2 ∨ 1)
A1

(
A3

k

)2

(1 ∨ n1−θ)
1

1−A3/k

≤ 2(A2 ∨ 1)(A3)2

A1

(
1
k2
∨ n1−θ

k2

)
≤ C1

(
1
k2
∨ 1

nθ/2k

)
≤ C1

(
1
k

)(2∧(1+θ/2))

where C1 = 2(A2∨1)(A3)2

A1
. The fourth inequality follows from the assumption that A3/k ≤

1/2. Similarly,

ck

n/k−1∑
i=1

(
ck
i

)
pn−k(i+1)

pn
≤
n/k−1∑
i=1

(ck)i+1 pn−k(i+1)

pn

≤
n/k−1∑
i=1

(
A3

k

)i+1 (A2 ∨ 1)
A1

(1 ∨ n1−θ)

≤ C1

(
1
k

)(2∧(1+θ/2))

.

So the lemma is proved with Cθ = 2C1.
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