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Abstract

In this paper we consider a cutting process for random mappings.
Specifically, for 0 < m < n, we consider the initial (uniform) ran-
dom mapping digraph Gn on n labelled vertices, and we delete (if
possible), uniformly and at random, m non-cyclic directed edges from
Gn. The maximal random digraph consisting of the uni-cyclic compo-
nents obtained after cutting the m edges is called the trimmed random
mapping and is denoted by Gm

n . If the number of non-cyclic directed
edges is less than m, then Gm

n consists of the cycles, including loops, of
the initial mapping Gn. We consider the component structure of the
trimmed mapping Gm

n . In particular, using the exact distribution we
determine the asymptotic distribution of the size of a typical random
connected component of Gm

n as n,m →∞. This asymptotic distribu-
tion depends on the relationship between n and m and we show that
there are three distinct cases: (i) m = o(

√
n), (ii) m = β

√
n, where

β > 0 is a fixed parameter, and (iii)
√

n = o(m). This allows us to
study the joint distribution of the order statistics of the normalized
component sizes of Gm

n . When m = o(
√

n), we obtain the Poisson-
Dirichlet(1/2) distribution in the limit, whereas when

√
n = o(m)

the limiting distribution is Poisson-Dirichlet(1). Convergence to the
Poisson-Dirichlet(θ) distribution breaks down when m = O(

√
n), and

in particular, there is no smooth transition from the PD(1/2) dis-
tribution to the PD(1) via the Poisson-Dirichlet distribution as the
number of edges cut increases relative to n, the number of vertices in
Gn.

1 Introduction

In this paper we consider the component structure of a trimmed random
mapping. Informally, we start with a uniform random mapping from the

1



vertices Vn = {1, 2, ..., n} into Vn. Any such mapping can be represented
as a directed graph on n labelled vertices which has components consisting
of directed cycles with directed trees attached. We ‘trim’ the trees in the
random mapping graph by selecting and deleting a number of tree edges at
random. This cutting procedure gives rise to a directed graph consisting
of uni-cyclic components (these correspond to the original components of
the random mapping) and tree components which result from the cutting
procedure. We discard the tree components and call the remaining graph
the trimmed random mapping. In this paper we consider the distribution of
the component sizes in the trimmed random mapping as a function of the
number of edges cut. Before discussing the motivation for this investigation,
we introduce some notation and review well-known asymptotic results for
the component structure of the uniform random mapping.

For n ≥ 1, let Mn denote the set of mappings f : Vn → Vn, and let Tn

denote the uniform random mapping of Vn into Vn with distribution given
by

Pr
{
Tn = f

}
=

1

nn

for each f ∈Mn. The random mapping Tn can be represented by a directed
random graph Gn on vertices labelled 1, 2, . . . , n, such that a directed edge
from vertex i to vertex j exists in Gn if and only if Tn(i) = j. Since each
vertex in Gn has out-degree 1, the components of Gn consist of directed cycles
with directed trees attached.

Much is known (see for example the monograph by Kolchin [33]) about the
component structure of the random digraph Gn which represents Tn. Aldous
[2] has shown that the joint distribution of the normalized order statistics for
the component sizes in Gn converges, as n →∞, to the Poisson-Dirichlet(θ)
distribution with parameter θ = 1/2, which we denote by PD(1/2), on the
simplex

∇ =

{
{xi} :

∑
xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1

}

as n → ∞. Also, if Nk denotes the number of components of size k in
Gn then the joint distribution of (N1, N2, . . . , Nb) is close, in the sense of
total variation, to the joint distribution of a sequence of independent Poisson
random variables when b = o(n/ log n) (see Arratia et.al. [6], [7]) and from
this result one obtains a functional central limit theorem for the component
sizes (see also [15]). The asymptotic distributions of variables such as the
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number of predecessors and the number of successors of a vertex in Gn are also
known (see [10, 40, 29, 30]). It is also known that embedded in every uniform
random mapping there is a uniform random permutation. Specifically, for
n ≥ 1, let Ln denote the number of cyclic vertices in Gn, where i ∈ Vn is
a cyclic vertex of Gn if and only if there is some k ≥ 1 such that T (k)

n (i) =
i. Then, given Ln = l, the random mapping Tn restricted to Ln, the set
of cyclic vertices of Gn, is a uniformly distributed random permutation on
the ` vertices in Ln. The cycle structure of uniform random permutations
is well understood. In particular, the joint distribution of the normalized
order statistics for the cycle lengths of a uniform random permutation also
converges to the PD(θ) distribution on ∇ ([42]), but in this case θ = 1.

Uniform random mappings and uniform random permutations are just
two examples of random combinatorial structures where the PD(θ) distribu-
tion arises naturally as the limiting distribution for the order statistics of the
normalized ‘component’ sizes of the structure. Other examples include, with
θ = 1, prime factorisation of integers ([13]) , factorisation of polynomials
over finite fields ([17]), and factorisation of matrices over finite fields ([16]),
and, with θ = 1/2, uniform mapping patterns ([34]), bipartite random map-
pings ([19]), certain non-uniform random mappings ([3], [4]), and Poisson
compound random mappings ([20]). It is also possible to generate examples
where the PD(θ) distribution with arbitrary parameter θ > 0 arises as a li-
miting distribution (see [8]), but these examples are somewhat artificial. For
example, one can consider a random permutation σθ

n on [n] = {1, 2, ..., n}
where the distribution of the cycle structure of σθ

n is given by the Ewens
sampling formula with parameter θ > 0, and we note that when θ = 1, σθ

n

is just the usual uniform random permutation on [n]. Then as n → ∞, the
joint distribution of the normalized order statistics of the cycle sizes of σθ

n

converges to the PD(θ) distribution. This example is artificial in the sense
that the limiting PD(θ) distribution is ‘pre-determined’ by correctly choosing
the distribution for σθ

n.
The trimmed random mapping model considered in this paper is a random

structure which is (in some sense) sandwiched between a uniform random
mapping and a uniform random permutation. Specifically, if no edges are
cut, we have a uniform random mapping, whereas if all the trees are trimmed
down to their roots, we have a random permutation on the root vertices. In
light of this observation, one might suppose that if m(n) edges are cut, where
m(n) → ∞ as n → ∞, then the joint distribution of the normalized order
statistics of the component sizes of the resulting trimmed random mapping
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converges to the PD(θ) distribution with parameter 1/2 < θ < 1 (where the
value of θ may depend on how m(n) goes to infinity). In this paper we show
that in fact something quite different happens. More precisely, we show that
if m(n) = o(

√
n) then we obtain a PD(1/2) distribution in the limit, whereas

for
√

n = o(m(n)) we obtain the PD(1) distribution in the limit. There is a
‘phase transition’ when m(n) = β

√
n, where β > 0 is a fixed parameter, and

in this case we show that the limiting distribution cannot be PD(θ).
We note that our investigation of trimmed random mappings is close

in spirit to the study of the evolution of the random mapping (Tn; q) and
the corresponding random graph process (see [25], [26], [27], [28]). In fact,
the “evolution” parameter q, which corresponds to the probability of a loop
at a vertex, can be treated as the parameter which determines the number
of edges (roughly bnqc) removed from the digraph representing a uniform
random mapping (see [27]). In light of related results for (Tn; q), the phase
transition which we have identified when O(

√
n) non-cyclic edges are cut in

a random mapping is not very surprising. There has also been much work,
initiated by Meir and Moon in 1970 [35], on ‘cutting down’ uniform random
trees (forests) on n vertices. Meir and Moon gave very precise asymptotic
formulas for mean and variance of the number of edges that must be removed
before isolating the roots, and again this number turns to be of order

√
n.

For the most recent results in this direction see Janson [23].
In another direction, the structure of the random forest created by cutting

edges in a uniform tree on n vertices has been studied in detail (see especially
[5], [11], [38]) and a ‘phase transition’ identified when O(

√
n) edges are cut,

as well. In addition, in the case when β
√

n edges are cut, the asymptotic
joint distribution of the normalised sizes of the trees has been characterised
in terms of the jumps of a stable 1/2 subordinator St on the interval [0, β],
conditioned on Sβ = 1. It would be interesting to investigate further connec-
tions between our results for trimmed random mappings and above results
for trees and forests.

The paper is organized as follows. In Section 2 we carefully define the
cutting process for uniform random mappings and establish some basic lem-
mas. In Section 3 we give a characterization of the PD(θ) distribution and
describe a method for determining convergence to the PD(θ) distribution.
In Section 4, using the exact distribution, we study the asymptotic distri-
bution of the size of a typical component after cutting m(n) edges, where
m(n) →∞ as n →∞, as well as we considering the asymptotic joint distri-
bution of the normalized order statistics of the sizes of the components of a

4



trimmed random mapping.
Finally, throughout this paper we adopt the following abuse of notation:

Suppose that 0 < x < ∞ is fixed and n ∈ Z+, then by ‘integer m = xf(n)’,
where f is a function of Z+, we mean m = bxf(n)c. Likewise, if X is an
integer-valued random variable, by ‘X = xf(n)’ we mean X = bxf(n)c.

2 Trimmed Random Mappings

In this section we define the trimmed random mapping T m
n in terms of the

random digraph Gm
n which represents the action of T m

n on a (random) set
of vertices. To construct the random digraph Gm

n for 1 ≤ m ≤ n, we start
with the random digraph Gn which represents the uniform random mapping
Tn on Vn and we select (if it is possible) m (directed) edges from all edges in
Gn which are not part of a cycle in Gn such that any such subset of m edges
is equally likely to be selected. The m selected edges are deleted from Gn

to create a random digraph Dm
n on the vertices Vn which consists of directed

trees and uni-cyclic components. If the number of non-cyclic edges in Gn

is less than m, then we delete all non-cyclic edges to obtain Dm
n , which in

this case consists of the cycles of the initial digraph Gn and isolated vertices
which correspond to the non-cyclic vertices of Gn. In all cases we let Gm

n

denote the maximal random directed subgraph of Dm
n which consists of the

uni-cyclic components of Dm
n . We also let V m

n denote the (random) vertex set
of Gm

n and let T m
n denote the random mapping on the V m

n which corresponds
to the random digraph Gm

n . Finally, we note that every component of Gm
n

is a ‘remnant’ of some component of Gn which has been ‘trimmed’ and the
cyclic vertices of Gm

n are exactly the cyclic vertices of the original digraph
Gn.

We define νn(m) ≡ |V m
n | and tn(m) to be the size of the random rooted

forest (with m roots) which is created after cutting m edges from the initial
random mapping digraph Gn (as noted above, this forest may consist of
only m roots). It is clear from the description of the cutting phase and the
definition of V m

n that
tn(m) = n− νn(m) .

As a first step in our investigation of the component structure of the trimmed
mapping digraph Gm

n , we determine the distribution of tn(m) (and hence, the
distribution of νn(m)). Our calculations are based on the following alterna-
tive construction of the uniform random mapping digraph Gn.
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Suppose that L̂n is a discrete random variable such that L̂n has the same
distribution as Ln (denoted L̂n ∼ Ln), where Ln is the number of cyclic
vertices in a uniform random mapping. Given L̂n = `, let A` denote a
uniform random subset of size ` from the vertices Vn (i.e. all subsets of size
` are equally likely). Given A` = A ⊆ Vn, let Fn(A) denote the uniform
random rooted forest on the vertices Vn, where A is the set of roots, and
direct the edges in the trees of Fn(A) such that any path from a vertex to a
root is directed towards the root. Finally, let σA denote a uniform random
permutation on the set of root vertices A which is independent of Fn(A).
We form the directed graph Ĝn from the rooted forest Fn(A) by adding a
directed edge from i ∈ A to j ∈ A if σA(i) = j, and we let T̂n denote the
random mapping which is represented by Ĝn. Then since L̂n ∼ Ln, we have
Ĝn ∼ Gn and T̂n ∼ Tn.

It follows from the alternative construction of Gn described above and
the definition of the trimmed mapping digraph Gm

n , that the conditional
distribution of tn(m) given Ln, the number of cyclic vertices in Gn, can be
determined by considering a uniform random forest from which m edges are
deleted. Specifically, let Fn,` denote a uniformly distributed random element
from the set of all forests on n labelled vertices which consists of ` trees rooted
at ` given vertices. For 1 ≤ m ≤ n−`, let Fn,`(m) denote the forest obtained
from Fn,` by deleting at random m edges in Fn,` such that any subset of m
edges is equally likely to be deleted. We note that Fn,`(m) is a random forest
on n vertices consisting of ` + m trees rooted at ` + m vertices. The trees in
Fn,`(m) can be classified as either ‘old’ or ‘new’ trees: there are ` ‘old’ trees
rooted at the original ` roots of the forest Fn,` and m ‘new’ trees which were
created when the m random edges of Fn,` were deleted. Let fn,`(m) denote
the total number of vertices in the m ‘new’ trees in the forest Fn,`(m). Then
it is a straightforward consequence of the alternative construction of Gn and
the definition of Gm

n and Fn,`(m) that for 1 ≤ m ≤ n− `

Pr{tn(m) = m + t
∣∣ Ln = `} = Pr{fn,`(m) = m + t} . (2.1)

The distribution of fn,`(m) in this case is given by

Lemma 1. For 1 ≤ m ≤ n− ` and 0 ≤ t ≤ n− `−m,

Pr{fn,`(m) = m + t} =

(
n− `−m

t

)
m

n

(
m + t

n

)t−1 (
1− m + t

n

)n−`−m−t

.

(2.2)
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Proof. Without loss of generality, we may assume that the ` given roots of
the random forest Fn,` are labelled 1, 2, ..., ` and that the m roots of the ‘new’
trees created by cutting m edges of Fn,` are labelled ` + 1, ` + 2, ...` + m (i.e.
cutting the m edges of Fn,` which results in making the vertices ` + 1, ` +
2, ..., ` + m roots of the ‘new’ trees is statistically equivalent to cutting m
edges of Fn,` at random). It follows that

Pr{fn,`(m) = m + t} =
an,`,m(t)

`nn−`−1

where `nn−`−1 equals the number of forests on n labelled vertices with ` trees
rooted at the vertices 1, 2, ..., ` and an,`,m(t) equals the number of forests on
n labelled vertices with ` trees rooted at 1, 2, ..., ` such that by making the
vertices ` + 1, ..., ` + m roots of ‘new’ trees we obtain fn,`(m) = m + t. We
determine an,`,m(t) by ‘reversing’ the cutting process.

First, we note that it follows from Cayley’s formula that the number
of forests on n vertices with ` + m trees rooted at 1, 2, ..., ` + m such that
fn,`(m) = m + t is equal to

(
n−`−m

t

)
m(m + t)t−1`(n−m− t)n−`−m−t−1. Next

suppose that Fn,`+m is a fixed forest on n vertices with ` + m trees rooted at
the vertices 1, 2, ..., ` + m, and, for 1 ≤ i ≤ ` + m, let ti denote the number
of vertices in the tree rooted at vertex i in Fn,`+m. In addition, suppose

that
∑`+m

i=`+1 ti = m + t. Then we need to count the number of ways that
the root vertices ` + 1, ` + 2, ..., ` + m can be mapped to vertices in Vn such
that the resulting digraph is still a forest with ` trees rooted at the vertices
1, 2, ..., `. Our counting argument is based on Burtin’s Lemma (see [10, 1])
in the version given by Ross in [41]. Similar arguments were also used by
Jaworski in the study of non-uniform random mappings with independent
choices of images and related forests (see e.g. [24], [25], [26]) and by Hansen
(see [18]) in the study of optimal directed spanning trees. More recently, this
method has been ingeniously used and developed in many papers by Pitman,
e.g., in the study of coalescent random forests [38].

Fact 1. (Burtin’s Lemma) Suppose that X1, X2, ..., Xm are i.i.d. random
variables such that

Pr
{
X1 = j

}
= λj j = 0, 1, . . . , m and

m∑
j=0

λj = 1.

Let G be the random digraph on the vertices 0, 1, . . . , m obtained by construc-
ting a directed edge from i to j if Xi = j. Then Pr

{
G is connected

}
= λ0.
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To apply Burtin’s Lemma, we begin by randomizing the ‘choices’ made
by the root vertices ` + 1, ` + 2, ...., ` + m. Specifically, let Y1, Y2, ...., Ym be
a sequence of i.i.d. variables such that Pr{Yi = j} = 1

n
where 1 ≤ i ≤ m

and 1 ≤ j ≤ n. The choices made by the vertices ` + 1, ` + 2, ..., ` + m are
determined as follows: vertex `+1 ≤ k ≤ `+m is mapped to vertex j if and
only if Yk−` = j. Let G(Fn,`+m) denote the random digraph on n vertices
that is obtained after mapping the roots ` + 1, ` + 2, ..., ` + m into Vn and
let Bn,`+m denote the event that G(Fn,`+m) is a forest on n vertices with `
rooted trees. Then the number of ways to map the root vertices `+1, ..., `+m
into Vn such that G(Fn,`+m) is a forest on n vertices with ` roots is exactly
nm × Pr

{Bn,`+m

}
.

We appeal to Burtin’s Lemma to compute Pr
{Bn,`+m

}
. To apply the

lemma, we define a random digraph Ĝ(Fn,`+m) on m + 1 vertices, labelled
0, 1, ..., m, which is associated with the random digraph G(Fn,`+m). Specifi-
cally, for 1 ≤ i ≤ m and 1 ≤ j ≤ m, there is a directed edge from vertex i to
vertex j in Ĝ(Fn,`+m) if and only if in the random digraph G(Fn,`+m) the ver-
tex `+ i is mapped to a vertex in the tree rooted at `+ j in the forest Fn,`+m,

and there is a directed edge in Ĝ(Fn,`+m) from the vertex i to the special
vertex 0 if and only if in G(Fn,`+m) the vertex ` + i is mapped to a vertex in
the sub-forest of Fn,`+m which is rooted at the vertices 1, 2, ..., `. Now recall
that the tree sizes t`+1, t`+2, ...., t`+m satisfy the constraint

∑m
i=1 t`+i = m+ t.

So it follows from the definition of Ĝ(Fn,`+m), that Ĝ(Fn,`+m) has the same
distribution as the graph G described in Fact 1, where the distribution of the
i.i.d. variables X1, X2, ..., Xm is given by

Pr
{
X1 = j

}
=

t`+j

n
for 1 ≤ j ≤ m and Pr

{
X1 = 0

}
=

n−m− t

n
.

So it follows from Fact 1, that

Pr
{
Ĝ(Fn,`+m) is connected

}
=

n− t−m

n
.

We note that since vertex 0 has out-degree 0, the digraph Ĝ(Fn,`+m) is con-

nected if and only if Ĝ(Fn,`+m) is a tree rooted at vertex 0 (since any com-

ponent of Ĝ(Fn,`+m) which contains a cycle cannot contain the vertex 0).

Furthermore, the digraph Ĝ(Fn,`+m) is a tree rooted at vertex 0 if and only
if G(Fn,`+m) is a forest rooted at the vertices 1, 2, .., `. So we have

Pr
{Bn,`+m

}
= Pr

{
Ĝ(Fn,`+m) is connected

}
=

n− t−m

n
,
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and this equality holds for any forest Fn,`+m such that the tree sizes t1, ..., t`
satisfy the constraint

∑`
i=1 ti = n − m − t. So, for any forest Fn,`+m such

that
∑`

i=1 ti = n − m − t, the number of ways to map the root vertices
` + 1, ..., ` + m into Vn such that G(Fn,`+m) is a forest on Vn vertices with `
roots is equal to

nm × Pr
{Bn,`+m

}
=

nm(n−m− t)

n
.

It follows that

an,`,m(t) = nm−1(n−m− t)

(
n− `−m

t

)
m(m + t)t−1`(n−m− t)n−`−m−t−1,

and hence we obtain the result.

Remark. We note that for m and ` such that 1 ≤ m ≤ n − `, we can
re-parametrize the right-hand side of (2.2) by setting p = m

n
, φ = 1

n
and

N = n− `−m to obtain

Pr
{
tn(m) = m + t|Ln = `

}
=

(
N

t

)
p(p + φt)t−1(1− p− φt)N−t (2.3)

for 0 ≤ t ≤ N . So the conditional distribution of tn(m) −m given Ln = `
is a quasi-binomial distribution (QBD I) ([31, 29]). In Section 4 we need the
following stronger version of a local limit theorem for QBD I given in [29].

Fact 2. Fix 0 < λ < ξ < ∞ and suppose that λ < α < ξ and ` = α
√

n.
Also, suppose that m = β

√
n for some β > 0 fixed and let N(`) = n− `−m.

Then for t = γN(`), where 0 < δ0 < γ < 1− δ0 < 1,

Pr
{
tn(m) = m + t

∣∣Ln = `
}

=

1

N(`)

β√
2πγ3(1− γ)

exp

{
−(αγ − β(1− γ))2

2γ(1− γ)

}
(1 + ∆0(n, λ, ξ, δ0, β))

for all sufficiently large n, where |∆0(n, λ, ξ, δ0, β)| ≤ C(λ, ξ, δ0, β)/
√

n and
C(λ, ξ, δ0, β) is a constant which depends only on λ, ξ, δ0 and β.

The proof of Fact 2 follows from (2.3) by an straightforward application of
the deMoivre-Laplace local limit theorem (see Feller [14]). Also, it is not
difficult to check that∫ 1

0

β√
2πγ3(1− γ)

exp

{
−(αγ − β(1− γ))2

2γ(1− γ)

}
dγ = 1. (2.4)
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3 Characterization of the PD(θ) distribution

The Poisson-Dirichlet distribution, introduced by Kingman [32], has been
studied extensively in the literature (see, for example, Donnelly and Joyce
[12], Perman [36], Pitman and Yor [37]). In this section we give a convenient
characterization of the PD(θ) distribution which also yields a useful principle
for establishing convergence in distribution to the PD(θ) distribution on
the simplex ∇. In particular, we construct a sequence of random variables
Q1, Q2, ... such that (Q1, Q2, ...) ∈ ∇ and the measure induced on ∇ by the
joint distribution of (Q1, Q2, ..) is the PD(θ) distribution.

The construction of the variables (Q1, Q2, ...) is based on a sequence,
Z1, Z2, ..., of i.i.d. random variables such that Z1 ∼ Beta(θ) with parameter
θ > 0 and density given by

f(z) = θ(1− z)θ−1

on the unit interval (0, 1). We define a transformation φ of the sequence
(Z1, Z2, ...) such that φ(Z1, Z2, ...) = (W1, W2, ...) where W1 = Z1

and Wk = Zk(1 − Z1)(1 − Z2) · · · (1 − Zk−1) for k > 1, and observe
that (W1,W2, ...) ∈ ∇̃ = {{xi} : xi ≥ 0,

∑
xi ≤ 1}. The distribution of

(W1, W2, ...) is called the GEM(θ) distribution, after Griffiths, Engen and
McCloskey. Finally, we define the map ψ : ∇̃ → ∇ such that (ψ{xi})k is
the kth largest term in the sequence {xi} ∈ ∇̃; then the random sequence
(Q1, Q2, Q3, ...) ≡ ψ ◦ φ(Z1, Z2, ...) ∈ ∇ has a PD(θ) distribution.

As a consequence of the construction described above, we have the following
convergence principle: suppose that (Z1(n), Z2(n), ...) is an array of random
variables such that the joint distribution of (Z1(n), Z2(n), ...) converges to the
joint distribution of the variables (Z1, Z2, ...) as n →∞. Then the joint dis-
tribution of the random sequence ψ ◦φ(Z1(n), Z2(n), ...) = (Q1(n), Q2(n), ...)
converges in distribution to the PD(θ) distribution on ∇ as n → ∞ (for
further details, see Hansen [11] and the references therein). To see how this
convergence principle can be applied to random mappings and trimmed ran-
dom mappings, we introduce some additional notation.

First, given Gn, the directed random graph which represents the random
mapping Tn, let K(1)

n denote the component in Gn which contains vertex
labelled by 1. If K(1)

n 6= Gn , then let K(2)
n denote the component in Gn \K(1)

n

which contains the vertex with smallest label; otherwise, set K(2)
n = ∅. For

i > 2, we define K(i)
n iteratively: If Gn \ (K(1)

n ∪ ...∪K(i−1)
n ) 6= ∅, then let K(i)

n
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denote the component in Gn \ (K(1)
n ∪ ...∪K(i−1)

n ) which contains the vertex

with smallest label; otherwise, set K(i)
n = ∅. For i ≥ 1, let k

(i)
n = |K(i)

n | and

define the sequence (z
(1)
n , z

(2)
n , . . .) by

z(1)
n =

k
(1)
n

n
, z(2)

n =
k

(2)
n

n− k
(1)
n

, . . . , z(i)
n =

k
(i)
n

n− k
(1)
n − k

(2)
n − . . .− k

(i−1)
n

, . . .

where z
(i)
n = 0 if n− k

(1)
n − k

(2)
n − . . .− k

(i−1)
n = 0. For i ≥ 1, we also define

d
(i)
n to be the size of the ith largest component in Gn. It is easy to check that

ψ ◦ φ(z(1)
n , z(2)

n . . .) =

(
d

(1)
n

n
,
d

(2)
n

n
, . . .

)
,

Now it is well known (see [33], [9]) that for 0 < a < b < 1

lim
n→∞

Pr{ a < z(1)
n ≤ b : 1 ≤ i ≤ k} =

∫ b

a

du

2
√

1− u
.

It can also be shown by straightforward counting arguments that the condi-
tional distribution of k

(j)
n given k

(1)
n = s1, ...., k

(j−1)
n = sj−1 (where j ≥ 2 and

s1 + ...+sj < n) is the same as the distribution of k
(1)
n−s1−...sj

. It follows by an
induction argument that for each j ≥ 1 and 0 < ai < bi < 1 , i = 1, 2, . . . , j
we have

lim
n→∞

Pr{ ai < z(i)
n ≤ bi : 1 ≤ i ≤ j} =

j∏
i=1

∫ bi

ai

du

2
√

1− u
.

Hence, by the convergence principle stated above, the joint distribution of
the sequence (d

(1)
n /n, d

(2)
n /n, ...) converges in distribution to the PD(1/2) dis-

tribution on ∇.
We can also adapt the argument given above to investigate the joint

distribution of the order statistics of the normalised component sizes in
Gm

n . Specifically, given Gm
n , the directed random graph which represents

the trimmed random mapping T m
n , let K(1)

n (m) denote the component in
Gm

n which contains the vertex with the smallest label (which may not be

the vertex labelled 1). If K(1)
n (m) 6= Gm

n , then let K(2)
n (m) denote the com-

ponent in Gm
n \ K(1)

n (m) which contains the vertex with the smallest label;

otherwise, set K(2)
n (m) = ∅. For i > 2, we define K(i)

n (m) iteratively: If

11



Gm
n \ (K(1)

n (m)∪ ...∪K(i−1)
n (m)) 6= ∅, then let K(i)

n (m) denote the component

in Gn \ (K(1)
n (m)∪ ...∪K(i−1)

n (m)) which contains the vertex with the small-

est label; otherwise, set K(i)
n (m) = ∅. For i ≥ 1, let k

(i)
n (m) = |K(i)

n (m)| and

define the sequence (z
(1)
n (m), z

(2)
n (m), . . .) by

z(1)
n (m) =

k
(1)
n (m)

νn(m)
, z(2)

n (m) =
k

(2)
n (m)

νn(m)− k
(1)
n (m)

, . . . ,

z(i)
n (m) =

k
(i)
n (m)

νn(m)− k
(1)
n (m)− k

(2)
n (m)− . . .− k

(i−1)
n (m)

, . . .

where z
(i)
n (m) = 0 if νn(m) − k

(1)
n (m) − k

(2)
n (m) − . . . − k

(i−1)
n (m) = 0. For

i ≥ 1, we also define d
(i)
n (m) to be the size of the ith largest component

in Gm
n . So, as in the case of random mappings, to show that the sequence

(d
(1)
n (m)/n, d

(2)
n (m)/n, ...) converges in distribution to a PD(θ) distribution

on ∇, it is necessary and sufficient to show that for each k ≥ 1 and 0 < ai <
bi < 1 , i = 1, 2, . . . , k, we have

lim
n→∞

Pr{ ai < z(i)
n (m) ≤ bi : 1 ≤ i ≤ k} =

k∏
i=1

∫ bi

ai

θ(1− u)θ−1du .

4 The asymptotic component structure of a

trimmed random mapping

In this section we show that the joint distribution of the order statistics of
the normalised component sizes of Gm

n converges to the Poisson-Dirichlet(θ)
distribution as n → ∞ when either m = o(

√
n) or

√
n = o(m). We do not

obtain a Poisson-Dirichlet limiting distribution during the ‘phase transition’
when m = β

√
n and we consider this case first.

Theorem 1. Let β be a positive real parameter and suppose that m = β
√

n.
Then for any 0 < a < b < 1.

lim
n→∞

Pr{a < z(1)
n (m) ≤ b} =

∫ b

a

fβ(x)dx,

12



where fβ is a density function on the interval (0, 1) which is given by the
integral

fβ(x) =

∫ ∞

0

∫ 1

0

∫ 1

0

α2β(1− y)

2π
√

x(1− x)3(1− γ)
√

γ3

× exp

{
− (x− y)2α2

2x(1− x)(1− γ)
− (αγ − β(1− γ))2

2γ(1− γ)
− α2

2

}
dydγdα .

Moreover for any 0 < a < b < 1,

lim
β↓0

∫ b

a

fβ(x)dx =

∫ b

a

dx

2
√

1− x
and lim

β→∞

∫ b

a

fβ(x)dx =

∫ b

a

1dx.

Proof. We begin by fixing 0 < a < b < 1 and ε > 0 arbitrarily small
and by letting A1(n,m) = {a < z

(1)
n (m) ≤ b}. Since Ln/

√
n converges in

distribution as n → ∞, we can choose 0 < λ(ε) < ξ(ε) < ∞ such that
Pr

{
λ(ε)

√
n < Ln < ξ(ε)

√
n
}

> 1 − ε
2

for all sufficiently large n. Next, it
follows from Fact 2 that there exists 0 < φ(ε) < ψ(ε) < ∞ such that for
λ(ε)

√
n < ` < ξ(ε)

√
n and all sufficiently large n,

Pr{φ(ε)N(`) < tn(m)−m < ψ(ε)N(`) |Ln = `} > 1− ε/2 (4.1)

where N(`) = n − m − `. Finally, limn→∞ Pr
{
Ln > n − m

}
= 0 since

m = β
√

n, so

lim
n→∞

Pr{a < z(1)
n (m) ≤ b} = lim

n→∞
Pr{A1(n,m), Ln ≤ n−m}. (4.2)

So, we have
Pr{A1(n,m), Ln ≤ n−m}

=
n−m∑

`=1

n−m−l∑
t=0

Pr{A1(n,m)
∣∣ Ln = ` , tn(m) = m + t}

×Pr{tn(m) = m + t
∣∣ Ln = `} × Pr{Ln = `}

= Σ(ε) +

ξ(ε)
√

n∑

`>λ(ε)
√

n

ψ(ε)N(`)∑

t>φ(ε)N(`)

Pr{A1(n,m)
∣∣ Ln = ` , tn(m) = m + t}

×Pr{tn(m) = m + t
∣∣ Ln = `} × Pr{Ln = `} (4.3)

where |Σ(ε)| < ε.
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Now suppose that λ(ε)
√

n ≤ ` ≤ ξ(ε)
√

n and φ(ε)N(`) ≤ t ≤ ψ(ε)N(`)
and let ν = n − m − t. Then, given Ln = ` and tn(m) − m = t (i.e.
νn(m) = n−m− t = ν), we can re-label the vertices in Vn(m), the vertex set
of Gm

n , according to their natural order by 1, 2, .., ν. It is straightforward to
check using arguments from Section 2 that the conditional distribution of Gm

n

given Ln = ` and tn(m)−m = t corresponds to the conditional distribution
of Gν given Lν = `. In particular,

Pr
{
A1(n,m)

∣∣∣ Ln = `, tn(m)−m = t
}

= Pr
{

a <
k

(1)
ν

ν
≤ b

∣∣∣Lν = `
}

. (4.4)

To approximate the right-hand side of (4.4) we appeal to a local limit theorem
(see [21], Theorem 3): for any a < x ≤ b, ρ > 0 and all sufficiently large ν

Pr

{
k

(1)
ν

ν
= x

∣∣∣∣
Lν√

ν
= ρ

}

=
1

ν

ρ√
2πx(1− x)3

∫ 1

0

(1− y) exp

{
−(x− y)2ρ2

2x(1− x)

}
dy (1 + ∆(ν, ρ, x)) (4.5)

where |∆(ν, ρ, x)| < C
(

ρ3∨1
min(δ5,ρ)

)
exp

(
ρ2

δ2

)
1√
ν

and C is a constant which is

independent of ν, ρ, and δ ≡ min(a, 1− b).
Now suppose that ` = α

√
n for some λ(ε) ≤ α ≤ ξ(ε) and φ(ε)N(`) ≤ t ≤

ψ(ε)N(`). Then t = γN(`) for some φ(ε) ≤ γ ≤ ψ(ε) and ν = n− t−m =
n−m− γN(`). We have from (4.4)

Pr{A1(n,m)
∣∣Ln = ` , tn(m) = m + t} = Pr

{
a <

k
(1)
ν

ν
≤ b

∣∣∣Lν = α

√
n

ν

√
ν
}

,

(4.6)
and we note that

√
n

ν
=

√
n

n−m− γN
=

1√
1− γ + O(1/

√
n)
∼ 1√

1− γ
. (4.7)

It follows from (4.5–4.7) that

Pr{A1(n,m)
∣∣ Ln = ` , tn(m) = m + t}

=

∫ b

a

α√
2πx(1− x)3(1− γ)

∫ 1

0

(1− y) exp

{
− (x− y)2α2

2x(1− x)(1− γ)

}
dydx

× (1 + ∆̃(ν, α, γ, δ)) (4.8)
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where
|∆̃(ν, α, γ, δ)| ≤ C(λ(ε), ξ(ε), φ(ε), ψ(ε), δ)/

√
n

and C(λ(ε), ξ(ε), φ(ε), ψ(ε), δ) is a constant which depends only on λ(ε), ξ(ε),
φ(ε), ψ(ε), and δ. It is also known (see [22]) that for ` = α

√
n where

λ(ε) < α < ξ(ε),

Pr{Ln = `} =

(
n

`

)
`!(`nn−`−1)

nn
=

1√
n

αe−α2/2(1 + ∆′(n, α)) (4.9)

where |∆′(n, α)| ≤ C ′(λ(ε), ξ(ε))/
√

n and C ′(λ(ε), ξ(ε)) is a constant which
depends only on λ(ε) and ξ(ε). Finally, it follows from Fact 2, (4.8), and
(4.9) that

ξ(ε)
√

n∑

`>λ(ε)
√

n

ψ(ε)N(`)∑

t>φ(ε)N(`)

Pr{A1(n,m)
∣∣ Ln = ` , tn(m) = m + t}

×Pr{tn(m) = m + t
∣∣ Ln = `} × Pr{Ln = `}

∼
∫ ξ(ε)

λ(ε)

∫ ψ(ε)

φ(ε)

∫ b

a

∫ 1

0

α2β(1− y)

2π
√

x(1− x)3(1− γ)
√

γ3

× exp

{
− (x− y)2α2

2x(1− x)(1− γ)
− (αγ − β(1− γ))2

2γ(1− γ)
− α2

2

}
dydxdγdα.

The last assertion of the theorem follows from tedious but essentially straight-
forward calculations which we omit.

Remark 1. Numerical calculations suggest that for 0 < β < ∞, the den-
sity fβ(x) cannot be simplified to obtain fβ(x) = θ(1 − x)θ−1 for some
1/2 < θ < 1. This indicates that when m = β

√
n the distribution of

z
(1)
n (m) does not converge to the Beta distribution on (0, 1) as n → ∞.

In this case, it follows from the characterization of the Poisson-Dirichlet
distribution, that the joint distribution of the normalized order statistics,
(d

(1)
n (m)/νn(m), d

(2)
n (m)/νn(m), ...), does not converge to a PD(θ) distribu-

tion on ∇. However, we can nevertheless view the limiting distribution of z
(1)
n

as a distribution which is parameterized by 0 < β < ∞ and which changes
‘smoothly’ from the Beta(1/2) distribution to Beta(1) distribution as the
parameter β goes from 0 to ∞. In particular, for very small values of β the
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density fβ is ‘close’ to the Beta(1/2) density on (0, 1), whereas for very large
β, the fβ is close to the Beta(1) density. This is illustrated in the diagram
below where plots of fβ are given for a small, moderate and large value of β.

Theorem 2. The joint distribution of the order statistics of the normalised
component sizes of Gm

n converges to the Poisson-Dirichlet(1/2) distribution
as n →∞ when m = o(

√
n).

It follows from the convergence principle given in Section 3, that to prove
the above theorem it is enough to show the following lemma.

Lemma 2. Suppose that m = o(
√

n), then for any k > 0 and 0 < ai < bi < 1,
where i = 1, 2, ..., k, we have

lim
n→∞

Pr{ai < z(i)
n (m) ≤ bi : i = 1, 2, ..., k} =

k∏
i=1

∫ bi

ai

1

2
√

1− x
dx (4.10)

where z
(i)
n (m) = k

(i)
n (m)

νn(m)−k
(1)
n (m)−...−k

(i−1)
n (m)

.

Proof. To establish (4.10), we recall that for the uniform random mapping
graph Gn, and for any k ≥ 1 and 0 < ai < bi < 1 , i = 1, 2, . . . , k, we have

lim
n→∞

Pr{ ai < z(i)
n ≤ bi : 1 ≤ i ≤ k} =

k∏
i=1

∫ bi

ai

du

2
√

1− u
. (4.11)
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So to prove (4.10), it suffices to show that for any δ > 0, and any k ≥ 1

lim
n→∞

Pr

{
max
1≤i≤k

|z(i)
n − z(i)

n (m)| > δ

}
= 0.

To establish this limit, we start by fixing δ > 0 and k ≥ 1, and we choose
ε > 0 arbitrarily small. Since m = o(

√
n), it follows from asymptotics

established for quasi-binomial distribution (QBD I) (see [10, 29, 30]) that we
can choose some bound f(n,m) = o(n) such that for n and m large enough

Pr{Cn(m)} ≥ 1− ε

3
(4.12)

where Cn(m) = {tn(m) < f(n,m)}. It also follows from (4.11) that we can
fix some 0 < a(ε) < b(ε) < 1 and nε > 0 such that for all n > nε

Pr{Dn(a(ε), b(ε), k)} > 1− ε

3
(4.13)

where
Dn(a(ε), b(ε), k) = {a(ε) < z(i)

n ≤ b(ε) : i = 1, 2, ..., k}.
Lastly, for n > 0 and 1 ≤ i ≤ k, let vn(i) denote the vertex with smallest

label in the component K(i)
n of Gn. We define the event

En(m, k) = {vn(i) ∈ K(i)
n (m) : i = 1, 2, ..., k}

and we note that event En(m, k) implies K(i)
n (m) ⊆ K(i)

n for i = 1, 2, ..., k.
We claim that for all sufficiently large n

Cn(m) ∩ Dn(a(ε), b(ε), k) ∩ En(m, k) ⊆ {max
1≤i≤k

|z(i)
n − z(i)

n (m)| ≤ δ}. (4.14)

To see this, observe that the event Dn(a(ε), b(ε), k) implies, by induction on
i, that for 1 ≤ i ≤ k,

n− k(1)
n − ...− k(i)

n ≥ (1− b(ε))in.

Also, the event Cn(m)∩ En(m, k) implies tn(m) < f(n,m) and k
(i)
n (m) ≤ k

(i)
n

for 1 ≤ i ≤ t. It follows that the event Cn(m)∩En(m, k) implies, for 1 ≤ i ≤ k,

n− k(1)
n − ...− k(i)

n − f(n,m) ≤ νn(m)− k(1)
n (m)− ...− k(i)

n (m)

17



≤ n− k(1)
n − ...− k(i)

n .

The last inequality holds since
∑k

i=1(k
(i)
n − k

(i)
n (m)) ≤ n− νn(m). It follows

that the event Cn(m) ∩ Dn(a(ε), b(ε), k) ∩ En(m, k) implies, for 1 ≤ i ≤ k,

|z(i)
n − z(i)

n (m)| =
∣∣∣∣∣

k
(i)
n

n− k
(1)
n − ...− k

(i−1)
n

− k
(i)
n (m)

νn(m)− k
(1)
n (m)− ...− k

(i−1)
n (m)

∣∣∣∣∣

≤
∣∣∣∣∣

k
(i)
n − k

(i)
n (m)

n− k
(1)
n − ...− k

(i−1)
n

∣∣∣∣∣

+
k

(i)
n (m)

n− k
(1)
n − ...− k

(i−1)
n

∣∣∣∣∣1−
n− k

(1)
n − ...− k

(i−1)
n

νn(m)− k
(1)
n (m)− ...− k

(i−1)
n (m)

∣∣∣∣∣

≤ tn(m)

(1− b(ε))i−1n
+z(i)

n

∣∣∣∣∣1−
n− k

(1)
n − ...− k

(i−1)
n

n− k
(1)
n − ...− k

(i−1)
n − f(n,m)

∣∣∣∣∣ ≤ C
f(n,m)

(1− b(ε))kn

where C > 0 is a constant which does not depend on n. Since f(n,m) = o(n),
(4.14) holds for all sufficiently large n. Therefore, it suffices to show that for
all large n, we have

Pr{Cn(m) ∩ Dn(a(ε), b(ε), k) ∩ En(m, k)} > 1− ε.

To obtain this bound, we begin by noting that if tn(m) < f(n,m) and if

k
(i)
n = ki for 1 ≤ i ≤ k such that a(ε) < z

(i)
n < b(ε) for 1 ≤ i ≤ k, then

Pr
{

vn(i) ∈ K(i)
n (m) for 1 ≤ i ≤ k

∣∣∣tn(m) < f(n,m), k(i)
n = ki, 1 ≤ i ≤ k

}

=
k∏

i=1

Pr
{

vn(i) ∈ K(i)
n (m)

∣∣∣tn(m) < f(n,m), k(i)
n = ki, 1 ≤ i ≤ k

}

≥
k∏

i=1

ki − f(n,m)

ki

≥
(

1− f(n,m)

a(ε)(1− b(ε))kn

)k

.

The last inequality follows since the event Dn(a(ε), b(ε), k) implies ki ≥
a(ε)(1 − b(ε))i−1n > a(ε)(1 − b(ε))kn. So it follows that for all sufficiently
large n, we have

Pr {En(m, k)|Cn(m) ∩ Dn(a(ε), b(ε), k)} > 1− ε

3
.
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Combining this inequality with (4.12) and (4.13), we obtain

Pr(Cn(m) ∩ Dn(a(ε), b(ε), k) ∩ En(m, k)) > 1− ε.

It follows from this inequality and (4.14) that

lim sup
n→∞

Pr{max
1≤i≤k

|z(i)
n − z(i)

n (m)| > δ} < ε.

Since ε > 0 was arbitrary, the result follows.

Theorem 3. The joint distribution of the order statistics of the normalised
component sizes of Gm

n converges to the Poisson-Dirichlet(1) distribution as
n →∞ when

√
n = o(m).

Again from the convergence principle given in Section 3 it follows that in
order to prove the above theorem it is enough to show:

Lemma 3. Suppose that
√

n = o(m), then for any k > 0 and 0 < ai < bi < 1,
where i = 1, 2, ..., k, we have

lim
n→∞

Pr{ai < z(i)
n (m) ≤ bi : i = 1, 2, ..., t} =

k∏
i=1

(bi − ai).

Proof. The proof is by induction on k > 0. First, suppose that k = 1, and
fix ε > 0, arbitrarily small, and 0 < a < b < 1. Also, let A1(n,m) = {a <
k
(1)
n (m)
νn(m)

≤ b}. Since Ln/
√

n converges in distribution as n →∞ (see [33], [9]),

there exists 0 < α(ε) < β(ε) < ∞, such that for all sufficiently large n, we
have

Pr

{
α(ε) ≤ Ln√

n
≤ β(ε)

}
> 1− ε

2
.

In addition, since
√

n = o(m), we know from the asymptotics for the quasi-
binomial distribution ([10, 29]) that there is some bound M(n,m) = o(n),
and some nε > 0 such that

Pr{Bn(m, ε)} ≥ 1− ε (4.15)

for all n ≥ nε, where

Bn(m, ε) =

{
α(ε) ≤ Ln√

n
≤ β(ε), νn(m) ≤ M(n,m)

}
.
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Now suppose that α(ε)
√

n ≤ ` ≤ β(ε)
√

n and ` ≤ ν ≤ M(n,m) and recall
(see (4.4)) that

Pr
{
A1(n,m)

∣∣∣ νn(m) = ν, Ln = `
}

= Pr
{

a <
k

(1)
ν

ν
≤ b

∣∣∣ Lν = `
}

. (4.16)

Furthermore, it follows from Theorem 4 in [21] that there is some uniform
bound δn ≡ δ(a, b, ε, n,M(n,m)) such that δn → 0 as n, m → ∞ and such
that for any α(ε)

√
n ≤ ` ≤ β(ε)

√
n, ` ≤ ν ≤ M(n,m), and 0 < a < x ≤ b <

1, we have

Pr
{
k(1)

ν = xν
∣∣ Lν = `

}
=

1

ν
(1 + ε(x, `, ν)) (4.17)

where |ε(x, `, ν)| ≤ δn (and in the case ν = `, ε(x, `, `)). It follows from
(4.16) and (4.17) that

Pr
{
A1(n,m)

∣∣∣Bn(m, ε)
}

= b− a + γ(a, b, ε, n,M(n,m))

where |γ(a, b, ε, n,M(n,m))| ≤ δn. Finally, since

0 ≤ Pr {A1(n,m)} − Pr {A1(n,m),Bn(m, ε)} ≤ Pr{Bc
n(m, ε)},

we obtain

(b− a)− ε ≤ lim inf
n→∞

Pr {A1(n, m)} ≤ lim sup
n→∞

Pr {A1(n,m)} ≤ (b− a) + ε.

The result follows for k = 1, since ε > 0 was arbitrary.
For simplicity, we show how the inductive step works by showing how

to obtain the result for k = 2 given that the claim holds when k = 1.
(The argument remains essentially the same for any value of k but it is
messier to write down). Fix ε > 0, arbitrarily small, and, for simplicity, let

Ai ≡ Ai(n,m) = {ai < z
(i)
n (m) ≤ bi} for i = 1, 2. Then it follows from (4.15)

that for all n > nε

|Pr{A1 ∩ A2} − Pr{A1 ∩ A2 ∩ Bn(m, ε)}| < ε. (4.18)

Next, from the first part of the proof and (4.15) we obtain

b1−a1−ε ≤ lim inf
n→∞

Pr(A1∩Bn(m, ε)) ≤ lim sup
n→∞

Pr(A1∩Bn(m, ε)) ≤ b1−a1.

(4.19)
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So, since

Pr{A1 ∩A2 ∩Bn(m, ε)} = Pr{A2|A1 ∩Bn(m, ε)}Pr{A1 ∩Bn(m, ε)}, (4.20)

it is enough to consider

Pr

{
A2

∣∣∣∣A1 ∩ Bn(m, ε)

}
= Pr

{
A2 ∩ Cn(m)

∣∣∣∣A1 ∩ Bn(m, ε)

}

+Pr

{
A2 ∩ Cc

n(m)

∣∣∣∣A1 ∩ Bn(m, ε)

}
, (4.21)

where

Cn(m) ≡
{

`(1)
n (m) ≤

(
z(1)

n (m) +
(1− b1)

2

)
Ln

}

and `
(1)
n (m) equals the number of cyclic vertices in the component K(1)

n (m)
in the trimmed mapping represented by Gm

n .
Next we need to show that

lim sup
n→∞

Pr {Cc
n(m)|A1 ∩ Bn(m, ε)} = 0. (4.22)

Fix α(ε)
√

n ≤ ` ≤ β(ε)
√

n, ` ≤ ν ≤ M(n,m), and k + 1 = xν, where
a1 < x ≤ b1, and note that these inequalities also imply that

√
ν = o(`) since

M(n, m) = o(n). It follows from the discussion preceeding (4.4) and from
(4.17) that

Pr
{

k(1)
n (m) = xν

∣∣∣ νn(m) = ν, Ln = `
}

=
1

ν
(1 + ε(x, `, ν)) (4.23)

where |ε(x, `, ν)| ≤ δn. So we have

Pr

{
`(1)
n (m) ≥ x` +

(1− b1)`

2

∣∣∣ k(1)
n (m) = k + 1 = xν, νn(m) = ν, Ln = `

}

=
Pr

{
`
(1)
n (m) ≥ x` + (1−b1)`

2
, k

(1)
n (m) = xν

∣∣∣ νn(m) = ν, Ln = `
}

Pr
{

k
(1)
n (m) = xν

∣∣∣ νn(m) = ν, Ln = `
}

= ν(1 + ε̃)Pr

{
`(1)
n (m) ≥ x` +

(1− b1)`

2
, k(1)

n (m) = xν
∣∣∣ νn(m) = ν, Ln = `

}

(4.24)
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where |ε̃| ≡ |ε̃(x, `, ν)| ≤ |ε(x, `, ν)| ≤ δn. In the case where ν = `, we

have k
(1)
n (m) = `

(1)
n (m) and the right-hand side of (4.24) equals 0. In the

case ` < ν ≤ M(n,m), the conditional distribution of Gm
n given Ln = ` and

νn(m) = ν corresponds to the conditional distribution of Gν given Lν = `,
so it follows from Corollary 1 in [21] that

Pr
{

`(1)
n (m) = j, k(1)

n (m) = xν
∣∣∣ νn(m) = ν, Ln = `

}

= Pr
{

`(1)
ν = j, k(1)

ν = xν
∣∣∣Lν = `

}

=

(
ν − `

xν − j

)
`− j

`ν
xxν−j(1− x)ν−`−xν+j−1

=
(1− j/`)

ν(1− x)

(
ν − `

xν − j

)
xxν−j(1− x)ν−`−xν+j, (4.25)

where `
(1)
ν equals the number of cyclic vertices in the component K(1)

ν . Com-
bining (4.24) and (4.25), we obtain

Pr

{
`(1)
n (m) ≥ x` +

(1− b1)`

2

∣∣∣ k(1)
n (m) = xν, νn(m) = ν, Ln = `

}

= (1 + ε̃)
∑

j≥x`+
(1−b1)`

2

(1− j/`)

(1− x)

(
ν − `

xν − j

)
xxν−j(1− x)ν−`−xν+j

≤ (1 + ε̃)
∑

j≥x`+
(1−b1)`

2

(
ν − `

xν − j

)
xxν−j(1− x)ν−`−xν+j

= (1 + ε̃)Pr

{
X(x, `, ν) ≥ (ν − `)(1− x) +

(1− b1)`

2

}

where X(x, `, ν) ∼ Bin(ν−`, 1−x). Now it follows from Markov’s inequality
that

Pr

{
X(x, `, ν) ≥ (ν − `)(1− x) +

(1− b1)`

2

}

= Pr

{
Y (x, `, ν) ≥ (1− b1)`

2
√

x(1− x)(ν − `)

}
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≤ E(exp(Y (x, `, ν))) exp

(
−(1− b1)`

2
√

x(1− x)(ν − `)

)

≤ E(exp(Y (x, `, ν))) exp

(
−(1− b1)α(ε)

√
n

2
√

x(1− x)M(n,m)

)

where Y (x, `, ν) = (X(x, `, ν)− (ν − `)(1− x))/
√

x(1− x)(ν − `).
We claim that there exists a positive constant C(a1, b1) such that for

a1 < x ≤ b1, α(ε)
√

n ≤ ` ≤ β(ε)
√

n, ` < ν ≤ M(n,m), and all n ≥ 1, we
have

E(exp(Y (x, `, ν))) < C(a1, b1). (4.26)

To see this, for m ≥ 1 and a1 < x ≤ b1, let X̃(m,x) denote a Bin(m, 1− x)
random variable and let Ỹ (m,x) = (X̃(m,x)−m(1−x))/

√
mx(1− x). Then

we have

E(exp(Ỹ (m,x)) =

(
x + (1− x) exp

(
1√

mx(1− x)

))m

exp

(
−

√
m(1− x)√

x

)
.

Routine calculations show that

E(exp(Ỹ (m,x)) = exp

(
1

2
+

g(x,m)√
m

)

for all a1 < x ≤ b1 and m ≥ 1, where |g(x,m)| ≤ C̃(a1, b1) and C̃(a1, b1) is a
constant that depends only on a1 and b1. This establishes (4.26).

Substituting inequality (4.26) into the inequalities above, we obtain for
a1 < x ≤ b1, α(ε)

√
n ≤ ` ≤ β(ε)

√
n, ` ≤ ν ≤ M(n,m) and all n ≥ 1

Pr

{
`(1)
n (m) ≥ x` +

(1− b1)`

2

∣∣∣ k(1)
n (m) = xν, νn(m) = ν, Ln = `

}

≤ C(a1, b1) exp

(
−(1− b1)α(ε)

√
n

2
√

x(1− x)M(n, m)

)

and (4.22) follows.

Going back to equality (4.20), we see that it is enough to consider

Pr
{A2 ∩ Cn(m)|A1 ∩ Bn(m, ε)

}
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= Pr
{A2

∣∣ Cn(m) ∩ A1 ∩ Bn(m, ε)
}
Pr

{Cn(m)
∣∣A1 ∩ Bn(m, ε)

}
. (4.27)

Now, by (4.22), we have

lim
n→∞

Pr
{Cn(m)

∣∣A1 ∩ Bn(m, ε)
}

= 1 (4.28)

so it is enough to consider

lim
n→∞

Pr
{A2

∣∣ Cn(m) ∩ A1 ∩ Bn(m, ε)
}
. (4.29)

Suppose that α(ε)
√

n ≤ ` ≤ β(ε)
√

n, ` ≤ ν ≤ M(n, m), a1ν < k + 1 =

xν ≤ b1ν, and j ≤ x` + (1−b1)`
2

. Using counting arguments from Section

2, it is straightforward to check that the conditional distribution of k
(2)
n (m)

given `
(1)
n (m) = j, k

(1)
n (m) = xν, νn(m) = ν, and Ln = `, is the same as the

conditional distribution of k
(1)
ν−xν , the size of the component in Gν−xν which

contains the vertex labelled 1, given Lν−xν = `− j, and, in particular,

Pr
{

a2 < z(2)
n (m) ≤ b2

∣∣∣ `(1)
n (m) = j, k(1)

n (m) = xν, νn(m) = ν, Ln = `
}

= Pr
{
a2 < z

(1)
ν−xν ≤ b2

∣∣ Lν−xν = `− j
}
. (4.30)

In this case, we also have

α(ε)(1− b1)

2

√
n ≤ (1− b1)

2
` ≤ `− j (4.31)

and
ν − xν ≤ (1− a1)ν ≤ (1− a1)M(n,m) = o(n), (4.32)

and hence
√

ν − xν = o(` − j). It follows from (4.31) and (4.32) and the
asymptotic bounds obtained in Theorem 4 of [21] that there is a uniform
bound δ̂n ≡ δ̂(a1, b1, a2, b2, ε, n, M(n,m)) such that δ̂n → 0 as n,m →∞ and
such that for α(ε)

√
n ≤ ` ≤ β(ε)

√
n, ` ≤ ν ≤ M(n,m), a1ν < k + 1 =

xν ≤ b1ν, j ≤ x` + (1−b1)`
2

, and 0 < a2 < u ≤ b2 < 1, we have

Pr

{
k

(1)
ν−xν = u(ν − xν)

∣∣∣∣Lν−xν = `− j

}
=

1

ν
(1 + ε̂(u, x, ν, `, j)) (4.33)

where |ε̂(u, x, ν, `, j)| ≤ δ̂n. It follows from (4.30) and (4.33) that

Pr
{A2

∣∣ Cn(m) ∩ A1 ∩ Bn(m, ε)
}

= b2 − a2 + γ̂(a1, b1, a2, b2, ε, n,M(n,m))
(4.34)
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where |γ̂(a1, b1, a2, b2, ε, n, M(n,m))| ≤ δ̂n. It follows from (4.18)-(4.21),
(4.27), (4.28), and (4.34) that for all sufficiently large n

∣∣∣Pr
{A1 ∩ A2

}− (b1 − a1)(b2 − a2)
∣∣∣ < 3ε.

Since ε > 0 was arbitrary, the result follows in the case k = 2.
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[6] Arratia, R. and Tavaré, S., Limit theorems for combinatorial struc-
tures via discrete process approximations, Random Structures and Al-
gorithms 3 (1992), 321–345.

[7] Arratia, R., Stark, D. and Tavaré, S., Total variation asymptotics for
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