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Abstract

In this paper we investigate the ‘local’ properties of a random
mapping model, T D̂

n , which maps the set {1, 2, ..., n} into itself. The
random mapping T D̂

n was introduced in a companion paper [?] is con-
structed using a collection of exchangeable random variables D̂1, ...., D̂n

which satisfy
∑n

i=1 D̂i = n. In the random digraph, GD̂
n , which repre-

sents the mapping T D̂
n , the in-degree sequence for the vertices is given

by the variables D̂1, D̂2, ..., D̂n, and, in some sense, GD̂
n can be viewed

as an analogue of the general independent degree models from ran-
dom graph theory. By local properties we mean the distributions of
random mapping characteristics related to a given vertex v of GD̂

n -
for example, the numbers of predecessors and successors of v in GD̂

n .
We show that the distribution of several variables associated with the
local structure of GD̂

n can be expressed in terms of expectations of sim-
ple functions of D̂1, D̂2, ..., D̂n. We also consider two special examples
of T D̂

n which correspond to random mappings with preferential and
anti-preferential attachment, respectively, and determine, for these
examples, exact and asymptotic distributions for the local structure
variables considered in this paper.
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1 Introduction

The study of random mapping models was initiated independently by several
authors in the 1950s (see companion paper [?] and the references therein) and
the properties of these models have received much attention in the literature.
In particular, these models have been useful as models for epidemic processes,
and have natural applications in cryptology (see, for example, [?, ?, ?, ?, ?,
?, ?, ?, ?]). To date, the most widely studied models have been special cases
of a general model denoted by Tp(n), which can be defined as follows: Let
[n] denote the set of integers {1, 2, ..., n} and let Mn denote the set of all
mappings from [n] into [n]. For each n ≥ 1, let p(n) = {pij(n) : 1 ≤ i, j ≤ n}
be an array such that pij(n) ≥ 0 for 1 ≤ i, j ≤ n and

∑n
j=1 pij(n) = 1 for

every 1 ≤ i ≤ n, and let Xn
1 , Xn

2 , ..., Xn
n be independent random variables

such that Pr{Xn
i = j} = pij(n) for all 1 ≤ i, j ≤ n. Then the random

mapping Tp(n) : [n] → [n] is defined (in terms of the variables Xn
1 , Xn

2 , ..., Xn
n )

by
Tp(n)(i) = j iff Xn

i = j (1.1)

for all 1 ≤ i, j ≤ n. It follows from (??) that the distribution of Tp(n) is given
by

Pr
{
Tp(n) = f

}
=

n∏
i=1

pif(i)(n) (1.2)

for each f ∈ Mn. Any mapping f ∈ Mn can be represented as a directed
graph G(f) on a set of vertices labelled 1, 2, ..., n, such that there is a directed
edge from vertex i to vertex j in G(f) if and only if f(i) = j. So Gp(n) ≡
G(Tp(n)) is a random directed graph on a set of vertices labelled 1, 2, ..., n
which represents the action of the random mapping Tp(n) on [n]. We note
that since each vertex in Gp(n) has out-degree 1, the components of Gp(n)

consist of directed cycles with directed trees attached. Also, it follows from
the definition of Tp(n) that the variables Xn

1 , Xn
2 , . . . Xn

n can be interpreted
as the independent ‘choices’ of the vertices 1, 2, . . . , n in the random digraph
Gp(n) (see, in addition, Mutafchiev [?] and Jaworski [?]).

The example of Tp(n) which is best understood is the uniform random
mapping, Tn ≡ Tp(n), where pij(n) = 1

n
for all 1 ≤ i, j ≤ n (see, for example,

the monograph by Kolchin [?]). In particular, in the context of applications
the asymptotic distributions of variables such as the number of predecessors
and the number of successors of a vertex in Gn have received much attention
(see [?, ?, ?, ?, ?, ?, ?]). In another direction, Berg, Jaworski, and Mutafchiev
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(see [?, ?, ?, ?] ) have investigated the structure of Gp(n) when p(n) is given
by pii(n) = q for some 0 ≤ q ≤ 1 and all 1 ≤ i ≤ n, and pij(n) = 1−q

n−1
for all

1 ≤ i, j ≤ n such that i 6= j. Finally, Aldous, Miermont, and Pitman (see [?]
and [?]) have recently investigated the asymptotic structure of Gp(n), where
p(n) is given by pij(n) = pj(n) > 0 for all 1 ≤ i, j ≤ n, by using an ingenious
coding of the mapping Tp(n) as a stochastic process on the interval [0, 1].
Their results are closely related to earlier work on the relationship between
random mappings and random forests (see Pitman [?] and references therein).

The common feature in all the models discussed above is that each ver-
tex in Gp(n) ‘chooses’ the vertex that it is mapped to independently of the
‘choices’ made by all other vertices. In this paper we consider the proper-
ties a new random mapping model, T D̂

n , which was introduced in a com-

panion paper [?]. In the model T D̂
n the vertex ‘choices’ are not necessarily

independent. The model is constructed by first specifying the in-degrees
D̂1, D̂2, ..., D̂n of the vertices labelled 1, 2, ..., n, and then selecting a ran-
dom mapping uniformly from all mappings with the given in-degree sequence
D̂1, D̂2, ..., D̂n. After defining the model in Section 2, we show in Section 3
that the distributions of many important random mapping statistics for T D̂

n

can be computed as expectations of functions of the (random) in-degree se-
quence D̂1, D̂2, ..., D̂n. In Section 4 we apply these results to two special
examples - the preferential and anti-preferential attachment models - which
turn out to be equivalent to special cases of T D̂

n .

2 The model

In order to define the model T D̂
n , we adopt the following notation. For n ≥ 1,

suppose that f ∈ Mn, then for 1 ≤ i ≤ n, we let di(f) denote the in-
degree of vertex i in the digraph G(f) which represents the mapping f , and

define ~d(f) ≡ (d1(f), ..., dn(f)). Also, given a vector ~d ≡ (d1, d2, ..., dn) of
non-negative integers such that

∑n
i=1 di = n, define

Mn(~d) ≡ {f ∈Mn : ~d(f) = ~d}

to be the set of all mappings f ∈Mn with in-degree sequence ~d.
To define T D̂

n , we start with a collection of non-negative integer-valued
exchangeable random variables D̂1, D̂2, ..., D̂n such that

∑n
i=1 D̂i = n. Given

the event {D̂i = di, i = 1, 2, ..., n} (with Pr{D̂i = di, i = 1, 2, ..., n} > 0), we
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define the conditional distribution of T D̂
n by

Pr{T D̂
n = f | D̂i = di, i = 1, 2, ..., n} =

{Qn
i=1 di!

n!
if di(f) = di, i = 1, 2, ..., n

0 otherwise.

(2.1)

In other words, given (D̂1, D̂2, ..., D̂n) = (d1, d2, ..., dn) = ~d, T D̂
n is uniformly

distributed over Mn(~d). It follows from (??) that for any f ∈Mn,

Pr{T D̂
n = f} =

∏n
i=1(di(f))!

n!
Pr
{
D̂i = di(f), 1 ≤ i ≤ n

}
. (2.2)

Given the random mapping T D̂
n , let GD̂

n ≡ G(T D̂
n ) denote the random digraph

on n labelled vertices which represents T D̂
n . We note that it follows from

the exchangeability of the variables D̂1, D̂2, ..., D̂n and (??) that, for any
permutation σ : [n] → [n], we have

σ ◦ T D̂
n

d∼ T D̂
n ◦ σ

d∼ T D̂
n .

In other words, the distribution of the corresponding digraph GD̂
n is invariant

under re-labelling of the vertices of the graph.
An important class of examples can constructed as follows. Suppose

that D1, D2, . . . , Dn are i.i.d. non-negative integer-valued random variables
with Pr{

∑n
i=1 Di = n} > 0, and let D̂1, D̂2, ..., D̂n be a sequence of random

variables with joint distribution is given by

Pr
{
D̂i = di, 1 ≤ i ≤ n

}
= Pr

{
Di = di, 1 ≤ i ≤ n

∣∣∣ n∑
i=1

Di = n
}

.

Clearly, the variables D̂1, D̂2, ..., D̂n are exchangeable with
∑n

i=1 D̂i = n, so

we can use D̂1, D̂2, ..., D̂n to construct T D̂
n and GD̂

n . We note that it is easy
to check that if D1, D2, ..., Dn are i.i.d. Poisson variables, then D̂1, D̂2, ..., D̂n

have a multinomial distribution with parameters n and (1/n, 1/n, ..., 1/n)

and the corresponding random mapping T D̂
n is just the usual uniform ran-

dom mapping. There are interesting interpretations of T D̂
n in the cases where

the underlying i.i.d. variables D1, D2, ..., Dn have (i) a generalised negative
binomial distribution, and (ii) a binomial Bin(m, p) distribution. In particu-
lar, case (i) corresponds to a random mapping with ‘preferential attachment’
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and case (ii) corresponds to a random mapping with ‘anti-preferential at-
tachment’.

In this paper we consider some local properties of the random digraph GD̂
n

which represents the random mapping T D̂
n . By local properties we mean the

distributions of random mapping characteristics related to a given vertex v
- for example, the numbers of predecessors and successors of v in GD̂

n . To
investigate such variables, we introduce some further notation and definitions.
For any f ∈Mn and any positive integer m, let f (m) denote the mth iterate
of f , and for every i ∈ [n], define f (0)(i) ≡ i. We say that i ∈ [n] is a cyclic
vertex of f if for some m > 0, f (m)(i) = i. In particular, if i is a cyclic
vertex of f then vertex i lies on a cycle in the digraph G(f). We also note
that every component of G(f) consists of a directed cycle with trees, directed
towards the cycle, attached to it. For any f ∈Mn, let L(f) denote the set of
cyclic vertices in the component of G(f) which contains the vertex 1.Define
`(f) = |L(f)| and define h(f), the height of vertex 1 in G(f), by

h(f) = min{k ≥ 0 : f (k)(1) ∈ L(f)}.

Next, let
P(f) ≡ {j ∈ [n] : f (k)(j) = 1 for some k ≥ 0},

denote the predecessors of vertex 1 under f , and let

S(f) ≡ {j ∈ [n] : f (k)(1) = j for some k ≥ 0},

denote the successors of vertex 1 under f . We define p(f) = |P(f)| and
s(f) = |S(f)|. In this paper we are interested in the local properties of

GD̂
n which are described by the random variables `D̂

n ≡ `(T D̂
n ), hD̂

n ≡ h(T D̂
n ),

pD̂
n ≡ p(T D̂

n and sD̂
n ≡ s(T D̂

n ). We mention here that the distributions for
the number of cyclic vertices, the number of components, and the size of a
typical component of GD̂

n have been determined in a companion paper [?].

3 Results

In this section we derive general formulas for the distributions of the variables
`D̂
n , hD̂

n , pD̂
n and sD̂

n described above. The joint distribution of hD̂
n and `D̂

n is

given by the following theorem and the distributions for `D̂
n , hD̂

n , and sD̂
n are

obtained as corollaries.
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Theorem 1. For 0 ≤ x, y ≤ n− 1,

Pr{hD̂
n = x, `D̂

n = y + 1} =
1

n
E

(
D̂1(D̂1 − 1)D̂2...D̂x+y

)
· I{x 6=0,x+y+1≤n}

+
1

n
E

(
D̂1D̂2...D̂y+1

)
· I{x=0}.

Proof. First suppose that 1 ≤ x ≤ n−1 and 0 ≤ y ≤ n−x−1. Let k = x+y,
then we have

Pr{hD̂
n = x, `D̂

n = y + 1} =
∑

C⊆[n]\{1}
s.t.|C|=k

Pr{SD̂
n = C ∪ {1}, hD̂

n = x, `D̂
n = y + 1}.

=

(
n− 1

k

)
Pr{SD̂

n = C ′ ∪ {1}, hD̂
n = x, `D̂

n = y + 1} (3.1)

where C ′ = {2, 3, ..., k + 1} and SD̂
n ≡ S(T D̂

n ). We note that the sec-

ond equality above holds since the distribution of GD̂
n is invariant under

re-labelling its vertices. Next, let S(k) denote the set of all permutations, σ,
of {2, 3, ..., k + 1}, and for any σ ∈ S(k), let

Aσ =
{

(T D̂
n )(m)(1) = σ(m + 1) for 1 ≤ m ≤ k and (T D̂

n )(k+1)(1) = σ(x + 1)
}
.

(3.2)
Then we have

Pr{SD̂
n = C ′∪{1}, hD̂

n = x, `D̂
n = y+1} =

∑
σ∈S(k)

Pr {Aσ} = k!Pr{Aid}. (3.3)

Again, the second equality follows from the invariance of the distribution of
GD̂

n under the re-labelling of its vertices. To determine Pr{Aid} we write

Pr {Aid} =
∑
di≥0

s.t.
P

di=n

Pr

{
Aid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
Pr{D̂i = di, 1 ≤ i ≤ n}

(3.4)
We note that

Pr

{
Aid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
6= 0
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if and only if di ≥ 1 for 2 ≤ i ≤ k + 1 and, in addition, dx+1 ≥ 2. In this
case, it follows from (??) and straightforward counting arguments, that

Pr

{
Aid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
=

=
(n− k − 1)!

d1!(d2 − 1)! · ·(dx+1 − 2)! · ·(dk+1 − 1)!dk+2! · ·dn!
× d1! · · · dn!

n!

=
d2d3 · · · dx+1(dx+1 − 1) · · · dk+1

n(n− 1) · · · (n− k)
. (3.5)

Observe that formula (??) is still valid when di = 0 for some 2 ≤ i ≤ k + 1
or dx+1 = 1. So it follows from (??) and (??) that

Pr {Aid} =
E(D̂2 · ·D̂x+1(D̂x+1 − 1) · ·D̂k+1)

n(n− 1) · · · (n− k)

=
E(D̂1(D̂1 − 1)D̂2 · ·D̂k)

n(n− 1) · · · (n− k)
. (3.6)

The last equality holds by the exchangeability of D̂1, D̂2, ..., D̂n. So, combin-
ing (??), (??), and (??), we obtain

Pr{hD̂
n = x, `D̂

n = y + 1} =
1

n
E

(
D̂1(D̂1 − 1)D̂2...D̂x+y

)
(3.7)

since k = x + y.
Next, suppose that x = 0 and 1 ≤ y ≤ n− 1. Then, as above, we have

Pr{hD̂
n = 0, `D̂

n = y + 1} =
∑

C⊆[n]\{1}
s.t.|C|=y

Pr{SD̂
n = C ∪ {1}, hD̂

n = 0, `D̂
n = y + 1}

=

(
n− 1

y

)
Pr{SD̂

n = C ′ ∪ {1}, hD̂
n = 0, `D̂

n = y + 1} (3.8)

where C ′ = {2, 3, ..., y+1}. Again, let S(y) denote the set of all permutations,
σ, of C ′, and for any σ ∈ S(y), let

Bσ =
{

(T D̂
n )(m)(1) = σ(m + 1) for 1 ≤ m ≤ y and (T D̂

n )(y+1)(1) = 1
}
. (3.9)
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Then, as above, we have

Pr{SD̂
n = C ′∪{1}, hD̂

n = 0, `D̂
n = y+1} =

∑
σ∈S(y)

Pr {Bσ} = k!Pr{Bid}. (3.10)

We write

Pr {Bid} =
∑
di≥0

s.t.
P

di=n

Pr

{
Bid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
Pr{D̂i = di, 1 ≤ i ≤ n}

(3.11)
and we note that

Pr

{
Bid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
6= 0

if and only if di ≥ 1 for 1 ≤ i ≤ y + 1. In this case, it follows from (??) and
counting that

Pr

{
Bid

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
=

=
(n− y − 1)!

(d1 − 1)!(d2 − 1)! · ·(dy+1 − 1)!dy+2! · ·dn!
× d1! · · · dn!

n!

=
d1d2 · ·dy+1

n(n− 1) · · · (n− y)
. (3.12)

Observe that formula (??) is still valid when di = 0 for some 1 ≤ i ≤ y + 1.
So, combining (??), (??), and (??), we obtain

Pr{hD̂
n = 0, `D̂

n = y + 1} =
1

n
E

(
D̂1D̂2...D̂y+1

)
. (3.13)

Finally, for x = y = 0, we have

Pr{hD̂
n = 0, `D̂

n = 1} = Pr{sD̂
n = 1} = Pr{T D̂

n (1) = 1} =

=
∑
di≥0

s.t.
P

di=n

Pr

{
T D̂

n (1) = 1

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
Pr{D̂i = di, 1 ≤ i ≤ n}

(3.14)
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We note that Pr

{
T D̂

n (1) = 1

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
6= 0 if and only if d1 ≥ 1,

and in this case we have

Pr

{
T D̂

n (1) = 1

∣∣∣∣D̂i = di, 1 ≤ i ≤ n

}
=

(n− 1)!

(d1 − 1)!(d2)! · · · dn!
×d1! · · · dn!

n!
=

d1

n
.

(3.15)
Equation (??) remains valid when d1 = 0. So it follows from (??) and (??)
that

Pr{hD̂
n = 0, `D̂

n = 1} =
E(D̂1)

n

and (??) holds in the case y = 0.

Corollary 1. For 0 ≤ k ≤ n− 1,

Pr
{

sD̂
n = k + 1

}
=

k

n
E

(
D̂1(D̂1 − 1)D̂2...D̂k

)
+

1

n
E

(
D̂1D̂2D̂3...D̂k+1

)
.

Proof. The corollary follows from Theorem 1 and the observation that for
0 ≤ k ≤ n− 1

Pr
{

sD̂
n = k + 1

}
=

k∑
x=0

Pr{hD̂
n = x, `D̂

n = k − x + 1}.

We also immediately obtain from Theorem 1:

Corollary 2. For 1 ≤ x ≤ n− 1,

Pr{hD̂
n = x} =

1

n

n−x−1∑
y=0

E

(
D̂1(D̂1 − 1)D̂2...D̂x+y

)
and

Pr{hD̂
n = 0} =

1

n

n−1∑
y=0

E

(
D̂1D̂2...D̂y+1

)
.
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Corollary 3. For 0 ≤ y ≤ n− 1

Pr{`D̂
n = y + 1} =

1

n

n−y−1∑
x=1

E

(
D̂1(D̂1 − 1)D̂2...D̂x+y

)
+

1

n
E

(
D̂1D̂2...D̂y+1

)
where the sum above is interpreted as 0 if y = n− 1.

Next, we consider the distribution of pD̂
n , the number of predecessors of

vertex 1 in GD̂
n . In order to determine this distribution we need to count the

number of directed trees, rooted at 1, with a specified degree sequence. To
state the required tree counting lemma, we adopt some notation. First, for
any k ≥ 2, let Tk denote the set of all labelled trees on the vertices 1, 2, ..., k
such that each tree t ∈ Tk is rooted at vertex 1 and the edges of t are oriented
so that the (shortest) path from any vertex v to the root 1 is directed towards
1. For any t ∈ Tk and any vertex v ∈ t, we let dv(t) denote the in-degree of v
in t. We note that we must have d1(t) ≥ 1 and

∑k
i=1 di(t) = k−1. Finally, for

any non-negative integers d1, d2, ..., dk, such that d1 ≥ 1 and
∑k

i=1 di = k−1,
let

Tk(d1, d2, ..., dk) = {t ∈ Tk : di(t) = di, 1 ≤ i ≤ k}
and let tk(d1, d2, ..., dk) = |Tk(d1, d2, ..., dk)|. Then we have the following
result:

Lemma 1. Suppose that k ≥ 2 and d1, d2, ..., dk are non-negative integers
such that d1 ≥ 1 and

∑k
i=1 di = k − 1, then

tk(d1, d2, ..., dk) =
(k − 2)!

(d1 − 1)!d2! · · · dk!
. (3.16)

Proof. Suppose that k ≥ 2 and d1, d2, ..., dk are non-negative integers such
that d1 ≥ 1 and

∑k
i=1 di = k − 1 and let S(d1, d2, ..., dk) denote the set

of all sequences of length k − 1 such that for any s ∈ S(d1, d2, ..., dk) and
for any 1 ≤ i ≤ k, the integer i appears di times in s and the sequence
s ends with the integer 1. To prove equation (??) we use a Prufer tree
code [?] to construct a bijection between S(d1, d2, ..., dk) and Tk(d1, d2, ..., dk).
Specifically, the Prufer encoding constructs a sequence s ∈ S(d1, d2, ..., dk)
for every t ∈ Tk(d1, d2, ..., dk) as follows:

1. Suppose that t is a labelled, directed tree rooted at 1. Suppose that v
is the smallest vertex in t such that in-degree dv(t) = 0 and suppose
that v → w is a directed edge in t. Delete vertex v from t and add w
to the sequence s.
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2. If t is the trivial tree consisting only of vertex 1, STOP. Otherwise, go
to Step 1 and repeat.

The Prufer decoding constructs a tree t ∈ Tk(d1, d2, ..., dk) for every s ∈
S(d1, d2, ..., dk) as follows:

1. Start with k labelled isolated vertices, and let K = (1, 2, ..., k) denote
the ordered list of numbers 1, 2, ..., k .

2. Suppose that i is the smallest number in list K which does not appear
in sequence s and suppose that j is the first number in the sequence s.
Add the directed edge i → j to the graph and remove i from the list
K and j from the sequence s.

3. If K = {1}, STOP. Otherwise, go to Step 2 and repeat.

The Prufer coding and encoding are inverse operations (see [?]), so

|Tk(d1, d2, ..., dk)| = |S(d1, d2, ..., dk)| =
(k − 2)!

(d1 − 1)!d2! · · · dk!

as desired.

Given Lemma 1, we can prove

Theorem 2. For 0 ≤ k ≤ n− 1,

Pr
{

pD̂
n = k + 1

}
=

n− k

n(k + 1)
Pr

{ k+1∑
i=1

D̂i = k

}
+

1

n
Pr

{ k+1∑
i=1

D̂i = k + 1

}
.

Proof. First, suppose that 1 ≤ k ≤ n− 1. Then we have

Pr{pD̂
n = k+1} =

∑
C⊆[n]\{1}
s.t.|C|=k

Pr
{
PD̂

n = C∪{1}
}

=

(
n− 1

k

)
Pr
{
PD̂

n = C ′∪{1}
}

(3.17)

where C ′ = {2, 3, ..., k + 1} and PD̂
n ≡ P(T D̂

n ). Next, observe that

Pr{PD̂
n = C ′ ∪ {1}} =

=
∑
di≥0P
di=n

Pr
{
PD̂

n = C ′ ∪ {1}
∣∣D̂i = di, 1 ≤ i ≤ n

}
Pr{D̂i = di, 1 ≤ i ≤ n}
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=
∑
di≥0P
di=n

n∑
`=1

Pr
{
PD̂

n = C ′∪{1}, T D̂
n (1) = `

∣∣D̂i = di, 1 ≤ i ≤ n
}

Pr{D̂i = di, 1 ≤ i ≤ n}.

(3.18)

Now suppose ~d = (d1, d2, ..., dn) such that
∑n

i=1 di = n, and for 1 ≤ ` ≤ n,
let

Mn(~d, C ′ ∪ {1}, `) = {f ∈Mn : ~d(f) = ~d,P(f) = C ′, f(1) = `}. (3.19)

Then it follows from (??) that for 1 ≤ ` ≤ n,

Pr
{
PD̂

n = C ′ ∪{1}, T D̂
n (1) = `

∣∣D̂i = di, 1 ≤ i ≤ n
}

=
|Mn(~d, C ′, `)|
n!(
∏n

i=1 di!)−1
. (3.20)

So to determine Pr{PD̂
n = C ′ ∪ {1}, T D̂

n (1) = `|D̂i = di, 1 ≤ i ≤ n} we need

to count the set Mn(~d, C ′, `). There are three cases to consider.

First, suppose that 1 < ` ≤ k + 1. If PD̂
n = C ′ ∪ {1} and T D̂

n (1) = `, then

1 is a cyclic vertex of T D̂
n and the vertex set of the connected component in

GD̂
n which contains 1 is just {1, 2, ..., k + 1}. Hence, we have

Pr{PD̂
n = C ′ ∪ {1}, T D̂

n = `|D̂i = di, 1 ≤ i ≤ n} 6= 0 if and only if
∑k+1

i=1 di =

k + 1, d` ≥ 1, and d1 ≥ 1. So, suppose that
∑k+1

i=1 di = k + 1, d` ≥ 1, d1 ≥ 1,

and f ∈Mn(~d, C ′, `). If the directed edge from 1 to ` in G(f) is deleted, we
obtain a directed tree on the vertices 1, 2, ..., k + 1 with in-degree sequence
d1, ..., d` − 1, ..., dk+1 and root at vertex 1, and a random mapping graph on
the vertices k + 2, ..., n with in-degree sequence dk+1, ..., dn. It follows that
to count Mn(~d, C ′, `) it is enough to count certain trees and certain random
mapping graphs, i.e.

|Mn(~d, C ′, `)| = tk+1(d1, ..., d` − 1, ..., dk+1)×
(n− k − 1)!

dk+2! · · · dn!
. (3.21)

Substituting (??) into (??) and appealing to Lemma 1, we obtain in this case

Pr{PD̂
n = C ′ ∪ {1}, T D̂

n (1) = `|D̂i = di, 1 ≤ i ≤ n}

=
(k − 1)!(n− k − 1)!

n!
d1d`I{Pk+1

i=1 di=k+1}. (3.22)

We note that equation (??) remains valid when d1 = 0 or d` = 0, and so it
holds for all degree sequences d1, d2, ..., dn such that

∑n
i=1 di = n.
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Similarly, in the case when ` = 1, we have
Pr{PD̂

n = C ′ ∪ {1}, T D̂
n (1) = 1|D̂i = di, 1 ≤ i ≤ n} 6= 0 if and only if∑k+1

i=1 di = k + 1, and d1 ≥ 2. Now provided
∑k+1

i=1 di = k + 1 and d1 ≥ 2, we
have by the same argument as given above

|Mn(~d, C ′, 1)| = tk+1(d1 − 1, d2, ..., dk+1)×
(n− k − 1)!

dk+2! · · · dn!
. (3.23)

Again, substituting (??) into (??) and appealing to Lemma 1, we obtain

Pr
{
PD̂

n = C ′ ∪ {1}, T D̂
n (1) = 1

∣∣D̂i = di, 1 ≤ i ≤ n
}

=
(k − 1)!(n− k − 1)!

n!
d1(d1 − 1)I{Pk+1

i=1 di=k+1}. (3.24)

Again, we note that equation (??) remains valid when d1 = 0 or 1, and so it
holds for all degree sequences d1, d2, ..., dn such that

∑n
i=1 di = n.

Finally, suppose that ` > k + 1. If PD̂
n = C ′ ∪ {1} and T D̂

n (1) = `, then 1

is not a cyclic vertex of T D̂
n and the graph induced by T D̂

n on the vertex set
C ′ ∪ {1} is a directed tree, rooted at 1. Hence, we have

Pr{PD̂
n = C ′, T D̂

n = `|D̂i = di, 1 ≤ i ≤ n} 6= 0 if and only if
∑k+1

i=1 di = k,

d` ≥ 1, and d1 ≥ 1. So suppose that
∑k+1

i=1 di = k, d` ≥ 1, d1 ≥ 1, and

f ∈ Mn(~d, C ′, `). If the directed edge from 1 to ` in G(f) is deleted, we
obtain a directed tree on the vertices 1, 2, ..., k + 1 with in-degree sequence
d1, d2, ..., dk+1 and root at vertex 1, and a random mapping graph on the
vertices k + 2, ..., n with in-degree sequence dk+1, ..., d` − 1, ..., dn. So, in this
case, we have

|Mn(~d, C ′, `)| = tk+1(d1, d2, ..., dk+1)×
(n− k − 1)!

dk+2! · ·(d` − 1)! · ·dn!
. (3.25)

Substituting (??) into (??) and appealing to Lemma 1, we obtain

Pr
{
PD̂

n = C ′ ∪ {1}, T D̂
n (1) = `

∣∣D̂i = di, 1 ≤ i ≤ n
}

=
(k − 1)!(n− k − 1)!

n!
d1d`I{Pk+1

i=1 di=k}. (3.26)

We note that equation (??) remains valid when d1 = 0 or d` = 0, and so it
holds for all degree sequences d1, d2, ..., dn such that

∑n
i=1 di = n.

13



It follows from (??), (??), (??), (??), and the identities(
d1(d1 − 1) +

k+1∑
`=2

d1d`

)
I{Pk+1

i=1 di=k+1} = kd1I{Pk+1
i=1 di=k+1}

and
n∑

`=k+2

d1d`I{Pk+1
i=1 di=k} = (n− k)d1I{Pk+1

i=1 di=k},

that
Pr{PD̂

n = C ′ ∪ {1}} =

=
∑
di≥0P
di=n

k+1∑
`=1

Pr{PD̂
n = C ′∪{1}, T D̂

n (1) = `|D̂i = di, 1 ≤ i ≤ n}Pr{D̂i = di, 1 ≤ i ≤ n}

+
∑
di≥0P
di=n

n∑
`=k+2

Pr{PD̂
n = C ′∪{1}, T D̂

n (1) = `|D̂i = di, 1 ≤ i ≤ n}Pr{D̂i = di, 1 ≤ i ≤ n}

=
k!(n− k − 1)!

n!

∑
di≥0P
di=n

d1I{Pk+1
i=1 di=k+1}Pr{D̂i = di, 1 ≤ i ≤ n}

+
(k − 1)!(n− k)!

n!

∑
di≥0P
di=n

d1I{Pk+1
i=1 di=k}Pr{D̂i = di, 1 ≤ i ≤ n}

=
k!(n− k − 1)!

n!
E

(
D̂1

∣∣∣∣ k+1∑
i=1

D̂i = k + 1

)
Pr

{ k+1∑
i=1

D̂i = k + 1

}

+
(k − 1)!(n− k)!

n!
E

(
D̂1

∣∣∣∣ k+1∑
i=1

D̂i = k

)
Pr

{ k+1∑
i=1

D̂i = k

}
.

=
k!(n− k − 1)!

n!
Pr

{ k+1∑
i=1

D̂i = k + 1

}
+

k!(n− k)!

n!(k + 1)
Pr

{ k+1∑
i=1

D̂i = k

}
. (3.27)

The last equality follows since, by the exchangeability of D̂1, ..., D̂k+1,
E(D̂1|

∑k+1
i=1 D̂i = k + 1) = 1 and E(D̂1|

∑k+1
i=1 D̂i = k) = k

k+1
. So, in the case

1 ≤ k ≤ n− 1, the result follows from (??) and (??).

14



Finally, in the case k = 0 we have

Pr{pD̂
n = 1} = Pr{D̂1 = 0}+ Pr{D̂1 = 1, T D̂

n (1) = 1}
= Pr{D̂1 = 0}+ Pr{T D̂

n (1) = 1|D̂1 = 1}Pr{D̂1 = 1}

= Pr{D̂1 = 0}+
1

n
Pr{D̂1 = 1}

as required.

4 Examples

In this section we consider the preferential and anti-preferential attachment
models which are defined below. In a companion paper [?] it was shown that

these models are equivalent to special cases of T D̂
n . Using this equivalence,

we apply the results obtained in Section 3 to investigate local properties of
these models.

A Preferential Attachment Model

We begin by defining T ρ
n : [n] → [n], a random mapping with ‘preferential

attachment’, where ρ > 0 is a fixed parameter. For 1 ≤ k ≤ n, we define
T ρ

n(k) = ξ
(ρ,n)
k where ξ

(ρ,n)
1 , ξ

(ρ,n)
2 , ..., ξ

(ρ,n)
n is a sequence of random variables

whose distributions depend on the evolution of an urn scheme. The distri-
bution of each ξ

(ρ,n)
k is determined by a (random) n-tuple of non-negative

weights ~a(k) = (a1(k), a2(k), ..., an(k)) where, for 1 ≤ j ≤ n, aj(k) is the
‘weight’ of the jth urn at the start of the kth round of the urn scheme. Specif-
ically, given ~a(k) = ~a = (a1, ..., an), we define

Pr
{

ξ
(ρ,n)
k = j

∣∣~a(k) = ~a
}

=
aj∑n
i=1 ai

.

The random weight vectors ~a(1),~a(2), ...,~a(n) associated with the urn scheme
are determined recursively. For k = 1, we set a1(1) = a2(1) = · · · = an(1) =

ρ > 0. For k > 1, ~a(k) depends on both ~a(k − 1) and the value of ξ
(ρ,n)
k−1 as

follows: Given that ξ
(ρ,n)
k−1 = j, we set aj(k) = aj(k − 1) + 1 and for all other

i 6= j, we set ai(k) = ai(k − 1) (i.e. if ξ
(ρ,n)
k−1 = j then a ‘ball’ with weight 1 is

added to the jth urn).
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The random mapping T ρ
n as defined above is a preferential attachment

model in the following sense. Since, for 1 ≤ k ≤ n, we have T ρ
n(k) = ξ

(ρ,n)
k ,

and since the (conditional) distribution of ξ
(ρ,n)
k depends on the state of the

urn scheme at the start of round k, it is clear that vertex k is more likely to
be mapped to vertex j if the weight aj(k) is (relatively) large, i.e. if several
of the vertices 1, 2, ..., k − 1 have already been mapped to vertex j . The
distribution of T ρ

n is given by Theorem 3 below and was obtained in [?].

Theorem 3. Suppose that Dρ
1, D

ρ
2, ... are i.i.d. random variables with a gen-

eralized negative binomial distribution given by

Pr{Dρ
1 = k} =

Γ(k + ρ)

k!Γ(ρ)

(
ρ

1 + ρ

)ρ(
1

1 + ρ

)k

for k = 0, 1, ...,

where ρ > 0 is a fixed parameter.
For n ≥ 1, let D̂(ρ, n) = (D̂ρ

1,n, D̂
ρ
2,n, ..., D̂

ρ
n,n) be a sequence of variables with

joint distribution given by

Pr{D̂ρ
i,n = di, 1 ≤ i ≤ n} = Pr

{
Dρ

i = di, 1 ≤ i ≤ n

∣∣∣∣ n∑
i=1

Dρ
i = n

}
.

Then for every n ≥ 1, the random mappings T ρ
n : [n] → [n] and T

D̂(ρ,n)
n :

[n] → [n] have the same distribution.

Since T ρ
n

d∼ T
D̂(ρ,n)
n , it follows that the random digraphs Gρ

n ≡ G(T ρ
n)

and G
D̂(ρ,n)
n have the same distribution. So we can investigate the local

properties of Gρ
n by applying Theorem 1 (and its corollaries) and Theorem 2

to G
D̂(ρ,n)
n . In the calculations that follow we adopt the following notation: if

f(s) =
∑∞

k=0 aks
k, then [sn]f(s) = an, the coefficient of sn in the power series

expansion of f(s). We also use the fact that the the probability generating
function for Dρ

1 is given by

E(sDρ
1 ) =

(
ρ

1 + ρ− s

)ρ

. (4.1)

We begin by noting that for any integer 1 ≤ x ≤ n we have

E
(
D̂ρ

1,nD̂
ρ
2,n · · · D̂ρ

x,n

)
= E

(
Dρ

1D
ρ
2 · · ·Dρ

x

∣∣∣ n∑
i=1

Dρ
i = n

)
16



=
[sn]E

(
Dρ

1s
Dρ

1Dρ
2s

Dρ
2 · · ·Dρ

xs
Dρ

xsDρ
x+1 · · · sDρ

n

)
[sn]E

(
sDρ

1 · · · sDρ
n

)

=
[sn]
(
E
(
Dρ

1s
Dρ

1

))x(
E
(
sDρ

1

))n−x

[sn]
(
E
(
sDρ

1

))n . (4.2)

The last equality holds since the variables Dρ
1, D

ρ
2, ..., D

ρ
n are independent and

identically distributed. Now since

E
(
Dρ

1s
Dρ

1

)
= s

(
ρ

1 + ρ− s

)ρ+1

, (4.3)

it follows from (??)-(??) and routine calculations that

E
(
D̂ρ

1,nD̂
ρ
2,n · · · D̂ρ

x,n

)
=

ρx(n)x

(nρ + x− 1)x

(4.4)

where (n)x ≡ (n)(n− 1) · · · (n−x + 1). Similarly, for 1 ≤ x ≤ n− 1, we have

E
(
D̂ρ

1,n(D̂ρ
1,n − 1)D̂ρ

2,n · · · D̂ρ
x,n

)
= E

(
Dρ

1(Dρ
1 − 1)Dρ

2 · · ·Dρ
x

∣∣∣ n∑
i=1

Dρ
i = n

)

=
[sn]E

(
Dρ

1(Dρ
1 − 1)sDρ

1Dρ
2s

Dρ
2 · · ·Dρ

xs
Dρ

xsDρ
x+1 · · · sDρ

n

)
[sn]E

(
sDρ

1 · · · sDρ
n

)

=
[sn]E

(
Dρ

1(Dρ
1 − 1)sDρ

1

)(
E
(
Dρ

1s
Dρ

1

))x−1(
E
(
sDρ

1

))n−x

[sn]
(
E
(
sDρ

1

))n . (4.5)

Since

E
(
Dρ

1(Dρ
1 − 1)sDρ

1

)
=

(
1 + ρ

ρ

)
s2

(
ρ

1 + ρ− s

)ρ+2

, (4.6)

it follows from (??) and routine calculations that

E
(
D̂ρ

1,n(D̂ρ
1,n − 1)D̂ρ

2,n · · · D̂ρ
x,n

)
= ρx(1 + ρ)

(n)x+1

(nρ + x)x+1

. (4.7)
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It now follows from Theorem 3, Corollary 2, (??), and (??) that for 1 ≤ k ≤
n− 1 and ρ > 0

Pr{h(T ρ
n) = k} = Pr{hD̂(ρ,n)

n = k} =
1

n

n−k−1∑
y=0

E(D̂ρ
1,n(D̂ρ

1,n−1)D̂ρ
2,n ···D̂ρ

k+y,n)

=
1

n

n−1∑
x=k

ρx(1 + ρ)(n)x+1

(nρ + x)x+1

(4.8)

and

Pr{h(T ρ
n) = 0} =

1

n

n∑
x=1

ρx(n)x

(nρ + x− 1)x

. (4.9)

It is straightforward to check that for fixed ρ > 0 and under the assumption
that k = bx

√
nc for some fixed 0 < x < ∞,

Pr{h(T ρ
n) = k} ∼ 1√

n

∫ ∞

x

(
1 + ρ

ρ

)
exp

(
−(1 + ρ)u2

2ρ

)
du. (4.10)

Likewise, for 0 ≤ k ≤ n − 1, it follows from Theorem 3, Corollary 3, (??),
and (??) that

Pr{`(T ρ
n) = k + 1} =

1

n

n−k−1∑
x=1

E(D̂ρ
1,n(D̂ρ

1,n − 1)D̂ρ
2,n · · · D̂ρ

k+x,n) +
1

n
E(D̂ρ

1,nD̂
ρ
2,n · · · D̂

ρ
k+1,n)

=
1

n

n−1∑
y=k+1

ρy(1 + ρ)(n)y+1

(nρ + y)y+1

+
1

n

ρk+1(n)k+1

(nρ + k)k+1

. (4.11)

Again, for fixed ρ > 0 and under the assumption that k = by
√

nc for some
fixed 0 < y < ∞, we obtain

Pr{`(T ρ
n) = k + 1} ∼ 1√

n

∫ ∞

y

(
1 + ρ

ρ

)
exp

(
−(1 + ρ)u2

2ρ

)
du. (4.12)

So it follows from (??) and (??) that the variables h(T ρ
n)√
n

and `(T ρ
n)√
n

converge
in distribution to a variable Yα with density

fα(y) =

∫ ∞

y

αe−αu2/2du for y ∈ (0,∞) (4.13)
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and parameter α = ρ+1
ρ

.

Next, for 0 ≤ k ≤ n − 1, we obtain from Theorem 3, Corollary 1, (??),
and (??)

Pr{s(T ρ
n) = k + 1} =

k

n
E(D̂ρ

1,n(D̂ρ
1,n − 1)D̂ρ

2,n · · · D̂
ρ
k,n)

+
1

n
E(D̂ρ

1,n · · · D̂
ρ
k+1,n)

= (k(1 + ρ) + ρ)
(n− k)ρk(n)k

n(nρ + k)k+1

(4.14)

=
ρk(n− 1)k

(nρ + k − 1)k

− ρk+1(n− 1)k+1

(nρ + k)k+1

.

For fixed ρ > 0 and under the assumption that k = bx
√

nc for some fixed
0 < x < ∞, we obtain by the usual asymptotic calculations

Pr{s(T ρ
n) = k + 1} ∼ 1√

n

(ρ + 1)x

ρ
exp

(
−
(

ρ + 1

ρ

)
x2

2

)
.

Finally, for 0 ≤ k ≤ n− 1, it follows from Theorem 2 and Theorem 3 that

Pr{p(T ρ
n) = k + 1} =

n− k

n(k + 1)
Pr

{
k+1∑
i=1

D̂ρ
i,n = k

}
+

1

n
Pr

{
k+1∑
i=1

D̂ρ
i,n = k + 1

}

=
n− k

n(k + 1)
Pr

{
k+1∑
i=1

Dρ
i = k

∣∣∣∣ n∑
i=1

Dρ
i = n

}
+

1

n
Pr

{
k+1∑
i=1

Dρ
i = k + 1

∣∣∣∣ n∑
i=1

Dρ
i = n

}
.

It now follows by routine generating function calculations, that for
0 ≤ k ≤ n− 2

Pr{p(T ρ
n) = k + 1} (4.15)

=
ρn + n− 1

n

(
n

k + 1

)
Γ(ρ(k + 1) + k)Γ

(
(ρ + 1)(n− k − 1)

)
Γ(ρn)

Γ(ρ(k + 1))Γ(ρ(n− k − 1))Γ(ρn + n)

=
1

n

(
n− 1

k

)
ρ

ρ + 1

((ρ + 1)(k + 1)− 1)k((ρ + 1)(n− k − 1))n−k−1

((ρ + 1)(k + 1)− 1)((ρ + 1)n− 2)n−2

,

while

Pr{p(T ρ
n) = n} =

1

n
.
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One can note that the distribution above is a variant of a special case of the
quasi-hypergeometric distribution I (see (2.122) in [?]). We also obtain, by
the usual asymptotic calculations, that for fixed ρ > 0 and k = 0, 1, ...,

lim
n→∞

Pr{p(T ρ
n) = k + 1} (4.16)

=
1

ρk

(
(ρ + 1)(k + 1)

k

)
1

k + 1

(
(ρ + 1)(k + 1)− k

(ρ + 1)(k + 1)− 1

)(
ρ

ρ + 1

)(ρ+1)(k+1)

=
ρ

(ρ + 1)k + ρ

(
(ρ + 1)k + ρ

k

)(
1

ρ + 1

)k (
ρ

ρ + 1

)(ρ+1)k+ρ−k

,

which is a special case of the generalized binomial distribution (see (2.121) in
[?]).

An Anti-Preferential Attachment Model

In this section we consider Tm
n : [n] → [n], a random mapping with ‘anti-

preferential attachment’, where m ≥ 1 is a fixed interger parameter. For
1 ≤ k ≤ n, we define Tm

n (k) = η
(m,n)
k where, as in the definition of T ρ

n , the

variables η
(m,n)
1 , η

(m,n)
2 , .., η

(m,n)
n depend on the evolution of an urn scheme.

The distribution of each variable η
(m,n)
k is determined by a (random) n-tuple

of non-negative weights ~b(k) = (b1(k), b2(k), ..., bn(k)) where, for 1 ≤ j ≤ n,
bj(k) is the number of balls in the jth urn at the start of the kth round of the

urn scheme. Specifically, given ~b(k) = ~b = (b1, ..., bn), we define

Pr
{

η
(m,n)
k = j

∣∣~b(k) = ~b
}

=
bj∑n
i=1 bi

The random weight vectors ~b(1),~b(2), ...,~b(n) associated with the urn scheme
are determined recursively. For k = 1, we set b1(1) = b2(1) = ··· = bn(1) = m.

For k > 1, ~b(k) depends on both ~b(k − 1) and the value of η
(m,n)
k−1 as follows:

Given that η
(m,n)
k−1 = j, we set bj(k) = bj(k − 1) − 1 and for all other i 6= j,

we set bi(k) = bi(k− 1) (i.e. if η
(m,n)
k−1 = j then a ball is removed from the jth

urn).
The random mapping Tm

n as defined above is an anti-preferential at-
tachment model in the following sense. Since, for 1 ≤ k ≤ n, we have
Tm

n (k) = η
(m,n)
k , and since the (conditional) distribution of η

(m,n)
k depends on
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the state of the urn scheme at the start of round k, it is clear that vertex k
is less likely to ‘ choose’ vertex j if the weight bj(k) is (relatively) small, i.e.
if several of the vertices 1, 2, ..., k − 1 have already been mapped to vertex
j. It is also clear from the definition of Tm

n that the in-degree of any vertex
in the random digraph Gm

n ≡ G(Tm
n ) is at most m and in the case m = 1,

T 1
n is a (uniform) random permutation. The distribution of Tm

n is given by
Theorem 4 below and was obtained in [?].

Theorem 4. Suppose that Dm
1 , Dm

2 , ... are i.i.d. Bin(m, p) variables where
m ≥ 1 is a fixed integer parameter.
Let D̂(m, n) = (D̂m

1,n, D̂
m
2,n, ..., D̂

m
n,n) be a sequence of variables with joint dis-

tribution given by

Pr{D̂m
i,n = di, 1 ≤ i ≤ n} = Pr

{
Dm

i = di, 1 ≤ i ≤ n

∣∣∣∣ n∑
i=1

Dm
i = n

}
.

Then the random mappings Tm
n and T

D̂(m,n)
n have the same distribution.

Since Tm
n

d∼ T
D̂(m,n)
n , it follows that the random digraphs Gm

n ≡ G(Tm
n )

and G
D̂(n,m)
n have the same distribution. So, as in the case of the prefer-

ential attachment model, we can investigate the local properties of Gm
n by

considering the local properties of G
D̂(n,m)
n .

We begin by noting that for any integer 1 ≤ x ≤ n− 1 we have

E(D̂m
1,n(D̂m

1,n−1)D̂m
2,n···D̂m

x,n) = E

(
Dm

1,n(Dm
1,n − 1)Dm

2,n · · ·Dm
x,n

∣∣∣∣ n∑
i=1

Dm
i,n = n

)
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=
∑

~d s.t.
Pn

i=1 di=n

(d1 − 1)d1d2 · · · dx ×
(

m
d1

)
· · ·
(

m
dn

)(
nm
n

)
=

min(n,xm)∑
t=x+1

∑
~d s.t.

Px
i=1

di=t

and
Pn

i=1
di=n

(d1 − 1)d1d2 · · · dx ×
(

m
d1

)
· · ·
(

m
dn

)(
nm
n

)
=

min(n,xm)∑
t=x+1

∑
~d s.t.

Px
i=1 di=t

(d1 − 1)d1d2 · · · dx ×
(

m
d1

)
· · ·
(

m
dx

)(
nm−xm

n−t

)(
nm
n

)
= mx(m− 1)

min(n,xm)∑
t=x+1

∑
~d s.t.

Px
i=1 di=t

(
m−2
d1−2

)(
m−1
d2−1

)
· · ·
(

m−1
dx−1

)(
nm−xm

n−t

)(
nm
n

)
= mx(m− 1)

min(n,xm)∑
t=x+1

(
xm−x−1
t−x−1

)(
nm−xm

n−t

)(
nm
n

) = mx(m− 1)

(
nm−x−1
n−x−1

)(
nm
n

)
= mx(m− 1)

(n)x+1

(nm)x+1

. (4.17)

In the summations above the sum is always taken over those degree sequences
for which the binomial coefficients are defined. We also adopt the formal
convention that

(
0
0

)
= 1. By similar calculations we also obtain for 1 ≤ x ≤ n

(and m ≥ 2)

E(D̂m
1,nD̂

m
2,n · · · D̂m

x,n) = mx

(
nm−x
n−x

)(
nm
n

) = mx (n)x

(nm)x

. (4.18)

It follows from Theorem 4, Corollary 2, (??), and (??), that for 1 ≤ k ≤ n−1
and m ≥ 2 we have

Pr{h(Tm
n ) = k} =

1

n

n−1∑
t=k

E(D̂m
1,n(D̂m

1,n − 1)D̂m
2,n · · · D̂m

t,n)

=
1

n

n−1∑
t=k

mt(m− 1)
(

nm−t−1
n−t−1

)(
nm
n

) , (4.19)

and

Pr{h(Tm
n ) = 0} =

1

n

n∑
t=1

E(D̂m
1,nD̂

m
2,n · · · D̂m

t,n) =
1

n

n∑
t=1

mt

(
nm−t
n−t

)(
nm
n

) . (4.20)
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It is routine to check that for fixed m ≥ 2 and under the assumption that
k = bx

√
nc for some fixed 0 < x < ∞, we obtain

Pr{h(Tm
n ) = k} ∼ 1√

n

∫ ∞

x

(
m− 1

m

)
exp

(
−
(

m− 1

m

)
u2

2

)
du. (4.21)

Likewise, it follows from Theorem 4, Corollary 1, (??), and (??), that for
0 ≤ k ≤ n− 1 and m ≥ 2

Pr{`(Tm
n ) = k+1} =

1

n

n−1∑
t=k+1

E(D̂m
1,n(D̂m

1,n−1)D̂m
2,n···D̂m

t,n)+
1

n
E(D̂m

1,nD̂
m
2,n···D̂m

k+1,n)

=
1

n

n−1∑
t=k+1

mt(m− 1)
(

nm−t−1
n−t−1

)(
nm
n

) +
1

n
mk+1

(
nm−t
n−t

)(
nm
n

) . (4.22)

Again, for fixed m ≥ 2 and under the assumption that k = by
√

nc for some
fixed 0 < y < ∞, we obtain

Pr{`(Tm
n ) = k + 1} =

1√
n

∫ ∞

y

(
m− 1

m

)
exp

(
−
(

m− 1

m

)
u2

2

)
du. (4.23)

It follows form (??) and (??) that, as in the case of the preferential model,

the variables h(T m
n )√
n

and `(T m
n )√
n

converge in distribution to Yα but with α = m−1
m

in this case.
Next, for 0 ≤ k ≤ n− 1 and m ≥ 2, we have

Pr{s(Tm
n ) = k + 1} =

k

n
E(D̂m

1,n(D̂m
1,n − 1)D̂m

2,n · · · D̂m
k,n) +

1

n
E(D̂m

1,n · · · D̂m
k+1,n)

=
mk

n
(m(k + 1)− k)

(
nm−k−1
n−k−1

)(
nm
n

)
=

mk

n
(k(m− 1) + m)

(n)k+1

(nm)k+1

= mk (n− 1)k

(nm)k

−mk+1 (n− 1)k+1

(nm)k+1

. (4.24)

It is straightforward to check that for fixed m ≥ 2 and under the assumption
that k = bx

√
nc for some fixed 0 < x < ∞, we have

Pr{s(Tm
n ) = k + 1} ∼ 1√

n

(m− 1)x

m
exp

(
−
(

m− 1

m

)
x2

2

)
.
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Finally, it follows from Theorem 2 and Theorem 4 that for 0 ≤ k ≤ n − 1
and m ≥ 2

Pr{p(Tm
n ) = k + 1} = (4.25)

=
n− k

n(k + 1)
Pr

{
k+1∑
i=1

D̂m
i,n = k

}
+

1

n
Pr

{
k+1∑
i=1

D̂m
i,n = k + 1

}

=
n− k

n(k + 1)
Pr

{
k+1∑
i=1

Dm
i = k

∣∣∣∣ n∑
i=1

Dm
i = n

}
+

1

n
Pr

{
k+1∑
i=1

Dm
i = k + 1

∣∣∣∣ n∑
i=1

Dm
i = n

}

=
n− k

n(k + 1)

(
m(k+1)

k

)(
m(n−k−1)

n−k

)(
mn
n

) +
1

n

(
m(k+1)

k+1

)(
m(n−k−1)

n−k−1

)(
mn
n

)
=

(mn− n + 1)
(

m(k+1)
k+1

)(
m(n−k−1)

n−k−1

)
n(mk + m− k)

(
mn
n

)
=

(
n− 1

k

)
m

m(k + 1)

(m(k + 1))k(m(n− k − 1))n−k−1

(mn)n−1

.

Again we should mention that the distribution above is a special case of
the quasi-hypergeometric distribution I (see (2.122) in [?]). Straightforward
asymptotic calculations establish that for m ≥ 2 and k ∈ {0, 1, 2, ...},

lim
n→∞

Pr{p(Tm
n ) = k + 1} =

1

(m− 1)k

(
mk + m

k

)
1

k + 1

(
1− 1

m

)mk+m

.

We note that the asymptotic distribution for p(Tm
n ) is the Consul distribution

(see [?] p.98) with parameters m and θ = 1
m

.

5 Final remarks

One of the main advantages of the random mapping model T D̂
n is that we

have a calculus for this model which allows us to determine the distributions
of several variables associated with the structure of GD̂

n in terms of expec-
tations of simple functions of D̂1, D̂2, ..., D̂n. As we have seen above, in the
special case where the variables D̂1, D̂2, ..., D̂n have the same distribution as
a collection of i.i.d. variables D1, D2, ..., Dn conditioned on

∑n
i=1 Di = n, it

is straightforward to use this calculus to obtain exact and asymptotic dis-
tributions for various important random variables associated with the local
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structure of GD̂
n . The calculus for T D̂

n also illustrates the fundamental im-
portance of the distribution of the underlying degree sequence D̂1, ..., D̂n to
the structure of the random mapping digraph. This suggests that in various
modelling applications the key to fitting a random mapping model is to fit
the joint distribution of the vertex in-degree data.

As a example of model fitting, we mention the work of Arney and Bender
on random mappings with constraints on coalescence [?]. Their work was
motivated, in part, by the analysis of shift register data. In order to model a
random shift register they put a uniform measure on M{0,1,2}

n , the set of all
mappings f : [n] → [n] such that, for every 1 ≤ i ≤ n, |f−1(i)|, the number

of pre-images of i under f , equals 0, 1, or 2. So, if f ∈ M{0,1,2}
n , then every

vertex in Gn(f) has in-degree equal 0, 1, or 2. Arney and Bender observed
that in some respects their model does not fit the shift register data. In
particular, their model predicts 0.293n vertices with in-degree 0 whereas the
average number of vertices with in-degree 0 in a random shift register is n/4.
Their method depends on the asymptotic analysis of combinatorial gener-
ating functions, so to adjust their model they introduce an extra weighting
into their generating functions in order to get better agreement between their
model and the data. With some effort they are able to extract asymptotic
distributions and mean values for certain statistics of interest. In contrast, by
using the model T D̂

n , we can more easily and naturally capture the local struc-
ture of the shift register data. Specifically, suppose that D̂1, D̂2, ..., D̂n have
the same distribution as n independent Bin(2, 1

2
) variables, D1, D2, ..., Dn,

conditioned on
∑n

i=1 Di = n. Then Pr{D̂1 = 0} = 1
4
(1 + 1

2n−2
)−1 and the

expected number of vertices with in-degree 0 in T D̂
n is asymptotic to n

4
. Us-

ing this approach we can obtain exact distributions as well as the asymptotic
results obtained by Arney and Bender. We are also able to obtain exact and
asymptotic distributions for variables such as the number of predecessors of
a vertex, which were not obtained by Arney and Bender.
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