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Abstract

Choose random points X1, X2, X3, . . . independently from a uniform distribution
in a unit ball in <m. Call Xn a dominator iff distance(Xn, Xi) ≤ 1 for all i < n,
i.e. the first n points are all contained in the unit ball that is centered at the
n’th point Xn. We prove that, with probability one, only finitely many of the
points are dominators.

For the special case m = 2, we consider the unit disk graph Gn determined by
n random points X1, X2, . . . , Xn in the unit disk. With asymptotic probability
one, Gn has a connected dominating set consisting of just two points.

keywords and phrases: stochastic geometry, dominating set, geometric graph,
unit ball graph



1 Introduction

Every finite set V of points in <m, determines a unit ball graph G(V ) = (V,E)
as follows. The vertex set is V , and an undirected edge e ∈ E connects vertices
u, v ∈ V iff the distance dm(u, v) is less than one. (Throughout this paper
dm(u, v) denotes the Euclidean distance between u, v ∈ <m.) If u and v are
connected by and edge, we say u and v are adjacent vertices in the graph G(V ).
The case m = 2 is particularly prominent in applications, and in this case G(V )
is called a unit disk graph. Unit disk graphs have been used by many authors
as simplified mathematical models for the interconnections between hosts in a
wireless network, and random unit disk graphs have been used as stochastic
models for these networks. For other examples of applications, see Marchette
[7]. A recent survey of random unit ball graphs is Penrose [8].

A dominating set in any graph G = (V,E) is a subset C ⊆ V such that
every vertex v ∈ V either is in the set C, or is adjacent to a vertex in C [5].We
say C is a connected dominating set if C is a dominating set and the subgraph
induced by C is connected. The following question arose naturally in the context
of routing algorithms for certain wireless networks [9],[4],[3]. Suppose V is a set
of n random points in the unit disk in <2, and let Gn = G(V ) denote the
corresponding unit disk graph. How large, typically, is the smallest connected
dominating set for Gn? In this paper we show that with asymptotic probability
one, the size of the smallest connected dominating set in Gn is two.

The paper is organized as follows. In Section 2, we prove a general result
concerning unit ball graphs formed from random points X1, X2, X3, ... chosen
independently and uniformly in the unit ball in <m. It follows from this general
result that ‘one point does not suffice’: with asymptotic probability one, Gn

does not have a one-point dominating set. In Section 3 we prove a geometric
lemma which is required for the proof, in Section 4, of the existence, with high
probability, of two-point connected dominating sets in Gn.

2 One Vertex Dominating Sets

Suppose that X1, X2, X3, . . . is a sequence of random points chosen indepen-
dently from a uniform distribution in a unit ball in <m. Call Xn a dominator
iff dm(Xn, Xi) ≤ 1 for all i < n, i.e. all n points are contained in the unit ball
that is centered at Xn. Then we prove:

Theorem 1 With probability one, only finitely many of the points Xn are dom-
inators.

Proof. Let An be the event that Xn is a dominator. By the Borel-Cantelli

lemma, it suffices to prove that
∞∑

n=1
Pr(An) < ∞. For positive real numbers r

and positive integers m ≥ 2, let Vm(r) be the volume of the a ball of radius r
in <m, i.e

Vm(r) = rmVm(1) =
π

m
2 rm

Γ(m
2 + 1)

(1)
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Let L(r) denote the volume of the intersection of two unit balls in <m whose
centers are at distance r from each other. If the the distance from the point
Xn to the origin is r, then the conditional probability that the i’th point Xi

is within distance one of Xn is L(r)
Vm(1) . The distance between the origin and the

random point Xn is a random variable with density f(r) = V
′

m(r)
Vm(1) = mrm−1.

Hence

Pr(Xn is a dominator) =

1∫
0

f(r)
( L(r)

Vm(1)

)n−1

dr.

We split the integral into two. Let ξ = 4(log n)Vm(1)
(n−1)Vm−1(1)

. Then

Pr(Xn is a dominator) = I1 + I2, (2)

where

I1 = m

ξ∫
0

rm−1
( L(r)

Vm(1)

)n−1

dr (3)

and

I2 = m

1∫
ξ

rm−1
( L(r)

Vm(1)

)n−1

dr. (4)

For the first piece, we use the trivial estimate L(r)
Vm(1) ≤ 1: for m ≥ 2,

I1 ≤ m

ξ∫
0

rm−1dr = ξm = O(
log2 n

n2
). (5)

To estimate I2, we use the following “well-known”formula for L(r):

L(r) = 2

1∫
r/2

Vm−1(
√

1− x2)dx = 2Vm−1(1)

1∫
r/2

(1− x2)
m−1

2 dx (6)

It is intuitively obvious that L(r) is decreasing, and this is easily confirmed
by differentiating the right side of (6) to obtain

L
′
(r) = −Vm−1(1) ·

(
1− r2

4

)m−1
2

≤ 0 (7)

for 0 ≤ r ≤ 1. By differentiating again, we also obtain

L
′′
(r) = Vm−1(1) · (m− 1)r

8

(
1− r2

4

)m−1
2

≥ 0 (8)
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for 0 ≤ r ≤ 1. Since L(r) ≤ L(ξ) for all r ≥ ξ, and since f is a density function,
we have

I2 ≤
(

L(ξ)
Vm(1)

)n−1
1∫

ξ

f(r)dr ≤
(

L(ξ)
Vm(1)

)n−1

(9)

To estimate the right side of (9), we note that it follows from (7) and (8)
that there is some 0 < cξ < ξ such that

L(ξ) = L(0) + L
′
(cξ)ξ = Vm(1)− Vm−1(1) ·

(
1−

c2
ξ

4

)m−1
2

· ξ (10)

Since 0 < cξ < ξ = o(1), we have (1 − c2
ξ

4 )
m−1

2 > 1
2 for all sufficiently large n.

So it follows from (10) that

L(ξ) ≤ Vm(1)− Vm−1(1)ξ
2

(11)

for all sufficiently large n. Putting (11) back into the right side of (9), we get

I2 ≤
(

1− ξVm−1(1)
2Vm(1)

)n−1

= O(
1
n2

). (12)

Combining our estimates (5) and (12) for I1 and I2 respectively, we conclude
that, for some positive constant c, and all sufficiently large n, Pr(An) < c log2 n

n2 .
Hence

∑
n

Pr(An) converges. �

Now let Gm
n ≡ G(X1, X2, ..., Xn) denote the unit ball graph in <m with random

vertex set V = {X1, X2, ..., Xn}. (So,in particular, Gn = G2
n.) Let Bm

n denote
the event that Gm

n has a one-point dominating set.

Corollary 2 For all m ≥ 2 and for all sufficiently large n,

Pr{Bm
n } ≤

cm log2 n

n

where cm > 0 is a positive constant which may depend on the dimension m but
does not depend on n.

Proof. For each n > 0 and for 1 ≤ i ≤ n, let Bn(Xi) denote the event that Xi

is a one-point dominating set of Gm
n . Then we have, for all sufficiently large n,

Pr{Bm
n } = Pr{∪n

i=1Bn(Xi)} ≤
n∑

i=1

Pr{Bn(Xi)} = n Pr{Bn(Xn)} ≤ cm log2 n

n

since X1, X2, ..., Xn are independent and identically distributed. We note that
the last inequality follows from the bound obtained for Pr{An} in the proof of
Theorem 1. �
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3 A Geometric Lemma

In this section and the next, we adopt the following notation. For any r > 0,
and any v ∈ <2, let Dr(v) be the open unit disk centered at v, and let ∂Dr(v)
be the circle of radius r that bounds it. As observed in [6], a unit disk centered
at a point o cannot be completely covered with two unit disks having centers at
points other than o: D1(o) 6⊆ D1(u)

⋃
D1(v) for u 6= o 6= v. The purpose of this

section is to prove Lemma 3, which provides an upper bound for the uncovered
region’s area (when u and v are suitably situated).

Some notation is needed to state Lemma 3. Throughout this section, b ≥ 3
will be an unspecified parameter. (When we actually apply Lemma 3 in Section
4, b will correspond to the number of vertices in a random disk graph.) In
terms of b, we define Lb = bb1/3(log b)2c, δ = δb = 1

3√
b log b

, and θb = π/Lb. Let

o = (0, 0) be the origin in <2. We are essentially1 going to partition Dδb
(o)

into 2Lb sectors as follows. For integers i such that 0 ≤ i < Lb, let Qi be the
sector consisting of those points (x, y) = (r cos θ, r sin θ) whose polar coordinates
satisfy 0 < r ≤ δ and (i − 1

2 )θb ≤ θ ≤ (i + 1
2 )θb. Similarly let Ri consist of

the points with 0 < r ≤ δ and (i − 1
2 )θb ≤ θ − π ≤ (i + 1

2 )θb. Note that the
sectors Qi and Ri are located symmetrically with respect to o. Let q̃i and ũi be
the extreme points whose polar coordinates are respectively (δ, (i − 1

2 )θb) and
(δ, (i + 1

2 )θb + π). Finally, for any points u, w ∈ D1(o), let X(u, w) denote the
area of (D1(u)

⋃
D1(w))c

⋂
D1(o), i.e. the area of the region in D1(o) that is

not covered by D1(u)
⋃

D1(w). Our goal in this section is to prove

Lemma 3 There is a uniform constant C > 0 (independent of the parameter b)
such that, for all i, and for all qi ∈ Qi, ui ∈ Ri, we have X(qi, ui) ≤ X(q̃i, ũi) ≤

C
b log3 b

.

We prove four facts which together imply Lemma 3. In the first fact, we observe
that for any v, w ∈ D1(o) the omitted area X(v, w) increases if we move one (or
both) of the two points v and w away from the origin along a radial line.

Fact 1 Let v1, v2 and w1, w2 be four points in D1(o) such that v1 lies on the
line segment o, v2 and w1 lies on the line segment o, w2. Then X(v2, w2) ≥
X(v1, w1).

Proof. It suffices to show that D1(v2) ∩ D1(o) ⊆ D1(v1) ∩ D1(o) and that
D1(w2) ∩ D1(o) ⊆ D1(w1) ∩ D1(o). Suppose p ∈ D1(v2) ∩ D1(o). Since v1 lies
on the line segment from o to v2, we have d(v1, p) ≤ max(d(o, p), d(v2, p)) ≤ 1.
Hence p ∈ D1(v1) ∩ D1(o). By a similar same argument, D1(w2) ∩ D1(o) ⊆
D1(w1) ∩D1(o).

�
1It is not strictly correct to call this a partition of Dδ(o) since the origin was omitted, the

bounding circle was included, and some pairs of sectors have a non-empty intersection (with
zero area).
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Fact 2 Let a, b be the two points where the circles ∂D1(p), ∂D1(q) intersect.
Then, a, b ⊥ p, q, and the two line segments a, b and p, q intersect at their
midpoints.

Proof. This follows immediately from the fact that d(p, a) = d(p, b) = d(q, a) =
d(q, b) = 1. �

Fact 3 Let o1, o2 be two points on the circle x2 + y2 = δ2
b . Then, X(o1, o2) is

a decreasing function of ∠o1oo2.

Proof. For convenience, we will use polar coordinates. Without loss of general-
ity, let o1 be the point with polar coordinates (ro1 , φo1) = (δb, π). Let o2 be an
arbitrary point on the circle with the polar coordinates (δb, φ2). By symmetry,
we only need to consider the case when o2 is in the first or second quadrant;
we may, without loss of generality, assume that 0 ≤ φ2 ≤ π. We will show that
X(o1, o2) is an increasing function of φ2, then the result follows from the fact
that ∠o1oo2 = π − φ2.

Let a1, b1 be the two points where the circles ∂D1(o1) and ∂D1(o) intersect,
with a1 in the second quadrant and b1 in the third quadrant.

Let o∗ be a point on the circle x2 + y2 = δ2
b so that ∂D1(o∗) meets with

both ∂D1(o) and ∂D1(o1) at a1. Let b∗, d∗ be the other intersection points of
∂D1(o∗) with ∂D1(o) and ∂D1(o1), respectively. For convenience, let’s denote
φo∗ by φ∗. Figure 1 illustrates the position of ∂D1(o1), ∂D(o), and ∂D1(o∗) and
their intersections.

Figure 1: The position of the circle ∂D1(o∗)

As in the proof of Fact 2,we have a1, d∗ ⊥ o1, o∗, a1, b∗ ⊥ o, o∗. Notice also
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that o is on the line segment a1, d∗. So,

∠b∗a1o = ∠oo∗o1 = ∠o∗o1o =
φ∗

2
. (13)

It follows that
0 < φ∗/2 < π/2, and, sin

φ∗

2
=

δb

2
(14)

Now, for the point o2 with polar coordinates (δb, φ2), let a2, b2 denote the two
points where ∂D1(o2) and ∂D1(o) intersect, and let c2, d2 denote the two points
where ∂D1(o2) and ∂D1(o1) intersect. There are two cases to consider: φ2 ≤ φ∗,
and φ2 ≥ φ∗

Case 1. φ2 ≤ φ∗.

φ2

c2

o2

d 2

b2
b1

o1

a1
2a

o*

o
y

Figure 2: The case when φ2 ≤ φ∗

Notice that a1, b1 partitions the circle ∂D1(o) into two arcs: the right section
and the left section. When, φ2 ≤ φ∗, as illustrated in Figure 2, a2, b2 are both
on the right section of the circle ∂D1(o) between a1, b1. Similarly, c2, d2 are
both on the right section of the circle ∂D1(o1) between a1, b1. Clearly,

X(o1, o2) = B1 − (B2 −B3) = B1 −B2 + B3,

where

• B1 = area(D1(o1)c ∩D1(o))
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• B2 = area(D1(o) ∩D1(o2))

• B3 = area(D1(o1) ∩D1(o2)), the shaded area in Figure 2

Notice that B3 is the only area that depends on φ2. We shall now give an
expression for B3. Let’s denote ∠c2o1o2 = y. Since ∠o2o1o = φ2

2 , we have

0 < y <
π

2
, and, cos y = δb cos

φ2

2
(15)

By symmetry, one can see that the shaded region is partitioned equally by
the line c2, d2. So,

B3 = 2(
2y

2π
π − 1

2
(2 sin y)(cos y)) = 2y − sin 2y.

Here, the first term is the area of the sector D1(o1) that extends from c2 to d2,
and the second term is the area of the triangle(c2, o1, d2).From the above two
equations, we have

dX(o1, o2)
dφ2

=
dB3

dφ2
=

dB3

dy
· dy

dφ2
= (1− cos 2y) ·

δb sin φ2
2

2 sin y
> 0.

Here the last inequality follows from the fact that 0 < φ2
2 , y < π

2 . Thus X(o1, o2)
is an increasing function in φ2.

Case 2. φ2 > φ∗.
One can see from Figure 3 that

X(o1, o2) = B1 − (B2 −B3) = B1 −B2 + B3

Where B1, B2 are defined the same as those in the case 1, but

B3 = area(D1(o1) ∩D1(o2) ∩D1(o)), the shaded area in Figure 3

Again, B3 is the only area that depends on φ2. We will now give an expression for
B3. We show first that ∠c2oa1 = ∠a2oc2 by showing that φc2 −φa1 = φa2 −φc2 .
Then, it follows that the region with area B3 is split in half by the line segment
c2, d2. From Figure 1, one can see that

φa1 = φ∗ + (
π

2
− ∠b∗a1o) = φ∗ + (

π

2
− φ∗

2
) =

π

2
+

φ∗

2
(16)

To find φa2 , observe that, as in the proof of Fact 2, we have a2, b2 ⊥ o, o2.
So, sin∠b2a2o = δb

2 . Comparing with (14), we see that sin∠b2a2o = sin φ∗

2 .
This implies that ∠b2a2o = φ∗

2 . Thus,

φa2 = φ2 + (
π

2
− ∠b2a2o) = φ2 + (

π

2
− φ∗

2
) (17)

Lastly, using the fact that c2, o ⊥ o1, o2, we have

φc2 = π − (
π

2
− ∠o2o1o) = π − (

π

2
− φ2

2
) =

π

2
+

φ2

2
(18)
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o*

o

2a

d2

1ac2

b1

b2

o2

o1

Figure 3: The case when φ2 > φ∗

It follows that φc2 − φa1 = φa2 − φc2 = φ2
2 − φ∗

2 . Using that the circle ∂D1(o1)
in the polar system is

r =
√

1− δ2
b sin2 φ− δb cos φ

and that
φd2 = −(π − φc2) = −(

π

2
− φ2

2
) (19)

we get

B3 = 2(
∫ π

2 + φ∗
2

−( π
2−

φ2
2 )

∫√1−δ2
b sin2 φ−δb cos φ

0
r drdφ +

φ2
2 −φ∗

2
2π · π)

=
∫ π

2 + φ∗
2

−( π
2−

φ2
2 )

1− δ2
b sin2 φ + δ2

b cos2 φ− 2δb cos φ
√

1− δ2
b sin2 φdφ + φ2−φ∗

2
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Thus,

dX(o1,o2)
dφ2

= dB3
dφ2

= − 1
2 [1− δ2

b sin2(−π
2 + φ2

2 ) + δ2
b cos2(−π

2 + φ2
2 )

−2δb cos(−π
2 + φ2

2 )
√

1− δ2
b sin2(−π

2 + φ2
2 )] + 1

2

= 1
2 [δ2

b cos2 φ2
2 − δ2

b sin2 φ2
2 + 2δb sin φ2

2

√
1− δ2

b cos2 φ2
2 ]

= 1
2 [−(δb sin φ2

2 −
√

1− δ2
b cos2 φ2

2 )2 + 1]

≥ 0

The last inequality follows because 0 ≤ δb sin φ2
2 ≤ 1, 0 ≤

√
1− δ2

b cos2 φ2
2 ≤ 1,

and thus (δb sin φ2
2 −

√
1− δ2

b cos2 φ2
2 )2 < 1.

�

Fact 4 Uniformly for all i, we have X(q̃i, ũi) = O( 1
b log3 b

).

Proof. Without loss of generality, let i = 0 and v = (0, 0). To simplify notation,
define xb = δb cos(− 1

2θb), yb = δb sin(− 1
2θb). Let (ξ, η) be the point in the first

quadrant where the circles x2 +y2 = 1 and (x−xb)2 +(y−yb)2 = 1 meet. Then

X(q̃0, ũ0) ≤ 4

ξ∫
0

√
1− x2 − (yb +

√
1− (x− xb)2)dx

= −4ybξ + 4

ξ∫
0

−2xxb + x2
b√

1− x2 +
√

1− (x− xb)2
dx

Hence we have
X(q̃0, ũ0) = O(ξyb) + O(xbξ

2) + O(x2
bξ). (20)

Note that x2
b +y2

b = δ2
b = 1

b2/3 log2 b
, that ξ2+η2 = 1, that (ξ−xb)2+(η−yb)2 = 1,

that xb = δb(1 + O(θ2
b )), and that yb = −δbθb

2 (1 + O(θ2
b )). Combining these

equations, we get ξ = O(δb). Putting this estimate back into (20), we get

X(q̃0, ũ0) = O(
1

b log3 b
). (21)

�

4 Two Point Dominating Sets

Let n be an integer such that n ≥ 3, and let Ln = bn1/3(log n)2c and δn =
1

n1/3 log n
. Select n points X1, X2, ..., Xn independently and uniform randomly

from the unit disk D1(o) and form the unit disk graph Gn(≡ G2
n) by putting an

9



edge between two of the n points iff the distance between them is less than 1.
Our goal in this section is to prove that, with high probability, Gn contains a
dominating set consisting of two vertices of Gn that are adjacent to each other.

For 0 ≤ i < Ln, let Qi, Ri denote the sectors of Dδn
(o) as defined in the

previous section and let N(Qi), N(Ri) respectively be the number of vertices

of Gn that lie in Qi and Ri. Let τn =
Ln−1∑
i=0

Ii where, in this section only, the

indicator variable Ii = 1 if and only if N(Ri) = N(Qi) = 1 (and otherwise
Ii = 0.)

Lemma 4 Pr
(
τn < n1/3

16 log6 n

)
= O( log6 n

n1/3 )

Proof. Let

p =
Area(Qi)

Area(D1(0))
= πδ2

n/π2Ln =
1

2n log4 n

(
1 + O

(
1

n1/3 log2 n

))
. (22)

Then
E(Ii) = n(n− 1)p2(1− 2p)n−2, (23)

and

E(τn) = Lnn(n− 1)p2(1− 2p)n−2 =
n1/3

4(log n)6
(
1 + O(

1
n1/3(log n)2

). (24)

Similary, for i 6= j

E(IiIj) = n(n− 1)(n− 2)(n− 3)p4(1− 4p)n−4. (25)

Since τn =
∑Ln−1

i=0 Ii, and the Ii’s are identically distributed, we have

V ar(τn) = Ln(Ln − 1)E(I1I2) + LnE(I1)− (E(τ))2.

Combining this identity with the expression for E(Ii) in (23), the expression for
E(IiIj) in (25), and the definitions for Ln, δn and p, we get

V ar(τn) = E(τn)
(

1 + O

(
1

(log n)8

))
. (26)

The lemma now follows by Chebyshev’s inequality. �

Theorem 5 There is a constant c > 0 such that, with probability greater than
1 − c

(log n)3 , the random graph Gn has a connected dominating set that consists
of two vertices in Dδn

(o).

Proof.
Let Tn ⊆

{
0, 1, 2, 3, . . . , Ln − 1

}
be the random subset of indices such that

i ∈ Tn iff N(Qi) = N(Ri) = 1. If Tn 6= ∅, define Y = min Tn to be the smallest
of the indices in Tn; otherwise, if Tn = ∅, set Y = −1. Define the indicator

10



random variable Xn as follows: If τn = |Tn| = 0 then Xn = 0; otherwise, if
Tn =

{
i1, i2, . . . iτn

}
and i1 < i2 < . . . < iτn , then Xn = 1 iff Qi1 ∪Ri1 contains

a two-point connected dominating set for Gn.
Let V =

{
v1, v2, . . . , bn

}
be the set of vertices of Gn, selected independently

and uniform randomly from D1(o). Define Z = V
⋂

Dδn
(o) to be set of vertices

that lie near the origin o, and let Z = |Z| be the number of these points. Then

Pr(Xn = 0) ≤ Pr
(

Xn = 0, τn 6= 0, Z ≤ 2n1/3

(log n)2

)
+ Pr(τn = 0)

+Pr
(

Z >
2n1/3

(log n)2

)
. (27)

Note that Z has a binomial distribution: Z
d=Bin(n, δ2

n). If β = 2n1/3

(log n)2 , then by
Chernoff’s inequality,

Pr(Z ≥ β) ≤ exp(−n1/3/4(log n)2). (28)

By Lemma 4, Pr(τn = 0) = O( log6 n
n1/3 ). Therefore

Pr(Xn = 0) ≤ Pr(Xn = 0, τn 6= 0, Z ≤ β) + O(
log6 n

n1/3
). (29)

Now we decompose the first term on the right side of (29) according to the
value of Y .

Pr(Xn = 0, τn 6= 0, Z ≤ β) =
Ln−1∑
k=0

Pr(Xn = 0|Y = k, Z ≤ β)Pr(Y = k, Z ≤ β).

(30)
(The redundant condition τn 6= 0 need not be included on the right side of (30)
because it a consequence of the condition Y ≥ 0.) We have

Pr(Xn = 0|Y = k, Z ≤ β) =
∑
S

Pr(Xn = 0|Z = S, Y = k)Pr(Z = S
∣∣Y = k, Z ≤ β)

(31)
where the sum is over subsets S ⊆ [n] such that 2 ≤ |S| ≤ β.

Pr(Xn = 0|Z = S, Y = k) = 1− Pr(Xn = 1|Z = S, Y = k), (32)

so it is enough to find a lower bound for Pr(Xn = 1|Z = S, Y = k).
To simplify notation, let γ = X(q̃0, ũ0), and recall that γ = O( 1

n log3 n
).

In this section of the paper, define |Dδn
(o)| = π

n2/3(log n)2
to be the area of

the disk Dδn(o), and |D1(o)| = π = area of the unit disk centered at o. An
important observation is that, once we have specified n− |S| = the number of
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points that fall outside Dδn(o), the locations in Dδn(o)c of these n− |S| points
are independent of the locations of the |S| points in Dδn(o). Hence

Pr(Xn = 1|Z = S, Y = k) ≥

(
1− |Dδn (o)|

|D1(o)| −
γ

|D1(o)|

)n−|S|

(
1− |Dδn (o)|

|D1(o)|

)n−|S| (33)

≥
(

1− C

n(log n)3

)n−|S|

≥ 1− C
′

(log n)3
(34)

for some constants C and C ′ which are independent of Z, Y . Hence

Pr(Xn = 0) ≤ c

(log n)3
(35)

for some positive constant c that does not depend on n.
�

We note that the result obtained in Theorem 5 depends on a delicate trade-
off: We must choose δn small enough and Ln large enough to guarantee that
for any q ∈ Qi and any u ∈ Ri, where (Qi, Ri) is a pair of opposite sectors of
Dδn

(o), there is high probability that none of the points X1, X2, ..., Xn lie in
the ‘uncovered’ region (D1(q)

⋃
D1(u))c

⋂
D1(o). On the other hand, δn must

not be so small or Ln so large that we cannot find (with high probability) some
pair of opposite sectors (Qi, Ri) such that there is some Xj ∈ Qi and Xk ∈ Ri.
The necessity for this ‘trade-off’ stems from the fact that a unit disk centered
at a point o cannot be completely covered with two unit disks having centers at
points other than o, i.e. D1(o) 6⊆ D1(u)

⋃
D1(v) for u 6= o 6= v.

5 Final Comments

The original question posed in the introduction concerned the typical size of a
minimum connected dominating set in the random disk graph G2

n. Theorem 5
establishes that, with asymptotic probability one, G2

n has a two-point connected
dominating set. By Theorem 1, this two-point dominating set is also a minimum
connected dominating set (with asymptotic probability one).

Theorem 5 was difficult because a unit disk, centered at a point o, cannot
be completely covered with two unit disks having centers at points other than
o. In contrast, one can easily find three points u, v, w ∈ D1(o) \ {o} such that
D1(o) ⊆ D1(u)

⋃
D1(v)

⋃
D1(w). Using this fact, the authors show in [4] that

there is some α, with 0 < α < 1, such that for every k ≥ 3 the probability that
there does not exist a k-point connected dominating set in G2

n is less than 3αn.
This exponential probability bound was used to analyze the performance of the
Rule k local algorithm for constructing a connected dominating set in a wireless
network model when k ≥ 3. By comparing the exponential O(αn) probability
bound for k ≥ 3 with the O( 1

log3 n
) bound for k = 2, we gain some insight into

12



the empirical observation that the Rule k algorithm does not perform as well
for k = 2 as it does for k ≥ 3.

Finally, we have not determined the typical size of the minimum connected
dominating set for dimensions m > 2. The case m = 2 was already challenging,
and we did not we did not see how to extend our methods to the general case.
We did prove in [3] that, when m = 3, the probability that there does not exist
a 4-point CDS is exponentially small. Therefore, with with high probability
the smallest CDS in G3

n consists of either 2 or 3 vertices. It is reasonable to
conjecture that an analogous statement holds for all m ≥ 2: with asymptotic
probability 1, Gm

n has an m point CDS.
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