
Random mappings with exchangeable
in-degrees

Jennie C. Hansen ∗ and Jerzy Jaworski †

Abstract
In this paper we introduce a new random mapping model, T D̂

n ,
which maps the set {1, 2, ..., n} into itself. The random mapping T D̂

n

is constructed using a collection of exchangeable random variables
D̂1, ...., D̂n which satisfy

∑n
i=1 D̂i = n. In the random digraph, GD̂

n ,
which represents the mapping T D̂

n , the in-degree sequence for the ver-
tices is given by the variables D̂1, D̂2, ..., D̂n, and, in some sense, GD̂

n

can be viewed as an analogue of the general independent degree mo-
dels from random graph theory. We show that the distribution of
the number of cyclic points, the number of components, and the size
of a typical component can be expressed in terms of expectations of
various functions of D̂1, D̂2, ..., D̂n. We also consider two special ex-
amples of T D̂

n which correspond to random mappings with preferen-
tial and anti-preferential attachment, respectively, and determine, for
these examples, exact and asymptotic distributions for the statistics
mentioned above.
Keywords: random mappings, exchangeable degree sequence, compo-
nent structure, preferential attachment, anti-preferential attachment.

1 Introduction

The study of random mapping models was initiated independently by several
authors in the 1950s (see [7, 17, 18, 24, 29, 38] ) and the properties of these
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models have received much attention in the literature. In particular, these
models have been useful as models for epidemic processes, and have natural
applications in cryptology (see, for example, [8, 9, 10, 14, 16, 19, 27, 28, 31,
32, 35, 37, 40]). To date, the most widely studied models have been special
cases of a general model denoted by Tp(n), which can be defined as follows:
Let [n] denote the set of integers {1, 2, ..., n} and let Mn denote the set of all
mappings from [n] into [n]. For each n ≥ 1, let p(n) = {pij(n) : 1 ≤ i, j ≤ n}
be an array such that pij(n) ≥ 0 for 1 ≤ i, j ≤ n and

∑n
j=1 pij(n) = 1 for

every 1 ≤ i ≤ n, and let Xn
1 , Xn

2 , ..., Xn
n be independent random variables

such that Pr{Xn
i = j} = pij(n) for all 1 ≤ i, j ≤ n. Then the random

mapping Tp(n) : [n] → [n] is defined (in terms of the variables Xn
1 , Xn

2 , ..., Xn
n )

by
Tp(n)(i) = j iff Xn

i = j (1.1)

for all 1 ≤ i, j ≤ n. It follows from (1.1) that the distribution of Tp(n) is
given by

Pr
{
Tp(n) = f

}
=

n∏
i=1

pif(i)(n) (1.2)

for each f ∈ Mn. Any mapping f ∈ Mn can be represented as a directed
graph G(f) on a set of vertices labelled 1, 2, ..., n, such that there is a directed
edge from vertex i to vertex j in G(f) if and only if f(i) = j. So Gp(n) ≡
G(Tp(n)) is a random directed graph on a set of vertices labelled 1, 2, ..., n
which represents the action of the random mapping Tp(n) on [n]. We note
that since each vertex in Gp(n) has out-degree 1, the components of Gp(n)

consist of directed cycles with directed trees attached. Also, it follows from
the definition of Tp(n) that the variables Xn

1 , Xn
2 , . . . Xn

n can be interpreted
as the independent ‘choices’ of the vertices 1, 2, . . . , n in the random digraph
Gp(n) (see, in addition, Mutafchiev [33] and Jaworski [25]).

The example of Tp(n) which is best understood is the uniform random
mapping, Tn ≡ Tp(n), where pij(n) = 1

n
for all 1 ≤ i, j ≤ n . Much is known

(see for example the monograph by Kolchin [30]) about the component struc-
ture of the random digraph Gn ≡ G(Tn) which represents Tn. Aldous [1] has
shown that the joint distribution of the normalized order statistics for the
component sizes in Gn converges to the Poisson-Dirichlet (1/2) distribution
on the simplex ∇ = {{xi} :

∑
xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1}.

Also, if Mk denotes the number of components of size k in Gn then the joint
distribution of (M1,M2, . . . , Mb) is close, in the sense of total variation, to
the joint distribution of a sequence of independent Poisson random variables
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when b = o(n/ log n) (see Arratia et.al. [5], [6]) and from this result one
obtains a functional central limit theorem for the component sizes (see also
[20]). The asymptotic distributions of variables such as the number of pre-
decessors and the number of successors of a vertex in Gn are also known (see
[9, 10, 14, 27, 28, 31, 32, 35]). In another direction, Berg, Jaworski, and
Mutafchiev (see [11, 25, 26, 27, 28] ) have investigated the structure of Gp(n)

when p(n) is given by pii(n) = q for some 0 ≤ q ≤ 1 and all 1 ≤ i ≤ n, and
pij(n) = 1−q

n−1
for all 1 ≤ i, j ≤ n such that i 6= j. Finally, Aldous, Miermont,

and Pitman (see [2] and [3]) have recently investigated the asymptotic struc-
ture of Gp(n), where p(n) is given by pij(n) = pj(n) > 0 for all 1 ≤ i, j ≤ n,
by using an ingenious coding of the mapping Tp(n) as a stochastic process
on the interval [0, 1]. Their results are closely related to earlier work on the
relationship between random mappings and random forests (see Pitman [34]
and references therein).

The common feature in all the models discussed above is that each ver-
tex in Gp(n) ‘chooses’ the vertex that it is mapped to independently of the
‘choices’ made by all other vertices. In this paper we introduce a new random
mapping model, T D̂

n , in which the vertex ‘choices’ are not necessarily inde-
pendent. Before describing the new model, we mention that the definition of
T D̂

n is motivated, in part, by developments in the general theory of random
graphs. In recent years models for random graphs with a specified degree
sequence have received much attention as models for complex networks such
as the internet. Loosely speaking, such a random graph on n labelled ver-
tices can be constructed by starting with a collection of i.i.d., non-negative,
integer-valued random variables D1, D2, ..., Dn and adding edges, at random,
to the graph until each vertex i has degree Di in the constructed random
graph. The configuration model has been an important tool for investigating
this independent degree model. In another direction random graph models
with ‘preferential attachment’ have been constructed in order to model the
evolving structure of complex networks. In such models edges are added
sequentially to the graph and new edges are more likely to be attached to
vertices that already have relatively high degree in the evolving graph. The
literature on these new developments in the theory of random graphs is ex-
tensive, but a good bibliography is provided by Bonato’s survey paper [13].

The new model T D̂
n , which is carefully defined in Section 2 below, is the

natural analogue of the independent degree model described above. It is
constructed by first specifying the in-degrees D̂1, D̂2, ..., D̂n of the vertices
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labelled 1, 2, ..., n, and then selecting a random mapping uniformly from all
mappings with the given in-degree sequence D̂1, D̂2, ..., D̂n. After defining the
model in Section 2, we show in Section 3 that the distributions of many im-
portant random mapping statistics for T D̂

n can be computed as expectations
of functions of the (random) in-degree sequence D̂1, D̂2, ..., D̂n. In Section 4
we define both a random mapping model with preferential attachment and
with anti-preferential attachment. We show that both of these models are
equivalent, under certain distribution assumptions, to the special examples
of the general model defined in Section 2. This result is somewhat surprising
as there is no such equivalence between preferential/anti-preferential attach-
ment models and the independent degree models of general random graph
theory. For these special examples we investigate the distribution of the
number of cyclic points, the distribution of the number of components, the
probability of connectedness, and the distribution of the size of a typical
component using the calculus developed in Section 3.

We adopt the following notation in this paper. If C is a finite set, then |C|
equals the number of elements in C. If f(s) =

∑∞
k=0 aks

k, then [sn]f(s) = an,
the coefficient of sn in the power series expansion of f(s).

2 The model

In order to define our new random mapping model, we adopt the following
notation. For n ≥ 1, Mn denotes the set of all mappings f : [n] → [n], where
[n] ≡ {1, 2, ..., n}, and G(f) denotes, as described in the Introduction, the
directed graph on n labelled vertices which represents the mapping f ∈Mn.
In addition, for 1 ≤ i ≤ n, di(f) denotes the in-degree of vertex i in the

digraph G(f), and we let ~d(f) ≡ (d1(f), ..., dn(f)). Finally, for any vector
~d ≡ (d1, d2, ..., dn) of non-negative integers such that

∑n
i=1 di = n, let

Mn(~d ) ≡
{

f ∈Mn : ~d(f) = ~d
}

.

To define T D̂
n , we start with a collection of non-negative integer-valued

exchangeable random variables D̂1, D̂2, ..., D̂n such that
∑n

i=1 D̂i = n. Given

the event {D̂i = di, i = 1, 2, ..., n} (with Pr{D̂i = di, i = 1, 2, ..., n} > 0), we
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define the conditional distribution of T D̂
n by

Pr{T D̂
n = f | D̂i = di, 1 ≤ i ≤ n} =

{Qn
i=1 di!

n!
if di(f) = di, 1 ≤ i ≤ n

0 otherwise.

(2.1)

In other words, given (D̂1, D̂2, ..., D̂n) = (d1, d2, ..., dn) = ~d, T D̂
n is uniformly

distributed over Mn(~d). It follows from (2.1) that for any f ∈Mn,

Pr{T D̂
n = f} =

∏n
i=1(di(f))!

n!
Pr

{
D̂i = di(f), 1 ≤ i ≤ n

}
. (2.2)

Given the random mapping T D̂
n , let GD̂

n ≡ G(T D̂
n ) denote the random digraph

on n labelled vertices which represents T D̂
n . We note that it follows from

the exchangeability of the variables D̂1, D̂2, ..., D̂n and (2.1) that, for any
permutation σ : [n] → [n], we have

σ ◦ T D̂
n

d∼ T D̂
n ◦ σ

d∼ T D̂
n .

In other words, the distribution of the corresponding digraph GD̂
n is invariant

under re-labelling of the vertices of the graph.
An important class of examples can constructed as follows. Suppose

that D1, D2, . . . , Dn are i.i.d. non-negative integer-valued random variables
with Pr{∑n

i=1 Di = n} > 0, and let D̂1, D̂2, ..., D̂n be a sequence of random
variables with joint distribution is given by

Pr
{
D̂i = di, 1 ≤ i ≤ n

}
= Pr

{
Di = di, 1 ≤ i ≤ n

∣∣∣
n∑

i=1

Di = n
}

.

Clearly, the variables D̂1, D̂2, ..., D̂n are exchangeable with
∑n

i=1 D̂i = n, so

we can use D̂1, D̂2, ..., D̂n to construct T D̂
n and GD̂

n . We note that it is easy to
check that if D1, D2, ..., Dn are i.i.d. Poisson variables, then (D̂1, D̂2, ..., D̂n)
has a multinomial distribution with parameters n and (1/n, 1/n, ..., 1/n) and

the corresponding random mapping T D̂
n is just the usual uniform random

mapping. In Section 4 below we show that there are interesting interpre-
tations T D̂

n in the cases where the underlying i.i.d. variables D1, D2, ..., Dn

have (i) a generalised negative binomial distribution, and (ii) a binomial
distribution Bin(m, p).
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3 Results

In this section we develop a calculus, in terms of the variables D̂1, D̂2, ..., D̂n,
for determining the distributions of various random variables associated with
the structure of GD̂

n . The first variable we consider is the number of cyclic

vertices in the random digraph GD̂
n .

A vertex i ∈ [n] is a cyclic vertex for the mapping f ∈ Mn (and for the
corresponding digraph G(f)) if there is some k ≥ 1 such that f (k)(i) = i,
where f (k) is the kth iterate of the function f . We define Xn(f) to be the

number of cyclic vertices of f ∈ Mn and we let XD̂
n ≡ Xn(T D̂

n ) denote the

number of cyclic vertices in GD̂
n . Then we have

Theorem 1. For 1 ≤ k ≤ n− 1

Pr
{
XD̂

n = k
}

=
k

n− k
E

(
(D̂1 − 1)D̂1D̂2 · · · D̂k

)

and

Pr
{
XD̂

n = n
}

= Pr
{
D̂i = 1, 1 ≤ i ≤ n

}
= E

(
D̂1D̂2 · · · D̂n

)
.

Proof. We begin by considering the case 1 ≤ k ≤ n − 1. For f ∈ Mn,
let Ln(f) denote the set of cyclic vertices for the mapping f , and let LD̂

n ≡
Ln(T D̂

n ). Then we have

Pr{XD̂
n = k} =

∑

L⊆[n]s.t.|L|=k

Pr{LD̂
n = L} =

(
n

k

)
Pr{LD̂

n = [k]}.

We note that the second equality holds since the distribution of GD̂
n is inva-

riant under re-labelling its vertices. Next, observe that

Pr
{LD̂

n = [k]
}

=
∑
(di)

s.t.
P

di=n

Pr
{
LD̂

n = [k]
∣∣∣ D̂i = di, 1 ≤ i ≤ n

}
Pr

{
D̂i = di, 1 ≤ i ≤ n

}
.

Now fix ~d = (d1, d2, ..., dn) such that
∑n

i=1 di = n, then it follows from (2.1)
that

Pr
{
LD̂

n = [k]
∣∣∣ D̂i = di, 1 ≤ i ≤ n

}
=

∣∣{f ∈Mn(~d ) : Ln(f) = [k]}
∣∣

n!
( ∏n

i=1 di!
)−1 .
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To determine
∣∣{f ∈ Mn(~d ) : Ln(f) = [k]}

∣∣, we make use of a bijection
between the set of sequences

S~d ≡
{
(x1, x2, ..., xn) :

∣∣{m : xm = i}
∣∣ = di , 1 ≤ i ≤ n

}

and the set of mappings Mn(~d).
The bijection is defined in terms of a version of the oldest and most

well-known tree code, which is due to Prüfer (see [36]). For any mapping

f ∈ M(~d ) it gives, after a series of ‘rounds’, a corresponding sequence
x(f) = (x1, x2, ..., xn) ∈ S~d. Informally, the algorithm works by deleting,
one at a time, vertices with in-degree 0 from G(f) and adding the image
under f of the deleted vertex to the sequence x(f). Once all of the vertices
with in-degree 0 have been deleted the remaining digraph will consist of
directed cycles only. In this case, the algorithm lists the remaining vertices
in increasing order and adds the corresponding sequence of their images under
f to the end of the code x(f), and stops.

To describe the algorithm more formally, we introduce the following no-
tation. For any labelled digraph G, define V0(G) to be the set of vertices of
G with in-degree equal to 0. If V0(G) 6= ∅, let v∗(G) denote the element of
V0(G) with smallest label.

The algorithm: Given a mapping f ∈ Mn(~d ), the corresponding code
x(f) = (x1, x2, ..., xn) ∈ S~d is obtained as follows:
Let G := G(f) and x(f) = ∅.
Step 1. If V0(G) = ∅, then list the vertices of G in the increasing order and
add the corresponding sequence of their images under f to x(f) and STOP.
Otherwise go to Step 2.
Step 2. Add w = f(v∗(G)) to x(f).
Set G := G− {v∗(G)} (i.e. delete v∗(G) from G) and go to Step 1.

It is clear from the algorithm that if f ∈Mn(~d) then x(f) = (x1, x2, ..., xn) ∈
S~d since, for 1 ≤ i ≤ n, |{m : xm = i}| = di(f) = di. We also note that if

f, f ′ ∈ Mn(~d) and f 6= f ′, then x(f) 6= x(f ′). To see this, we first observe
that if the mapping f restricted to Ln(f) does not equal the mapping f ′

restricted to Ln(f ′), then it is clear from the algorithm that x(f) 6= x(f ′).
On the other hand, suppose that f |Ln(f) = f ′|Ln(f ′) and let G and G′ denote
the state of the algorithm at the start of each round when it is applied to
the mappings f and f ′ respectively. Then since ~d(f) = ~d(f ′) we must have
at the start of the algorithm V0(G) = V0(G

′) 6= ∅ and v∗(G) = v∗(G′).
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Therefore, in some round of the algorithm we must have v∗(G) = v∗(G′)
but f(v∗(G)) 6= f ′(v∗(G′)) since f 6= f ′, and hence x(f) 6= x(f ′). It follows

that the algorithm gives a bijection between S~d and Mn(~d) since
∣∣S~d

∣∣ =
n!

d1!···dn!
=

∣∣Mn(~d)
∣∣. Clearly the inverse of this coding can be used to generate

mappings with a given degree sequence, and we note that a similar approach
has been used recently by Blitzstein and Diaconis [12] to construct labelled
trees with a given degree sequence. Finally, we also note, more generally,
that for any f, f ′ ∈Mn such that f 6= f ′, the corresponding codes x(f) and
x(f ′) generated by the algorithm are distinct.

The next lemma identifies a key correspondence between Ln(f) and a
subsequence of x(f).

Lemma 1. For each x = (x1, x2, ..., xn) ∈ S~d, we define t(x) as follows:

t(x) = min
{
t :

∣∣{xt, xt+1, ..., xn

}∣∣ = n− t + 1
}

.

Then for any f ∈Mn(~d)

Ln

(
f
)

=
{
xt(x(f)), xt(x(f))+1, ..., xn

}
.

Proof. Let f ∈Mn(~d ) and suppose that x(f) = (x1, x2, . . . , xn). If |Ln(f)|
= n, then f is a permutation and {x1, x2, ..., xn} = [n]. So the result holds in
this case. Next, if |Ln(f)| = m < n, then it follows from the algorithm that
{xn−m+1, xn−m+2, ..., xn} = Ln(f). So, at the start of the (n − m)st round
of the algorithm, the digraph G consists of a permutation of the vertices
labelled xn−m+1, ..., xn with one non-cyclic vertex, labelled v∗(G), attached
to a cycle. It follows that xn−m = f(v∗(G)) ∈ Ln(f) = {xn−m+1, ..., xn}.
Thus t(x(f)) = n−m + 1, and the result holds in this case.

It follows from Lemma 1 and the bijection between Mn(~d) and S~d that

∣∣∣
{
f ∈Mn(~d) : Ln(f) = [k]

}∣∣∣

=
∣∣{x ∈ S~d : {xn−k+1, ..., xn} = [k] and xn−k ∈ [k]

}∣∣ .

8



So routine counting arguments yield

Pr

{
LD̂

n = [k]

∣∣∣∣ D̂i = di, 1 ≤ i ≤ n

}

=

∣∣{x ∈ S~d : {xn−k+1, ..., xn} = [k] and xn−k ∈ [k]}∣∣×∏n
i=1 di!

n!

=

(
n

k

)−1 (
1

n− k

) k∑
i=1

d1d2 · · · di−1(di − 1)didi+1 · · · dk

for 1 ≤ k ≤ n− 1. Hence

Pr
{LD̂

n = [k]
}

=

(
n

k

)−1 (
1

n− k

) k∑
i=1

E
(
D̂1 · · · (D̂i − 1)D̂i · · · D̂k

)

=

(
n

k

)−1
k

n− k
E

(
(D̂1 − 1)D̂1D̂2 · · · D̂k

)

since D̂1, D̂2, ..., D̂k are exchangeable, and the result follows for 1 ≤ k ≤ n−1.
Finally, we consider the case k = n. Clearly XD̂

n = n if and only if f is a
permutation of [n], and f is a permutation of [n] if and only if D̂i = 1 for all
1 ≤ i ≤ n. Hence

Pr
{
XD̂

n = n
}

= Pr
{
D̂i = 1, 1 ≤ i ≤ n

}
= E(D̂1D̂2 · · · D̂n)

as required, and the theorem is proved.

Let N D̂
n denote the number of components in GD̂

n . Then we have

Corollary 1. For 1 ≤ ` ≤ n,

Pr{N D̂
n = `} =

n−1∑

k=`

|s(k, l)|
(k − 1)!(n− k)

E((D̂1 − 1)D̂1D̂2 · · · D̂k)

+
|s(n, l)|

n!
Pr{D̂i = 1, 1 ≤ i ≤ n} ,

where s(· , ·) are the Stirling numbers of the first kind.
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Proof. Recall that the mapping T D̂
n restricted to LD̂

n , the cyclic vertices of T D̂
n ,

is a permutation of LD̂
n . The corollary follows from the observation that the

number of components in GD̂
n equals the number of cycles in the permutation

of LD̂
n by T D̂

n . So N D̂
n = ` if and only if the mapping T D̂

n restricted to LD̂
n is

a permutation with ` cycles.
Next, it follows from (2.1) that given the (non-empty) event {D̂i = di, i =

1, 2, ..., n}, the mapping T D̂
n is uniformly distributed on Mn(d1, d2, .., dn) and

hence T D̂
n restricted to LD̂

n is a uniform random permutation of LD̂
n . It follows

that for 1 ≤ ` ≤ k ≤ n,

Pr
{

N D̂
n = `

∣∣XD̂
n = k

}
= Pr

{
Nσ(k) = `

}
(3.1)

where σ(k) is a uniform random permutation on a k-element set and Nσ(k)

denotes the number of cycles in the random permutation σ(k). It follows
that

Pr
{

N D̂
n = `

}
=

n∑

k=`

Pr
{

N D̂
n = `

∣∣ XD̂
n = k

}
Pr

{
XD̂

n = k
}

=
n∑

k=1

Pr
{
Nσ(k) = `

}
Pr

{
XD̂

n = k
}

. (3.2)

Let s(· , ·) denote the Stirling numbers of the first kind, then it is well known
that there are |s(k, l)| permutations of k-element set with exactly l cycles,
i.e.,

Pr{Nσ(k) = `} =
|s(k, l)|

k!
,

which implies the assertion of the corollary.

Let BD̂
n denote the event that the random graph GD̂

n is connected. Then

since BD̂
n = {N D̂

n = 1}, we obtain the following result immediately from (3.2)
and Theorem 1:

Corollary 2.

Pr
{BD̂

n

}
=

n∑

k=1

1

k
Pr

{
XD̂

n = k
}

=
n−1∑

k=1

E
(
(D̂1 − 1)D̂1D̂2 · · · D̂k

)

n− k
+

E(D̂1D̂2 · · · D̂n)

n
.
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Finally, suppose that ξ1, ξ2, ... is a sequence of independent indicator va-
riables such that, for k ≥ 1, Pr{ξk = 1} = 1

k
and such that ξ1, ξ2, .... and XD̂

n

are independent. It is well known (see [15]) that for m ≥ 1

Nσ(m)
d∼

m∑

k=1

ξk, (3.3)

and that (Nσ(m) − log m)/
√

log m converges in distribution to the standard
N(0, 1) distribution. It is an easy consequence of (3.1)–(3.3), that

Corollary 3. For n ≥ 1,

N D̂
n

d∼
XD̂

n∑

k=1

ξk. (3.4)

We note that (3.4) is useful for investigating the asymptotic distribution of

N D̂
n .

Next, we consider the distribution of the size of a ‘typical’ component of
GD̂

n . Let CD̂
1 (n) denote the size of the component in GD̂

n which contains the

vertex 1, then the distribution of CD̂
1 (n) is given by the following theorem.

Theorem 2. Suppose that 1 ≤ ` ≤ n and suppose that Pr{∑`
i=1 D̂i = `} > 0.

Let D′
1, D

′
2, ..., D

′
` be a sequence of variables with joint distribution given by

Pr
{

D′
i = di, 1 ≤ i ≤ `

}
= Pr

{
D̂i = di, 1 ≤ i ≤ `

∣∣∣
∑̀
i=1

D̂i = `
}

,

then

Pr
{

CD̂
1 (n) = `

}
=

`

n
Pr

{
BD′

`

}
Pr

{ ∑̀
i=1

D̂i = `
}

.

Otherwise, if Pr
{∑`

i=1 D̂i = `
}

= 0, then Pr
{

CD̂
1 (n) = `

}
= 0.

Proof. Fix 1 ≤ ` ≤ n and let CD̂
1 (n) denote the vertex set of the component

of GD̂
n which contains the vertex 1. Then we have

Pr
{

CD̂
1 (n) = `

}
=

∑
C⊆[n] s.t. 1∈C

and |C|=`

Pr
{
CD̂

1 (n) = C
}

=

(
n− 1

`− 1

)
Pr

{
CD̂1 (n) = [`]

}
. (3.5)
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The second equality holds since the distribution of GD̂
n (and of T D̂

n ) is invari-

ant under re-labelling of the vertices. Next, observe that if CD̂
1 (n) = [`] then

T D̂
n must map [`] into [`] and [n] \ [`] into [n] \ [`]. It follows that we must

have
∑`

i=1 D̂i = `. So if Pr{∑`
i=1 D̂i = `} = 0, then Pr

{
CD̂

1 (n) = `
}

= 0.

On the other hand, if Pr
{∑`

i=1 D̂i = `
}

> 0, then

Pr
{
CD̂

1 (n) = [`]
}

= Pr
{
CD̂

1 (n) = [`]
∣∣∣

∑̀
i=1

D̂i = `
}

Pr
{ ∑̀

i=1

D̂i = `
}

. (3.6)

Now fix ~d = (d1, ..., dn) such that
∑`

i=1 di = ` and
∑n

i=1 di = n, and define
C(d1, d2, ..., d`) to be the number of mappings g : [`] → [`] such that di(g) = di

for 1 ≤ i ≤ ` and G(g) is connected. Therefore, since (n− `)!/(d`+1! · · · dn!)
is the number of mappings from [n] \ [`] into [n] \ [`] with in-degree sequence
(d`+1, ..., dn), we have

Pr
{
CD̂

1 (n) = [`]
∣∣∣ D̂i = di, 1 ≤ i ≤ n

}
=

C(d1, ..., d`)(n− `)!

d`+1! · · · dn!
× d1! · · · dn!

n!

=

(
n

`

)−1

C(d1, ..., d`)× d1! · · · d`!

`!

=

(
n

`

)−1

Pr
{
BD′`

∣∣∣ D′
i = di, 1 ≤ i ≤ `

}
. (3.7)

Finally, for any degree sequence ~d = (d1, ..., dn), we define ~d` = (d1, ..., d`)

and ~d ′
` = (d`+1, ..., dn) (so ~d = (~d`, ~d ′

` )). Then it follows from (3.7) that

Pr
{
CD̂

1 (n) = [`]
∣∣∣

∑̀
i=1

D̂i = `
}

=
∑

~d s.t.
P`

i=1
di=`,Pn

i=1
di=n

Pr
{
CD̂

1 (n) = [`]
∣∣∣ D̂i = di, 1 ≤ i ≤ n

}

×Pr
{

D̂i = di, 1 ≤ i ≤ n
∣∣∣

∑̀
i=1

D̂i = `
}

12



=

(
n

`

)−1 ∑
~d` s.t.P`
i=1

di=`

∑
~d ′
`

s.t.Pn
i=`+1

di=n−`

Pr
{
BD′`

∣∣∣D′
i = di, 1 ≤ i ≤ `

}

×Pr
{

D̂i = di, 1 ≤ i ≤ n
∣∣∣

∑̀
i=1

D̂i = `
}

=

(
n

`

)−1 ∑
~d` s.t.P`
i=1

di=`

Pr
{
BD′`

∣∣∣ D′
i = di, 1 ≤ i ≤ `

}
Pr

{
D′

i = di, 1 ≤ i ≤ `
}

=

(
n

`

)−1

Pr{BD′` }. (3.8)

The result now follows from (3.5), (3.6), and (3.8).

We prove an extension of Theorem 2 in the following special case: Suppose
that D1, D2, ... is a sequence of i.i.d. non-negative integer valued random
variables such that for every n ≥ 1, we have Pr{∑n

i=1 Di = n} > 0. For

each n ≥ 1, let D̂(n) ≡ (D̂1,n, ...., D̂n,n) be a sequence of variables with joint
distribution given by

Pr
{

D̂i,n = di for i = 1, 2, .., n
}

= Pr
{

Di = di, i = 1, 2, ..., n
∣∣∣

n∑
i=1

Di = n
}

.

Let CD̂(n)
1 denote the vertex set of the connected component in G

D̂(n)
n ≡

G(T
D̂(n)
n ) which contains the vertex labelled 1. For k > 1, we define CD̂(n)

k

recursively as follows: If [n] \ (CD̂(n)
1 ∪ · · · ∪ CD̂(n)

k−1 ) 6= ∅, let CD̂(n)
k denote the

vertex set of the connected component in G
D̂(n)
n which contains the smallest

element of [n] \ (CD̂(n)
1 ∪ · · · ∪ CD̂(n)

k−1 ); otherwise, set CD̂(n)
k = ∅. For all k ≥ 1,

let C
D̂(n)
k = |CD̂(n)

k |, then we have

Theorem 3. Suppose 1 ≤ k ≤ n and `1, `2, . . . , `k are such that `i ≥ 1 for
i = 1, 2, ..., k, and

∑k
i=1 `i ≤ n. Then we have

Pr
{
C

D̂(n)
1 = `1, ..., C

D̂(n)
k = `k

}
=

k∏
i=1

Pr{CD̂(n−ti−1)
1 = `i}, (3.9)

where t0 = 0 and ti ≡ `1 + ... + `i , i = 1, 2, ..., k.
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Proof. The proof is by induction on k. The case k = 1 is obvious. We show
how the induction step works by proving the result for k = 2. The general
induction argument is exactly the same, but is notationally messier. We note
that in the case k = 2, it suffices to show that

Pr{CD̂(n)
2 = `2

∣∣ C
D̂(n)
1 = `1} = Pr{CD̂(n−`1)

1 = `2}. (3.10)

We begin by defining, for each n ≥ 1, the set of connected mappings
M̃n = {f ∈ Mn : G(f) is connected}. Now given g ∈ M̃`1 , we can
construct a mapping f ∈ Mn such that C1(f) = [`1], (where C1(f) is the
vertex set of the component in G(f) which contains the vertex labelled 1) as
follows: Choose h ∈ Mn−`1 . Then for 1 ≤ i ≤ `1, define f(i) = g(i) and for
`1 +1 ≤ i ≤ n, define f(i) = h(i− `1). In this case, we write f = (g, h). Now
fix g ∈ M̃`1 , then it is straightforward to check that

Pr
{

T D̂(n)
n

∣∣
[`1]

= g,

`1∑
i=1

D̂i,n = `1

}

=

∏`1
i=1 di(g)!(n− `1)!

n!
Pr

{
D̂i,n = di(g), 1 ≤ i ≤ `1,

n−`1∑

j=`1+1

D̂j,n = n− `1

}
.

It follows that for any h ∈ Mn−`1 , we have

Pr
{

T D̂(n)
n = (g, h)

∣∣∣ T D̂(n)
n

∣∣
[`1]

= g,

`1∑
i=1

D̂i,n = `1

}

=
Pr

{
T

D̂(n)
n = (g, h)

}

Pr
{

T
D̂(n)
n

∣∣
[`1]

= g,
∑`1

i=1 D̂i,n = `1

}

=

∏n−`1
j=1 dj(h)!

(n− `1)!
·
Pr

{
D̂i,n = di(g), 1 ≤ i ≤ `1, D̂j+`1,n = dj(h), 1 ≤ j ≤ n− `1

}

Pr
{

D̂i,n = di(g), 1 ≤ i ≤ `1,
∑n−`1

j=`1+1 D̂j,n = n− `1

}

=

∏n−`1
j=1 dj(h)!

(n− `1)!
Pr

{
D̂j,n−`1 = dj(h), 1 ≤ j ≤ n− `1

}

= Pr
{

T
D̂(n−`1)
n−`1

= h
}

. (3.11)

We note that since the {D1, D2, ...} are i.i.d., the third equality above fol-
lows from the definition of D̂(n) and D̂(n − `1) in terms of the variables
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{D1, D2, ...}. It follows from (3.11) and the invariance of the distribution of

G
D̂(n)
n under re-labelling of the vertices, that given CD̂(n)

1 = C ⊆ [n] with

|C| = `1, then the distribution of G
D̂(n)
n restricted to the vertices with la-

bels [n] \C is the same (after the obvious re-labelling) as the distribution of

G
D̂(n−`1)
n−`1

and hence (3.10) holds.

We note that in the general case where the variables D̂1, D̂2, ..., D̂n are
exchangeable and

∑n
i=1 D̂i = n, a product formula as given in Theorem 3

does not hold. Nevertheless, in this case one can obtain, if required, a more
complicated analogue of Theorem 3 by generalising the proof of Theorem 2.
Theorems 1,2, and 3 and their corollaries illustrate how the distributions of
random mapping statistics for T D̂

n can be computed in terms of the variables

D̂1, D̂2, ..., D̂n. Similar results for local properties of T D̂
n such as the number

of predecessors and the number of successors of a given vertex (or vertices)
are obtained in a companion paper [22].

4 Examples

We consider two special examples which correspond, respectively, to a ran-
dom mapping with ‘preferential attachment’ and a random mapping with
‘anti-preferential attachment’.

A Preferential Attachment Model

In this section we investigate T ρ
n : [n] → [n], a random mapping with ‘prefe-

rential attachment’, where ρ is a positive parameter. For 1 ≤ k ≤ n, we
define T ρ

n(k) = ξ
(ρ,n)
k where ξ

(ρ,n)
1 , ξ

(ρ,n)
2 , ..., ξ

(ρ,n)
n is a sequence of random

variables whose distributions depend on the evolution of an urn scheme.
The distribution of each ξ

(ρ,n)
k is determined by a (random) n-tuple of non-

negative weights ~a(k) = (a1(k), a2(k), ..., an(k)) where, for 1 ≤ j ≤ n, aj(k)
is the ‘weight’ of the jth urn at the start of the kth round of the urn scheme.
Specifically, given ~a(k) = ~a = (a1, ..., an), we define

Pr
{

ξ
(ρ,n)
k = j

∣∣~a(k) = ~a
}

=
aj∑n
i=1 ai

.

The random weight vectors ~a(1),~a(2), ...,~a(n) associated with the urn scheme
are determined recursively. For k = 1, we set a1(1) = a2(1) = · · · = an(1) =
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ρ. For k > 1, ~a(k) depends on both ~a(k−1) and the value of ξ
(ρ,n)
k−1 as follows:

Given that ξ
(ρ,n)
k−1 = j, we set aj(k) = aj(k− 1) + 1 and for all other i 6= j, we

set ai(k) = ai(k − 1) (i.e. if ξ
(ρ,n)
k−1 = j then a ‘ball’ with weight 1 is added to

the jth urn).
The random mapping T ρ

n as defined above is a preferential attachment

model in the following sense. Since, for 1 ≤ k ≤ n, T ρ
n(k) = ξ

(ρ,n)
k , and

since the (conditional) distribution of ξ
(ρ,n)
k depends on the state of the urn

scheme at the start of round k, it is clear that vertex k is more likely to be
mapped to vertex j if the weight aj(k) is (relatively) large, i.e. if several
of the vertices 1, 2, ..., k − 1 have already been mapped to vertex j . In the
following theorem we establish the distribution of T ρ

n .

Theorem 4. Suppose that Dρ
1, D

ρ
2, ... are i.i.d. random variables with a ge-

neralized negative binomial distribution given by

Pr{Dρ
1 = k} =

Γ(k + ρ)

k!Γ(ρ)

(
ρ

1 + ρ

)ρ (
1

1 + ρ

)k

for k = 0, 1, ...,

where ρ is a positive parameter. For n ≥ 1, let D̂(ρ, n) = (D̂ρ
1,n, D̂ρ

2,n, ..., D̂
ρ
n,n)

be a sequence of variables with joint distribution given by

Pr
{

D̂ρ
i,n = di, 1 ≤ i ≤ n

}
= Pr

{
Dρ

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dρ
i = n

}
.

Then for every n ≥ 1, the random mappings T ρ
n and T

D̂(ρ,n)
n have the same

distribution.

Proof. To prove the result it is enough to show that for any n ≥ 1 and any
f ∈Mn

Pr {T ρ
n = f} = Pr

{
T D̂(ρ,n)

n = f
}

.

Suppose that f ∈ Mn and that ~d(f) = (d1, d2, ..., dn). It is straightforward
to check that

Pr

{
Dρ

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dρ
i = n

}
=

n∏
i=1

Γ(di + ρ)

(di)!Γ(ρ)
× n!Γ(nρ)

Γ(n + nρ)
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since the distribution of
∑n

i=1 Dρ is given by

Pr

{
n∑

i=1

Dρ
i = k

}
=

Γ(k + nρ)

k!Γ(nρ)

(
ρ

1 + ρ

)nρ (
1

1 + ρ

)k

(4.1)

for k = 0, 1, . . . . It follows from the definition of T
D̂(ρ,n)
n that

Pr
{

T D̂(ρ,n)
n = f

}
=

d1! · · · dn!

n!
×

n∏
i=1

Γ(di + ρ)

(di)!Γ(ρ)
× n!Γ(nρ)

Γ(n + nρ)

=

∏n
i=1(di + ρ− 1)di

(nρ + n− 1)n

where (x)k ≡ x(x− 1) · · · (x− k + 1) = Γ(x + 1)/Γ(x− l + 1) and (x)0 = 1.

Next, observe that if T ρ
n = f and ~d(f) = (d1, d2, ..., dn), then for each

1 ≤ i ≤ n, di ‘balls’ of weight 1 are added to ith urn during the evolution of
the urn scheme described above. So it follows from the definition of T ρ

n in
terms of the urn scheme, that

Pr {T ρ
n = f} =

∏n
i=1(di + ρ− 1)di

(nρ + n− 1)n

.

The result follows since n ≥ 1 and f ∈Mn were arbitrary.

It is clear from Theorem 4 that the order in which a realisation of T ρ
n

is sequentially constructed does not matter. In particular, suppose that
i1, i2, ..., in is a permutation of [n] and for 1 ≤ k ≤ n, let T̃ ρ

n(ik) ≡ ξ
(ρ,n)
k

where the variables ξ
(ρ,n)
1 , ξ

(ρ,n)
2 , ..., ξ

(ρ,n)
n are as defined above. Then it follows

from the proof of Theorem 4 that T̃ ρ
n

d∼ T
D̂(ρ,n)
n

d∼ T ρ
n .

Since T ρ
n

d∼ T
D̂(ρ,n)
n , we can investigate the structure of Gρ

n ≡ G(T ρ
n) by

considering the structure of G
D̂(ρ,n)
n . In this paper, in order to illustrate the

general method, we derive both exact and asymptotic results for Xρ
n, the

number of cyclic vertices in Gρ
n, and Cρ

1 (n), the size of the component in
Gρ

n which contains vertex 1. By Theorem 1 and Theorem 4 we have, for
1 ≤ k < n,

Pr{Xρ
n = k} =

k

n− k
E

(
(D̂ρ

1,n − 1)D̂ρ
1,nD̂ρ

2,n · · · D̂ρ
k,n

)
. (4.2)
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Since

E
(
(D̂ρ

1,n − 1)D̂ρ
1,nD̂ρ

2,n · · · D̂ρ
k,n

)
= E

(
(Dρ

1 − 1)Dρ
1D

ρ
2 · · ·Dρ

k

∣∣∣
n∑

i=1

Dρ
i = n

)

we have

E
(
(D̂ρ

1,n − 1)D̂ρ
1,nD̂

ρ
2,n · · · D̂ρ

k,n

)

=
[sn]E

(
(Dρ

1 − 1)Dρ
1s

Dρ
1Dρ

2s
Dρ

2 · · ·Dρ
ks

Dρ
ksDρ

k+1 · · · sDρ
n

)

[sn]E
(
sDρ

1 · · · sDρ
n

)

=
[sn]E

(
(Dρ

1 − 1)Dρ
1s

Dρ
1

)(
E

(
Dρ

1s
Dρ

1

))k−1(
E

(
sDρ

1

))n−k

[sn]
(
E

(
sDρ

1

))n . (4.3)

The last equality holds since the variables Dρ
1, D

ρ
2, ..., D

ρ
n are independent and

identically distributed. Since the identity

1

(1− u)α
=

∞∑

k=0

Γ(k + α)

k!Γ(α)
uk

holds for all α > 0 and |u| < 1, we have

E
(
sDρ

1

)
=

(
ρ

1 + ρ− s

)ρ

, E
(
Dρ

1s
Dρ

1

)
= s

(
ρ

1 + ρ− s

)ρ+1

and

E
(
(Dρ

1 − 1)Dρ
1s

Dρ
1

)
=

(
1 + ρ

ρ

)
s2

(
ρ

1 + ρ− s

)ρ+2

. (4.4)

It follows from (4.2)-(4.4) and routine calculations that for 1 ≤ k < n,

Pr{Xρ
n = k} =

k

n− k
ρk(1 + ρ)

Γ(nρ) n!

(n− k − 1)! Γ(nρ + k + 1)

= kρk(1 + ρ)
(n)k

(nρ + k)k+1

(4.5)

and for k = n, we have

Pr{Xρ
n = n} = Pr{D̂ρ

i,n = 1, 1 ≤ i ≤ n} =
ρnn! Γ(nρ)

Γ(n + nρ)
. (4.6)
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Next, we consider the limiting distribution of Xρ
n: Fix 0 < x < ∞ and

suppose that k = bx√nc, then we have

Pr{Xρ
n = k} = kρk(1 + ρ)

(n)k

(nρ + k)k+1

=
k

n

(
1 + ρ

ρ

)
(1− 1

n
) · · · (1− k−1

n
)

(1 + k
nρ

) · · · (1 + 1
nρ

)

∼
(

1 + ρ

ρ

)
x exp

(
−(1 + ρ)x2

2ρ

)
1√
n

. (4.7)

Hence Xρ
n/
√

n converges in distribution to a variable X̃ρ with density

fX̃ρ
(x) =

(
1 + ρ

ρ

)
x exp

(
−(1 + ρ)x2

2ρ

)
for x ≥ 0. (4.8)

We note that by keeping track of the error term in (4.7), it is straightfor-

ward to check that E(Xρ
n) ∼

√
ρπn

2(1+ρ)
. In addition, if we let Nρ

n denote the

number of components in Gρ
n, then using Corollary 3, it is routine to adapt

Stepanov’s arguments for uniform random mappings (see [39]) to show that

(Nρ
n − 1

2
log n)/

√
1
2
log n converges in distribution to the standard N(0, 1)

distribution.
We apply Theorem 2 and Theorem 4 to obtain the distribution for Cρ

1 (n):

Pr {Cρ
1 (n) = `} = Pr

{
C

D̂(ρ,n)
1 = `

}

=
`

n
Pr

{
BD̂(ρ,`)

`

}
Pr

{∑̀
i=1

Dρ
i = `

∣∣∣∣
n∑

i=1

Dρ
i = n

}
(4.9)

for 1 ≤ ` ≤ n. To obtain a local limit theorem for the distribution of Cρ
1 (n),

fix 0 < x < ∞ and suppose that ` = bxnc. Then it follows from Theorem 4,
Corollary 2, (4.5), and (4.6) that

Pr
{
BD̂(ρ,`)

`

}
=

∑̀

k=1

1

k
Pr

{
X

D̂(ρ,`)
` = k

}
=

`−1∑

k=1

ρk(1+ρ)
(`)k

(`ρ + k)k+1

+
ρ``! Γ(`ρ)

Γ(` + `ρ)

∼ 1√
`

∫ ∞

0

(
1 + ρ

ρ

)
exp

(
−(1 + ρ)y2

2ρ

)
dy =

√
1 + ρ

ρ
·
√

π

2`
. (4.10)
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Also, since the variables Dρ
1, D

ρ
2, .. are independent, we have

Pr

{∑̀
i=1

Dρ
i = `

∣∣∣∣
n∑

i=1

Dρ
i = n

}
=

Pr{∑`
i=1 Dρ

i = `}Pr{∑n
i=`+1 Dρ

i = n− `}
Pr{∑n

i=1 Dρ
i = n}

=

(
n

`

)
Γ(`(1 + ρ))Γ((n− `)(1 + ρ))Γ(nρ)

Γ(`ρ)Γ((n− `)ρ)Γ(n(1 + ρ))

∼
√

ρ

1 + ρ

√
n

2π`(n− `)
. (4.11)

Substituting (4.10) and (4.11) into (4.9), we obtain

Pr {Cρ
1 (n) = `} = Pr {Cρ

1 (n) = bxnc} ∼ 1

2n
√

1− x
. (4.12)

So,
Cρ

1 (n)

n
converges in distribution to Z1 as n → ∞, where Z1 has density

fZ1(u) = θ(1 − u)θ−1 on the interval (0, 1) with θ = 1/2. It follows imme-
diately from (4.12) and Theorem 3 that for any integer t ≥ 1 and constants
0 < ai < bi < 1, where 1 ≤ i ≤ t,

lim
n→∞

Pr

{
ai <

C
D̂(ρ,n)
i

n− C
D̂(ρ,n)
1 − · · · − C

D̂(ρ,n)
i−1

< bi, 1 ≤ i ≤ t

}

=
t∏

i=1

∫ bi

ai

1

2
√

1− x
dx.

Hence, it follows from standard arguments (see, for example [21]) that:

Theorem 5. The joint distribution of the normalized order statistics for the
component sizes in Gρ

n converges to the Poisson-Dirichlet (1/2) distribution
on the simplex

∇ =
{
{xi} :

∑
xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1

}
.

We note that in the calculations above the parameter ρ > 0 is fixed as n →∞.
In a companion paper [23] we also investigate the asymptotic structure of Gρ

n

when ρ = ρ(n) is a function of n. Clearly, if ρ(n) →∞ as n →∞, then the

distribution G
ρ(n)
n is close to the distribution of the digraph Gn corresponding

to the uniform model. As we have seen above, for a fixed parameter ρ, the
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‘fine’ structure of the digraph Gρ
n begins to differ from the structure of the

uniform model. We show in [23], when ρ(n) → 0 as n → ∞, that the

structure of G
ρ(n)
n is significantly different from the structure of the uniform

model Gn.

An Anti-Preferential Attachment Model

In this section we define Tm
n : [n] → [n], a random mapping with ‘anti-

preferential attachment’, where m is a positive integer parameter. For 1 ≤
k ≤ n, we define Tm

n (k) = η
(m,n)
k where, as in the definition of T ρ

n , the

variables η
(m,n)
1 , η

(m,n)
2 , .., η

(m,n)
n depend on the evolution of an urn scheme.

The distribution of each variable η
(m,n)
k is determined by a (random) n-tuple

of non-negative weights ~b(k) = (b1(k), b2(k), ..., bn(k)) where, for 1 ≤ j ≤ n,
bj(k) is the number of balls in the jth urn at the start of the kth round of the

urn scheme. Specifically, given ~b(k) = ~b = (b1, ..., bn), we define

Pr
{

η
(m,n)
k = j

∣∣~b(k) = ~b
}

=
bj∑n
i=1 bi

.

The random weight vectors~b(1),~b(2), . . . ,~b(n) associated with the urn scheme
are determined recursively. For k = 1, we set b1(1) = b2(1) = ··· = bn(1) = m.

For k > 1, ~b(k) depends on both ~b(k − 1) and the value of η
(m,n)
k−1 as follows:

Given that η
(m,n)
k−1 = j, we set bj(k) = bj(k − 1) − 1 and for all other i 6= j,

we set bi(k) = bi(k − 1) (i.e. if η
(m,n)
k−1 = j then a ‘ball’ is removed from the

jth urn).
The random mapping Tm

n as defined above is an anti-preferential at-
tachment model in the following sense. Since, for 1 ≤ k ≤ n, we have
Tm

n (k) = η
(m,n)
k , and since the (conditional) distribution of η

(m,n)
k depends on

the state of the urn scheme at the start of round k, it is clear that vertex k
is less likely to ‘ choose’ vertex j if the weight bj(k) is (relatively) small, i.e.
if several of the vertices 1, 2, ..., k− 1 have already been mapped to vertex j.
It is also clear from the definition of Tm

n that the in-degree of any vertex in
the random digraph Gm

n ≡ G(Tm
n ) is at most m and in the case m = 1, T 1

n

is a (uniform) random permutation. In the following theorem we determine
the distribution of Tm

n .
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Theorem 6. Suppose that Dm
1 , Dm

2 , ... are i.i.d. Bin(m, p) variables where
m is a positive integer parameter. Let D̂(m,n) = (D̂m

1,n, D̂m
2,n, ..., D̂m

n,n) be
a sequence of variables with joint distribution given by

Pr{D̂m
i,n = di, 1 ≤ i ≤ n} = Pr

{
Dm

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dm
i = n

}
.

Then the random mappings Tm
n and T

D̂(m,n)
n have the same distribution.

Proof. To prove the result it is enough to show that for any n ≥ 1 and any
f ∈Mn

Pr{Tm
n = f} = Pr{T D̂(m,n)

n = f}.
Suppose that f ∈ Mn and that ~d(f) = (d1, d2, ..., dn). It is straightforward
to check that

Pr

{
Dm

i = di, 1 ≤ i ≤ n

∣∣∣∣
n∑

i=1

Dm
i = n

}
=

∏n
i=1

(
m
di

)
(

nm
n

) ,

and hence, from the definition of T
D̂(m,n)
n , that

Pr{T D̂(m,n)
n = f} =

d1! · · · dn!

n!
×

∏n
i=1

(
m
di

)
(

nm
n

) =

∏n
i=1(m)di

(nm)n

.

On the other hand, Tm
n = f with ~d(f) = (d1, d2, ..., dn) if and only if for

each 1 ≤ i ≤ n, di balls are removed, in a certain order, from the ith urn
during the evolution of the urn model described above. So it follows from
the definition of Tm

n in terms of the urn scheme, that

Pr{Tm
n = f} =

∏n
i=1(m)di

(nm)n

.

The result follows since n ≥ 1 and f ∈Mn were arbitrary.

Again, it is clear from Theorem 6 that the order in which a realisation
of Tm

n is sequentially constructed does not matter. In particular, suppose
that i1, i2, ..., in is a permutation of [n] and for 1 ≤ k ≤ n, let T̃m

n (ik) ≡
η

(m,n)
k where the variables η

(m,n)
1 , η

(m,n)
2 , ..., η

(m,n)
n are as defined above. Then

it follows from the proof of Theorem 6 that T̃m
n

d∼ T
D̂(m,n)
n

d∼ Tm
n .
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We apply Theorem 6 to investigate the distributions of the number of
cyclic vertices in Gm

n ≡ G(Tm
n ) and the size of a typical component in Gm

n .
Let Xm

n denote the number of cyclic vertices in the random digraph Gm
n and

let Cm
1 (n) denote the size of the component in Gm

n which contains the vertex

1. Since Tm
n

d∼ T
D̂(m,n)
n , we have Gm

n
d∼ G

D̂(m,n)
n and Xm

n
d∼ X

D̂(m,n)
n . So, it

follows from Theorem 1 and Theorem 6 (and its proof) that for m ≥ 2 and
1 ≤ k < n, we have

Pr {Xm
n = k} = Pr

{
XD̂(m,n)

n = k
}

=
k

n− k
E

(
(D̂m

1,n − 1)D̂m
1,nD̂m

2,n · · · D̂k,n

)

=
k

n− k

∑

~d s.t.
Pn

i=1 di=n

(d1 − 1)d1d2 · · · dk ×
(

m
d1

) · · · (m
dn

)
(

nm
n

)

=
k

n− k

min(n,km)∑

t=k+1

∑
~d s.t.

Pk
i=1

di=t

and
Pn

i=1
di=n

(d1 − 1)d1d2 · · · dk ×
(

m
d1

) · · · (m
dn

)
(

nm
n

)

=
k

n− k

min(n,km)∑

t=k+1

∑

~d s.t.
Pk

i=1 di=t

(d1 − 1)d1d2 · · · dk ×
(

m
d1

) · · · (m
dk

)(
nm−km

n−t

)
(

nm
n

)

=
k

n− k
mk(m− 1)

min(n,km)∑

t=k+1

∑

~d s.t.
Pk

i=1 di=t

(
m−2
d1−2

)(
m−1
d2−1

) · · · (m−1
dk−1

)(
nm−km

n−t

)
(

nm
n

)

=
k

n− k
mk(m− 1)

min(n,km)∑

t=k+1

(
km−k−1
t−k−1

)(
nm−km

n−t

)
(

nm
n

)

=
k

n− k
mk(m− 1)

(
nm−k−1
n−k−1

)
(

nm
n

) .

In the summations above the sum is always taken over those degree sequences
for which the binomial coefficients are defined. We also adopt the formal
convention that

(
0
0

)
= 1. Finally, for k = n and m ≥ 2, we obtain

Pr {Xm
n = n} = Pr

{
D̂m

i,n = 1, 1 ≤ i ≤ n
}

=
mn

(
nm
n

) ,
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and when m = 1, we have X1
n ≡ n.

To obtain a local limit theorem for Xm
n , m ≥ 2, fix 0 < x < ∞ and

suppose that k = bx√nc. Then we have

Pr{Xm
n = k} =

k

n− k
mk(m− 1)

(
nm−k−1
n−k−1

)
(

nm
n

) =
k

n− k
mk(m− 1)

(n)k+1

(nm)k+1

∼
(

m− 1

m

)
x exp

(−(m− 1)x2

2m

)
1√
n

. (4.13)

It follows that Xm
n /
√

n converges in distribution to a variable X̃m with den-
sity

fX̃m
(x) =

(
m− 1

m

)
x exp

(−(m− 1)x2

2m

)
for x ≥ 0.

Again, by keeping track of the error term (4.13), it is straightforward to show

E(Xm
n ) ∼

√
mnπ

2(m−1)
. Also, if we let Nm

n denote the number of components

in Gm
n , then by calculations similar to those given by Stepanov (see [39]), it

can be shown that (Nm
n − 1

2
log n)/

√
1
2
log n converges in distribution to a

standard N(0, 1) distribution.
We apply Theorem 2 and Theorem 6 to obtain the distribution for Cm

1 (n):

Pr {Cm
1 (n) = `} = Pr

{
C

D̂(m,n)
1 = `

}

=
`

n
Pr

{
BD̂(m,`)

`

}
Pr

{∑̀
i=1

Dm
i = `

∣∣∣∣
n∑

i=1

Dm
i = n

}
(4.14)

for 1 ≤ ` ≤ n. To obtain a local limit theorem for the distribution of Cm
1 (n),

fix 0 < x < ∞ and suppose that ` = bxnc. Then it follows from Theorem 6
and Corollary 2, that

Pr
{
BD̂(m,`)

`

}
=

∑̀

k=1

1

k
Pr

{
X

D̂(m,`)
` = k

}
=

`−1∑

k=1

mk(m− 1)

`− k

(
`m−k−1
`−k−1

)
(

`m
`

) +
1

`

m`

(
`m
`

)

∼ 1√
`

∫ ∞

0

(
m− 1

m

)
exp

(
−(m− 1)y2

2m

)
dy =

√
m− 1

m

√
π

2`
. (4.15)
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Since Dm
1 , Dm

2 , ... are i.i.d. Bin(m, p) variables, we also have

Pr

{∑̀
i=1

Dm
i = `

∣∣∣
n∑

i=1

Dm
i = n

}
=

(
m`
`

)(
mn−m`

n−`

)
(

mn
n

)

∼
√

mn√
2π`(m− 1)(n− `)

. (4.16)

Substituting (4.15) and (4.16) into (4.14) we obtain

Pr{Cm
1 (n) = `} ∼ 1

2n
√

1− x
as n →∞. (4.17)

It follows that as n →∞,
Cm

1 (n)

n
converges in distribution to Z1, where Z1 has

fZ1(u) = θ(1 − u)θ−1 on the interval (0, 1) with parameter θ = 1/2. Again,
as in the case of the preferential attachment model, we can extend (4.17) to
obtain:

Theorem 7. The joint distribution of the normalized order statistics for the
component sizes in Gm

n , m ≥ 2, converges to the Poisson-Dirichlet (1/2)
distribution on the simplex

∇ = {{xi} :
∑

xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1} .

5 Final Remarks

It is interesting to note that for both the preferential and anti-preferential
attachment models and for any (fixed) choice of their respective parameters
ρ and m, we obtain the Poisson-Dirichlet(1/2) distribution as the limiting
distribution of the order statistics of their normalized component sizes. On
the other hand, the asymptotic distribution of the number of cyclic vertices
in each model depends explicitly on the respective parameters ρ and m.
This suggests that the differences between these models are to be found in
the ‘fine’structure of the components. It is this ‘fine’ structure of random
mapping digraphs that is also of interest in many applications. For example,
in applications of random mapping models in cryptology and in epidemic
process modelling the distributions of the number of predecessors and of
the number of successors of an arbitrary vertex or set of vertices are also
of interest. In a companion paper [22], we develop a calculus for computing

25



these distributions based on the underlying variables D̂1, D̂2, ..., D̂n and apply
the results obtained to both the preferential and anti-preferential models.

One of the main advantages of the random mapping model T D̂
n is that we

have a calculus for this model which allows us to determine the distributions
of several variables associated with the structure of GD̂

n in terms of expec-
tations of simple functions of D̂1, D̂2, ..., D̂n. As we have seen above, in the
special case where the variables D̂1, D̂2, ..., D̂n have the same distribution as
a collection of i.i.d. variables D1, D2, ..., Dn conditioned on

∑n
i=1 Di = n, it

is straightforward to use this calculus to obtain exact and asymptotic dis-
tributions for the number of cyclic vertices, the number of components, and
the size of a typical component in GD̂

n . The calculus for T D̂
n also illustrates

the fundamental importance of the distribution of the underlying degree se-
quence D̂1, ..., D̂n to the structure of the random mapping digraph. This
suggests that in various modelling applications the key to fitting a random
mapping model is to fit the joint distribution of the vertex in-degree data.

As a example of model fitting, we mention the work of Arney and Bender
on random mappings with constraints on coalescence [4]. Their work was
motivated, in part, by the analysis of shift register data. In order to model a
random shift register they put a uniform measure on M{0,1,2}

n , the set of all
mappings f : [n] → [n] such that, for every 1 ≤ i ≤ n, |f−1(i)|, the number of

pre-images of i under f , equals 0, 1, or 2. So, if f ∈M{0,1,2}
n , then every vertex

in Gn(f) has in-degree equal 0, 1, or 2. Arney and Bender observed that in
some respects their model does not fit the shift register data. In particular,
their model predicts 0.293n vertices with in-degree 0 whereas the average
number of vertices with in-degree 0 in a random shift register is n/4. By using

the model T D̂
n instead, we can more successfully capture the local structure of

the shift register data. Specifically, suppose that D̂1, D̂2, ..., D̂n have the same
distribution as n independent Bin(2, 1

2
) variables, D1, D2, ..., Dn, conditioned

on
∑n

i=1 Di = n. Then Pr{D̂1 = 0} = 1
4
(1+ 1

2n−2
)−1 and the expected number

of vertices with in-degree 0 in T D̂
n is asymptotic to n

4
. We note that, for

example, the asymptotic distribution of the normalised typical component
size is the same for both the Arney and Bender model and T D̂

n . So it is
not surprising that Arney and Bender found that their model fit some other
features of the shift register data quite well.
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