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Abstract

In this paper we introduce a compound random mapping model which can

be viewed as a generalisation of the basic random mapping model considered

by Ross [36] and Jaworski [25]. We investigate a particular example, the

Poisson compound random mapping, and compare results for this model with

results known for the well-studied uniform random mapping model. We

show that although the structure of the components of the random digraph

associated with a Poisson compound mapping differs from the structure of

the components of the random digraph associated with the uniform model,

the limiting distribution of the normalized order statistics for the sizes of

the components is the same as in the uniform case, i.e. the limiting

distribution is the Poisson-Dirichlet (1/2) distribution on the simplex ∇ =

{{xi} :
∑

xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1}.
Keywords: random mappings; Poisson-Dirichlet distribution; component struc-

ture
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1. Introduction and definitions

The study of random mapping models was initiated independently by several authors

(see [6, 14, 15, 23, 30, 38] in the 1950s and the properties of these models have received

much attention in the literature. In particular, these models have been useful as models
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for epidemic processes (see [7, 8, 9, 11, 16, 28, 29, 32, 33, 35]) and have provided the

basis for tractable heuristic algorithms to solve various combinatorial optimization

problems (see [19] and [21] ). In this paper we introduce a compound random mapping

model, TK(Π), which can be viewed as a generalisation of the random mapping model,

TK(π), considered by Ross [36] (see also [2] and [11] ) and by Jaworski [25], and as such

it provides a richer class of models for applications. Before defining this new model,

we review the construction of the basic model TK(π) and some of the known results

for the basic model.

Fix K > 0 and let π = (p1, p2, . . . , pK) be a fixed probability measure on the

set {1, 2, . . . , K}, then TK(π) is the random mapping of {1, 2, . . . , K} into itself with

distribution given by

Pr
{

TK(π) = f
}

=
K∏

i=1

pf(i)

for each f ∈ MK , where MK is the set of all mappings of {1, 2, . . . ,K} into itself.

The random mapping TK(π) can be represented by a directed random graph GK(π) on

vertices labelled 1, 2, . . . , K, such that a directed edge from vertex i to vertex j exists

in GK(π) if and only if TK(π)(i) = j. We note that since each vertex in GK(π) has

out-degree 1, the components of GK(π) consist of directed cycles with directed trees

attached. Alternatively, TK(π) can also be constructed as follows. Let X1, X2, . . . , XK

be i.i.d. random variables such that Pr{Xi = j} = pj for all 1 ≤ i, j ≤ K, then TK(π)

is the random mapping which satisfies

TK(π)(i) = j iff Xi = j

for all 1 ≤ i, j ≤ K. In this construction of TK(π), the variables X1, X2, . . . XK

represent the independent ‘choices’ of the vertices 1, 2, . . . , K in the random digraph

GK(π).

The model which is best understood is the uniform random mapping, TK ≡ TK(π),

where π is the uniform measure on {1, 2, . . . ,K}. Much is known (see for example the

monograph by Kolchin [31]) about the component structure of the random digraph

GK ≡ G(TK) which represents TK . Aldous [1] has shown that the joint distribution

of the normalized order statistics for the component sizes in GK converges to the

Poisson-Dirichlet (1/2) distribution on the simplex ∇ = {{xi} :
∑

xi ≤ 1, xi ≥
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xi+1 ≥ 0 for every i ≥ 1}. Also, if Mk denotes the number of components of size

k in GK then the joint distribution of (M1,M2, . . . , Mb) is close, in the sense of

total variation, to the joint distribution of a sequence of independent Poisson random

variables when b = o(K/ log K) (see Arratia et.al. [3], [4]) and from this result one

obtains a functional central limit theorem for the component sizes (see also [17]).

The asymptotic distributions of variables such as the number of predecessors and the

number of successors of a vertex in GK are also known (see [28, 29]).

There various ways that the basic random mapping model can be generalized (for

an example see Mutafchiev [34] and Jaworski [27]). In this paper we generalize the

basic model by introducing another layer of randomness into the model. In particular,

let W1,W2, . . . be a sequence of i.i.d. non-negative random variables, let N = N(K) ≡∑K
i=1 Wi, and let Π denote the random probability measure on {1, 2, . . . ,K} given by

Π =




1
N (W1,W2, . . . ,WK), if N =

∑K
i=1 Wi 6= 0

( 1
K , 1

K , . . . , 1
K ) otherwise.

The distribution of the compound random mapping TK(Π) on the space MK is spe-

cified by the distribution of TK(Π) conditioned on the random vector (W1,W2, ..,Wk).

In particular, for any f ∈ MK and (w1, w2, .., wK) ∈ (R+)K \ {~0}, we define

Pr
{

TK(Π) = f
∣∣∣ (W1,W2, . . . , WK) = (w1, w2, .., wK)

}
=

K∏
i=1

wf(i)

N
(1.1)

and when N = 0, we define

Pr
{

TK(Π) = f
∣∣∣ N = 0

}
= Pr

{
TK = f

}
=

(
1
K

)K

. (1.2)

It follows from (1.1) and (1.2) that the distribution of the compound random mapping

TK(Π) on the space MK is given by

Pr
{

TK(Π) = f
}

=
∫
(R+)K Pr

{
TK(Π) = f

∣∣∣ (W1,W2, . . . , WK) = (w1, w2, .., wK)
}

dF (w1, .., wk)

for any f ∈ MK , where F is the joint distribution function for (W1,W2, . . . ,WK). The

variables W1,W2, . . . , can be viewed as relative ‘weights’ on the vertices 1, 2, . . . , K.

Observe that in the case where Wi ≡ c ≥ 0, we have TK(Π) ≡ TK .
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The introduction of an extra layer of randomness in the model TK(Π) complicates

the investigation of the structure of GK(Π), the random digraph associated with

TK(Π). In particular, if the weight variables W1,W2, . . . are not degenerate, then

the distribution of TK(Π) is not uniform on the space of mappings MK and we cannot

directly use the combinatorial tools which have been useful in the investigation of

the structure of uniform random digraph GK . Nevertheless, some simple observations

concerning the structure of GK(Π) are possible. For example, let V0(f) denote the

number of vertices with in-degree 0 in the digraph G(f) which represents the mapping

f and suppose that

p̂ ≡ Pr{W1 = 0} > e−1.

Then as K → ∞, we have

E(V0(T (K))) ∼ e−1K

whereas

E(V0(TK(Π))) ≥ p̂K > e−1K.

In other words, in this case the components of GK(Π) are ‘leafier’ than the components

of GK .

More generally, it can be shown that for some other characteristics the uniform

model GK is an “extremal” case for the compound model GK(Π). For example,

consider the probability that GK(Π) is connected. Ross [36] in his paper on the

TK(π) model considered the probability that GK(π) is connected in terms of Schur

convex functions (where π = (p1, p2, . . . , pK) is a fixed probability measure). It is

straightforward to verify ([22], [36]), that this probability is Schur convex function of

the vector (p1, p2, . . . , pK) and therefore it is minimized for pi ≡ 1/K, i.e. for the

uniform model. It follows that

Pr
{

GK(Π) is connected
}

=
∫

(R+)K

Pr
{

GK(Π) is connected
∣∣∣ Wi = wi, i = 1, 2, . . . , K

}
dF (w1, .., wK)

=
∫

(R+)K

Pr
{

GK(π) is connected
}

dF (w1, .., wK)

≥
∫

(R+)K

Pr
{

GK is connected
}

dF (w1, .., wK) = Pr
{

GK is connected
}

,
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i.e. probability that GK(Π) is connected is always bounded below by the probability

that GK is connected. Probabilities and expected values for other characteristics of

GK(π) can also be shown to be Schur convex functions and in these cases, as in the

above calculation, we obtain bounds for the compound model GK(Π) in terms of

bounds for the uniform model GK . However, to obtain more than general bounds for

the compound model it is necessary to consider particular examples.

In the remainder of this paper we assume that the weight variables W1,W2, .. are

i.i.d. Poisson variables with mean λ > 0. In this case, we say that TK(λ) ≡ TK(Π)

is a Poisson compound mapping and GK(λ) denotes the associated random digraph

on vertices labelled 1, 2, . . . , K. Poisson compound mappings are a tractable class

of examples because we can exploit a connection between the component structure

of Poisson compound mappings and the component structure of random bipartite

mappings. In the Section 2 we prove the key lemma which allows us to translate

results for random bipartite mappings into results for the Poisson model and we state

our main results. In Sections 3 and 4 we use this lemma to establish our main results.

2. Key lemma and statement of main results

The key to the main results of this paper is the following lemma which establishes the

connection between the component structure of Poisson compound mappings and the

component structure of random bipartite mappings. A random bipartite mapping TK,L

of a finite set V = V1∪V2, V1 = {1, 2, . . . , K} and V2 = {K +1,K +2, . . . , K +L} into

itself assigns independently to each i ∈ V1 its unique image j ∈ V2 with probability 1/L

and to each i ∈ V2 its unique image j ∈ V1 with probability 1/K. The mapping TK,L

can be represented by a random bipartite digraph G(TK,L) on a set of ‘red’ labelled

vertices corresponding to the set V1 and a set of ‘blue’ labelled vertices corresponding

to the set V2. In particular, G(TK,L) has a directed edge from red (blue) vertex i to

blue (red) vertex j if and only if TK,L(i) = j.

Lemma 1. For any integers K,L > 0 and λ > 0, and any mapping f ∈ MK

Pr
{

TK(λ) = f
∣∣∣ N(K) = L

}
= Pr

{
T 2

K,L = f
}

where T 2
K,L = TK,L ◦ TK,L is a random mapping of the vertex set V1 = {1, 2, . . . , K}
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into itself.

Proof. Fix K,L > 0, λ > 0, and the mapping f ∈ MK . Let U1, U2, . . . , UL be i.i.d.

uniform random variables on the interval [0, λK), and let X1, X2, . . . , XK be i.i.d.

discrete random variables such that for each 1 ≤ j ≤ K and 1 ≤ i ≤ L, Pr{Xj =

K + i} = 1
L . In addition, suppose that the variables X1, X2, . . . , XK are independent

of the variables U1, U2, . . . , UL. A uniform random bipartite mapping TK,L can be

constructed as follows: for any j ∈ V1,K + i ∈ V2, TK,L(j) = K + i if and only

if Xj = K + i and TK,L(K + i) = j if and only if Ui ∈ [λ(j − 1), λj). Now let

Yj = |{i : Ui ∈ [λ(j − 1), λj)}| = |{K + i ∈ V2 : TK,L(K + i) = j}| for j = 1, 2, . . . , K.

It is easy to check that for any (y1, y2, . . . , yK) ∈ (Z+)K such that
∑K

j=1 yj = L, we

have

Pr
{

T 2
K,L = f

∣∣∣ (Y1, Y2, . . . , YK) = (y1, y2, . . . , yK)
}

= Pr
{

T~π = f
}

=
∏K

i=1
yf(i)

L

= Pr
{

TK(λ) = f
∣∣∣ (W1,W2, . . . , WK) = (y1, y2, . . . , yK), N(K) = L

}
where ~π = 1

N (y1, y2, . . . , yK). So it suffices to prove

Pr
{

(W1,W2, . . . , WK) = (y1, y2, . . . , yK)
∣∣∣ N(K) = L

}
= Pr

{
(Y1, Y2, . . . , YK) = (y1, y2, . . . , yK)

}
(2.1)

for all (y1, y2, . . . , yK) ∈ (Z+)K such that
∑K

j=1 yj = L.

To see that (2.1) holds, recall that if Nt is a homogeneous Poisson process with

rate 1, then the random variables (W1,W2, . . . , WK) have the same joint distribution

as the variables (Nλ, N2λ − Nλ, . . . , NλK − Nλ(K−1)). It is also well known (see Ross

[37], p.67) that

Pr
{

(Nλ, N2λ − Nλ, . . . , NλK − Nλ(K−1)) = (y1, y2, . . . , yK)
∣∣∣ NλK = L

}
Pr

{
(Y1, Y2, . . . , YK) = (y1, y2, . . . , yK)

}
where the variables Yj , 1 ≤ j ≤ K are as defined above. Equation (2.1) now follows

and this completes the proof of the lemma.

Since N(K) ∼ Poisson(λK), it follows from Lemma 1 that for every K > 0, λ > 0,

and f ∈ MK ,

Pr
{

TK(λ) = f
}

=
∞∑

L=1

Pr
{

T 2
K,L = f

} (λK)Le−λK

L!
+

(
1
K

)K

e−λK . (2.2)
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Using this relationship, we can translate many known results for bipartite random

mappings (see [24], [26]) into results for compound Poisson mappings. For example,

for any mapping f ∈ MK , we say v ∈ {1, 2, . . . , K} is a cyclical vertex of f if v lies on

a cycle in the digraph G(f) which represents f and we define q(f) to be the number

of cyclical vertices in G(f). ¿From (2.2) we obtain

Eλ
K(q) ≡ E(q(TK(λ))) =

∞∑
L=1

EK,L(q)
(λK)Le−λK

L!
+ EK(q)e−λK , (2.3)

where EK,L(q) ≡ E(q(T 2
K,L)) and EK(q) ≡ E(q(TK)). Now from [26] we have the

explicit expression

EK,L(q) =
min{K,L}∑

i=1

(K)i

Ki

(L)i

Li
=

√
π

2
KL

K + L
(1 + εK,L), (2.4)

where |εK,L| ≤ C
min{K,L} for some constant C > 0. To translate this result into a result

for compound Poisson mappings, we use a Chernoff-type bound (see Ross [37])

Pr
{|N(K) − λK| > β(λK)α

} ≤ Cλ exp(−β(λK)α− 1
2 ) (2.5)

for the Possion distribution, where α > 1/2, β > 0, and Cλ > 0 is a constant which

depends on λ > 0. It follows from (2.3)-(2.5), that

Eλ
K(q) =

∑
|L−λK|<(λK)3/4

EK,L(q)
(λK)Le−λK

L!
+ O

(
K exp(−(λK)1/4)

)

=

√
πλK

2(1 + λ)
(1 + o(1)).

On the other hand, EK(q) ∼ √
πK/2 (see [31]), so on average GK(λ), the random

digraph which represents TK(λ), has fewer cyclical vertices than the uniform random

digraph GK . By a similar arguments and using results from [26], we obtain

Eλ
K(pv) ≡ E(pv(TK(λ))) ∼

√
πλK

2(1 + λ)

where, for any f ∈ MK and v ∈ {1, 2, . . . ,K},

pv(f) =
∣∣{y : f l(y) = v for some l = 0, 1, 2, ..}∣∣.

On the other hand, for uniform random mappings (see [31])

EK(pv) ≡ E(pv(TK)) ∼
√

πK

2
.
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Since pv(f) can be interpreted as the number of predecessors of vertex v in G(f),

we see that for any λ > 0, a vertex v has fewer predecessors on average in GK(λ)

than in GK . These results indicate that the structure of the components of GK(λ)

differs from that of the components of GK . The question arises: how do these

differences in component structure affect the distribution of the sizes of the components

of GK(λ)? In this paper we show that, perhaps surprisingly, for every λ > 0 the joint

distribution of the normalized order statistics of the components in GK(λ) has the

same limiting distribution as the joint distribution of the normalized order statistics of

the components in GK . The limiting distribution in both cases is the Poisson-Dirichlet

(1/2) distribution on the simplex ∇. To prove this result, we first establish the limiting

distribution for the size of a component in GK(λ) containing a given vertex and this

result may also be of independent interest.

Before stating our main results, we give a convenient characterization of the Poisson

-Dirichlet (θ) distribution (denoted PD(θ)) which also yields a useful principle for esta-

blishing convergence in distribution to the PD(θ) distribution on ∇. Let Y1, Y2, Y3, . . .

be a sequence of i.i.d. random variables such that each Yi has a Beta(θ) distribution

(θ >0) with density h(y) = θ(1 − y)θ−1 on the unit interval (0, 1). Now define a

transformation φ of the sequence (Y1, Y2, ..) such that φ(Y1, Y2, . . .) = (Ỹ1, Ỹ2, Ỹ3, ..)

where Ỹ1 = Y1 and Ỹn = Yn(1− Y1)(1− Y2) · · · (1− Yn−1) for n > 1, and observe that

(Ỹ1, Ỹ2, . . .) ∈ ∇̃ = {{xi} : xi ≥ 0,
∑

xi ≤ 1}. Finally, define ψ : ∇̃ → ∇ such

that (ψ{xi})k is the kth largest term in the sequence {xi} ∈ ∇̃; then the random

sequence ψ ◦ φ(Y1, Y2, . . .) = (Q1, Q2, Q3, . . .) ∈ ∇ has a PD(θ) distribution. The

following convergence principle is an important consequence of this characterization:

suppose that (Y1(n), Y2(n), . . .) is a sequence of random variables such that the joint

distribution of (Y1(n), Y2(n), . . .) converges to the joint distribution of the variables

(Y1, Y2, . . .), then the joint distribution of the random sequence ψ◦φ(Y1(n), Y2(n), . . .) =

(Q1(n), Q2(n), . . .) converges to the PD(θ) distribution. For further details see Hansen

[18] and the references therein.

To see how the convergence principle can be applied in the context of Poisson

compound mappings, we introduce some additional notation. Suppose that T is

a random mapping on {1, 2, . . . , K} and let C1 = C1(T ) denote the component in

G(T ) which contains the vertex labelled 1. If C1 6= G(T ), then let C2 = C2(T )
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denote the component in G(T ) \ C1 which contains the smallest vertex; otherwise,

set C2 = ∅. For k > 2 we define Ct iteratively: If G(T ) \ (C1 ∪ . . . ∪ Ct−1) 6= ∅, then

let Ct denote the component in G(T ) \ (C1 ∪ . . . ∪ Ct−1) which contains the smallest

vertex; otherwise, set Ct = ∅. For t ≥ 1, let Ct = |Ct| and define the sequence

(Z1, Z2, . . .) = (Z1(T ), Z2(T ), . . .) by

Z1 =
C1

K
, Z2 =

C2

K − C1
, . . . , Zt =

Ct

K − C1 − C2 − . . . − Ct−1
, . . .

where Zt = 0 if K − C1 − C2 − . . . − Ct−1 = 0. In Section 3 we show that for each

t ≥ 1 and 0 < ai < bi < 1, i = 1, 2, . . . , t

lim
K→∞

Pr
{

ai < Zi(λ,K) ≤ bi, i = 1, 2, .., t
}

=
t∏

i=1

∫ bi

ai

du

2
√

1 − u
. (2.6)

where Zi(λ,K) ≡ Zi(TK(λ)). We establish (2.6) by an inductive argument, the first

step of which is established in Section 3, where we prove

Theorem 1. Suppose that λ > 0 is fixed, then for every 0 < a < b < 1

Pr
{

aK < C1(λ,K) ≤ bK
}
→

∫ b

a

du

2
√

1 − u
as K → ∞ ,

where C1(λ,K) = C1(TK(λ)).

To describe Theorem 2 below, let D1(λ,K) denote the size of the largest connected

component in GK(λ), let D2(λ,K) denote the size of the second largest component

and so on. It is easy to check that

ψ ◦ φ(Z1(λ,K), Z2(λ,K), . . .) =
(

D1(λ,K)
K

,
D2(λ,K)

K
, . . .

)
,

so using the convergence principle for the Poisson-Dirichlet distribution, we obtain

from (2.6)

Theorem 2. For any fixed λ > 0,(
D1(λ,K)

K
,

D2(λ,K)
K

, . . .

)
d−→ PD(1/2) as K → ∞ ,

where D1(λ,K), D2(λ,K), . . . are as defined above, and PD(1/2) denotes the Poisson

-Dirichlet(1/2) distribution on the simplex

∇ =
{
{xi} :

∑
xi ≤ 1, xi ≥ xi+1 ≥ 0 for every i ≥ 1

}
.
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3. The size of a connected component

In this section we prove Theorem 1. ¿From Lemma 1 we obtain the identity

Pr
{
aK < C1(λ,K) ≤ bK

}
=

∑
L>0

Pr
{
aK < C1(T 2

K,L) ≤ bK
}

Pr
{
N(K) = L

}
(3.1)

+Pr
{
aK < C1(T (K)) ≤ bK

}
Pr

{
N(K) = 0

}
.

Now for values of L which are neither too big nor too small, Pr{aK < C1(T 2
K,L) ≤ bK}

is ‘close’ to
∫ b

a
dx

2
√

1−x
. More precisely, we have

Lemma 2. Fix 0 < ξ < η, then for all K,L > 0 such that ξK ≤ L ≤ ηK and for

every 0 < a < b < 1, there is a constant C(a, b, ξ, η) which only depends on a, b, ξ and

η, such that

∣∣∣ Pr
{

aK < C1(T 2
K,L) ≤ bK

}
−

∫ b

a

dx

2
√

1 − x

∣∣∣ ≤ C(a, b, ξ, η)
K1/16

.

Proof. Fix 0 < ξ < η and 0 < a < b < 1, then there exists K(a, b, ξ, η) > 0 such

that (η/ξ)K−3/8 ≤ 1
2 min{a, 1 − a, b, 1 − b} whenever K > K(a, b, ξ, η). Throughout

the proof C(a, b, ξ, η) will denote any constant which may depend on a, b, ξ and η but

which does not depend on K and which statisfies C(a, b, ξ, η) ≥ 2K(a, b, ξ, η). Now

fix K > K(a, b, ξ, η) and L such that ξK ≤ L ≤ ηK, and suppose m is such that

aK < m ≤ bK. Let x = m/K and α = L
K (so x ∈ (a, b] and α ∈ [ξ, η]), then

Pr
{

C1(T 2
K,L) = m

}
= Pr

{
R1 = m

}
=

∑
−dLxe<j≤L−dLxe

Pr
{
R1 = m,B1 = dLxe + j

}

where R1 is the number of red vertices and B1 is the number of blue vertices in the

connected component which contains the vertex 1 in G(TK,L). We split the above sum

into two sums:

(i)
∑

|j|≤τ
√

αK

(ii)
∑

|j|>τ
√

αK

(3.2)

where τ = K1/8 and consider each sum separately. Approximations of the terms in

each sum depend on the following lemma which we state without proof.
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Lemma 3. ([20]) For k = 0, 1, . . . , K − 1 and l = 1, . . . , L we have

Pr
{

R1 = k + 1, B1 = l
}

=
(

K − 1
k

)(
L

l

)(
k + 1

K

)l−1 (
1 − k + 1

K

)L−l (
l

L

)k (
1 − l

L

)K−1−k

× 1
KL

min{l,k+1}∑
j=1

(l)j

lj
(k + 1)j

(k + 1)j
(k + l + 1 − j) .

We note from Lemma 3 that the expression for Pr{R1 = m, B1 = l} where l = dLxe+j,

can be split into two factors. The first factor(
K − 1
m − 1

)(
l

L

)m−1 (
1 − l

L

)K−m (
L

l

)(m

K

)l (
1 − m

K

)L−l

is the product of binomial probabilities and, provided |j| ≤ τ
√

αK, an approximation

for this expression with an appropriate error bound can be obtained by following the

proof of the de Moivre-Laplace Theorem (see Feller [13], p.182). In particular,(
K − 1
m − 1

)(
l

L

)m−1 (
1 − l

L

)K−m (
L

l

) (m

K

)l (
1 − m

K

)L−l

=
1

2πx(1 − x)
√

KL
· exp

(−y2

2

(
1 + α

αx(1 − x)

))
· (1 + ρ̃j(x)) (3.3)

where y = j/
√

αK, x = m/K, and |ρ̃j(x)| ≤ C(a, b, ξ, η)K−1/16. We note that to

obtain the bound for |ρ̃j(x)|, we use the inequality K > K(a, b, ξ, η).

Next, for k + 1 = m and l = dLxe + j with |j| ≤ τ
√

αK, one can show, as in the

proof of Theorem 7 in [26], that

1
mL

min{m,l}∑
i=1

(l)i(m)i

(l)i(m)i
(m + l − i) =

√
πx(K + L)

2KL
· (1 + ε̂(x, j)) (3.4)

where

ε̂(x, j) ≤ C(a, b, ξ, η)
K1/8

.

¿From (3.3) and (3.4) we obtain for a < x = m
K ≤ b , and |j| ≤ τ

√
αK

Pr
{
R1 = m,B1 = dLxe + j

}
= Pr

{
R1 = m,B1 = dLxe + y

√
αK

}
=

1
K

· 1
2
√

1 − x

1√
αK

·
√

1 + α

2παx(1 − x)
exp

(−y2

2

(
1 + α

αx(1 − x)

))
· (1 + ρj(x))

where |ρj(x)| ≤ C(a, b, ξ, η)K−1/16 and y = j/
√

αK. It follows that for a < x = m
K ≤ b
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∑
|j|≤τ

√
αK

Pr
{
R1 = m,B1 = dLxe + j

}

=
1
K

· 1
2
√

1 − x

∑
|j|≤τ

√
αK

1√
αK

·
√

1 + α

2παx(1 − x)
exp

(−y2(1 + α)
2αx(1 − x)

)
· (1 + ρj(x))

=
1
K

· 1
2
√

1 − x
· (1 + δx) (3.5)

where |δx| ≤ C(a, b, ξ, η) · K−1/16 .

It remains to determine a bound for the second sum in (3.2). Since this is a

‘two-sided’ sum, we consider one side of the sum; the other case follows by similar

calculations. The first step is to note (see [20], p.324) that for all k = 0, 1, . . . , K − 1

and l = 1, . . . , L

Pr
{
R1 = m,B1 = l

} ≤
(

L

l

)(m

K

)l (
1 − m

K

)L−l

=
(

L

l

)
xl(1 − x)L−l.

It follows that

∑
j≥τ

√
αK

Pr
{
R1 = m, B1 = dLxe + j

} ≤
∑

l≥dLxe+τ
√

αK

(
L

l

)
xl(1 − x)L−l

≤ Pr
{ X − Lx√

Lx(1 − x)
≥ τ√

x(1 − x)

}

≤ C(a, b, ξ, η) exp

(
−τ√

x(1 − x)

)

≤ C(a, b, ξ, η) exp(−K1/16)

(3.6)

where X ∼ Bin(L, x) and τ = K1/8. The third inequality follows from Chernoff-type

bounds for tail probabilities of the binomial distribution. Similarly,

∑
j≤−τ

√
αK

Pr
{
R1 = m, B1 = dLxe + j

} ≤ C(a, b, ξ, η) exp(−K1/16). (3.7)

Combining the bounds (3.6) and (3.7) and approximation (3.5), we obtain

Pr
{
C1(T 2

K,L) = m
}

=
1
K

· 1
2
√

1 − m/K
· (1 + δx) + γm

where

|δx| ≤ C(a, b, ξ, η) · K−1/16
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and

γm =
∑

|j|≥τ
√

αK

Pr
{
R1 = m,B1 = dLxe + j

} ≤ C(a, b, ξ, η) exp(−K1/16) .

Hence

Pr
{
aK < C1(T 2

K,L) ≤ bK
}

=
∑

aK<m≤bK

1
K

· 1
2
√

1 − m/K
· (1 + δx) +

∑
aK<m≤bK

γm

and it follows that

∣∣∣ Pr
{
aK < C1(T 2

K,L) ≤ bK
} −

∫ b

a

dx

2
√

1 − x

∣∣∣ ≤ C(a, b, ξ, η)
K1/16

in the case K > K(a, b, ξ, η). The result holds trivially in the case K ≤ K(a, b, ξ, η)

since C(a, b, ξ, η) ≥ 2K(a, b, ξ, η).

Proof of Theorem 1. Fix K > 0, then it follows from Lemma 1 that

b3λK/2c∑
λK
2 ≤L

Pr
{
aK < C1(T 2

K,L) ≤ bK
}

Pr
{
N(K) = L

} ≤ Pr
{
aK < C1(λ,K) ≤ bK

}

≤
b3λK/2c∑

λK
2 ≤L

Pr
{
aK < C1(T 2

K,L) ≤ bK
}

Pr
{
N(K) = L

}

+Pr
{|N(K) − λK| >

λK

2
}
.

(3.8)

¿From Lemma 2, with ξ = λ
2 and η = 3λ

2 , we obtain

(∫ b

a

dx

2
√

1 − x
− C(a, b, λ

2 , 3λ
2 )

K1/16

)(
1 − Pr

{
|N(K) − λK| >

λK

2

})

≤
b3λK/2c∑

λK
2 ≤L

Pr
{

aK < C1(T 2
K,L) ≤ bK

}
Pr

{
N(K) = L

}

≤
∫ b

a

dx

2
√

1 − x
+

C(a, b, λ
2 , 3λ

2 )
K1/16

.

(3.9)

Finally, from (2.5) we obtain

Pr
{
|N(K) − λK| >

λK

2

}
≤ Cλ exp(−

√
λK/2) (3.10)

and the theorem follows from inequalities (3.8)-(3.10).
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4. Order statistics for component sizes

In this section we prove Theorem 2. By the convergence principle outlined in

Section 1, it is enough to show that for any integer t ≥ 1 and any 0 < ai < bi < 1,

i = 1, 2, . . . , t,

lim
K→∞

Pr
{

ai < Zi(λ,K) ≤ bi, i = 1, 2, . . . , t
}

=
t∏

i=1

∫ bi

ai

du√
1 − u

. (4.1)

To establish (4.1), we condition on the value of N(K) and appeal to the following

lemma.

Lemma 4. Suppose λ > 0, t ∈ Z+, and 0 < ai < bi < 1, 1 ≤ i ≤ t are fixed. Then

for every K > 0 and λ
2 K < L < 3λ

2 K, there is a constant C which does not depend on

K (but which may depend on λ, t, and a1, a2, . . . , at, b1, b2, . . . , bt), such that

∣∣∣ Pr
{

ai < Zi(T 2
K,L) ≤ bi : i = 1, 2, . . . , t

}
−

t∏
i=1

∫ bi

ai

du√
1 − u

∣∣∣ ≤ C

K1/16
.

Before proving this result, we need to extend our notation. For any random bipartite

mapping TK,L let C1(TK,L) denote the component in G(TK,L) which contains the

vertex labelled 1. If C1(TK,L) 6= G(TK,L), then let C2(TK,L) denote the component

in G(TK,L) \ C1(TK,L) which contains the smallest vertex; otherwise, set C2(TK,L) = ∅.
For k > 2 we define Ct(TK,L) iteratively: If G(TK,L)\(C1(TK,L)∪ . . .∪Ct−1(TK,L)) 6= ∅,
let Ct(TK , L) denote the component in G(TK,L) \ (C1(TK,L) ∪ . . . ∪ Ct−1(TK,L)) which

contains the smallest vertex; otherwise, set Ct(TK,L) = ∅. In addition, let Ri denotes

the number of red vertices and Bi denotes the number of blue vertices in Ci(TK,L) and

note that Ri = Ci(T 2
K,L) for i ≥ 1. . . . . Finally, let K1 = K, L1 = L , and for i ≥ 2,

Ki = Ki−1 − Ri−1; Li = Li−1 − Bi−1;

and note that for i ≥ 2, Ki and Li are random variables. With this notation we have

Zi(T 2
K,L) = Ci(T 2

K,L)/Ki = Ri/Ki whenever Ki > 0.

Proof of Lemma 4. Fix K > 0 and L > 0 such that λ
2 K ≤ L ≤ 3λ

2 K. For

conciseness, we introduce

Aj =
{
ai < Zi(T 2

K,L) ≤ bi : i = 1, 2, . . . , j
}

for j = 1, 2, . . . , t ,
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and we write

Pr{ai < Zi(T 2
K,L) ≤ bi : 1 ≤ i ≤ t} = Pr{At} = Pr{Bt ∩ At} + Pr{Bc

t ∩ At} (4.2)

where

B1 =
{

λ

2
K1 < L1 <

3λ

2
K1

}
,

and for j = 2, . . . , t ,

Bj =
{

λ

2
K1 < L1 <

3λ

2
K1,

λ

2i+1
≤ Li+1

Ki+1
, i = 1, 2, . . . , j − 1

}
.

Observe that

Pr{Bt ∩ At} =
t−1∏
j=1

Pr
{ λ

2j+1
≤ Lj+1

Kj+1

∣∣∣Bj ∩ Aj

}

×
t∏

i=1

Pr
{

ai < Zi(T 2
K,L) ≤ bi

∣∣∣Bi ∩ Ai−1

}
,

(4.3)

where B1 ∩ A0 := B1 and Pr{B1} = 1. The first step is to show that for i = 1, 2, . . . , t

∣∣∣ Pr
{

ai < Zi(T 2
K,L) ≤ bi | Bi ∩ Ai−1

}
−

∫ bi

ai

du

2
√

1 − u

∣∣∣ ≤ C(i)
K1/16

(4.4)

where C(i) is a constant which may depend on λ, i and a1, a2, . . . , ai, b1, b2, . . . , bi but

which does not depend on K. Since B1 ∩A0 := B1 = {λ
2 K1 < L1 < 3λ

2 K1}, inequality

(4.4) follows from Lemma 2, by the choice of K and L, when i = 1.

For 2 ≤ i ≤ t we exploit the identity

Pr
{

ai < Zi(T 2
K,L) ≤ bi

∣∣∣ Ki = k, Li = l, Bi−1 ∩ Ai−1

}
= Pr

{
ai <

C1(T 2
k,l)

k
≤ bi

}
(4.5)

where C1(T 2
k,l) is the size of the component which contains a given red vertex in the

random mapping T 2
k,l = Tk,l ◦ Tk,l, where Tk,l is a random bipartite mapping on k

red vertices and l blue vertices. This identity is a straightforward consequence of the

independence and uniformity which is built into the bipartite model, namely, that each

vertex is assigned independently, according to the uniform distribution, to a vertex in

the other set.

Now suppose that K
∏i−1

s=1(1 − bs) ≤ k < K
∏i−1

s=1(1 − as) and λk
2i ≤ l < L, then

since L ≤ 3λ
2 K, we have

ξ(i)k ≤ l ≤ η(i)k
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where

ξ(i) =
λ

2i
and η(i) =

3λ

2
∏i−1

s=1(1 − bs)
.

So by Lemma 2 and identity (4.5), we have

∣∣∣∣ Pr
{

ai < Zi(T 2
K,L) ≤ bi

∣∣∣ Ki = k, Li = l, Bi−1 ∩ Ai−1

}
−

∫ bi

ai

du

2
√

1 − u

∣∣∣∣
=

∣∣∣∣ Pr
{

ai <
C1(T 2

k,l)
k

≤ bi

}
−

bi∫
ai

du

2
√

1 − u

∣∣∣∣ ≤ C(ai, bi, ξ(i), η(i))
k1/16

≤ C(i)
K1/16

. (4.6)

Since {Bi ∩ Ai−1} =
⋃

k,l{Ki = k, Li = l, Bi−1 ∩ Ai−1}, where λk
2i ≤ l < L and

K
∏i−1

s=1(1 − bs) ≤ k < K
∏i−1

s=1(1 − as), it follows from (4.6) that (4.4) holds for

2 ≤ i ≤ t, and hence

∣∣∣∣
t∏

i=1

Pr
{

ai < Zi(T 2
K,L) ≤ bi

∣∣∣Bi ∩ Ai−1

}
−

t∏
i=1

∫ bi

ai

du√
1 − u

∣∣∣∣ ≤
∑t

i=1 C(i)
K1/16

. (4.7)

Next we show that for 1 ≤ j ≤ t − 1

∣∣∣∣ Pr
{ λ

2j+1
≤ Lj+1

Kj+1

∣∣∣Bj ∩ Aj

}
− 1

∣∣∣∣ ≤ Ĉ(j)
K

(4.8)

where Ĉ(j) is a constant which may depend on λ, j and a1, a2, . . . , aj , b1, b2, . . . , bj

but which does not depend on K. Now given Bj ∩ Aj , we have for 1 ≤ j ≤ t − 1

Lj+1

Kj+1
=

Lj − (LjZj(T 2
K,L) − Dj)

Kj − KjZj(T 2
K,L)

=
Lj

Kj
·
(

1 +
Dj

Lj(1 − Zj(T 2
K,L))

)

≥ λ

2j
·
(

1 +
Dj

Lj(1 − Zj(T 2
K,L))

)

where Dj = LjZj(T 2
K,L) − Bj . Hence

Pr
{1

2
≤ 1 +

Dj

Lj(1 − Zj(T 2
K,L))

∣∣∣Bj ∩ Aj

}
≤ Pr

{ λ

2j+1
≤ Lj+1

Kj+1

∣∣∣Bj ∩ Aj

}
. (4.9)

Given the event Bj∩Aj , we have λ
2j K

∏j−1
s=1(1−bs) ≤ λKj/2j ≤ Lj (with the convention

that for j = 1 the product in this inequalitity is equal to 1). So given the event Bj ∩Aj ,

if |Dj | ≤ (Lj)2/3, then
|Dj |

Lj(1 − Zj(T 2
K,L))

≤ C̃(j)
K1/3

<
1
2
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for all K > (2C̃(j))3, where C̃(j) is a constant which depends on λ, j, b1, b2, . . . , bj .

Therefore,

Pr
{
|Dj | ≤ (Lj)2/3

∣∣Bj ∩ Aj

}
≤ Pr

{1
2
≤ 1 +

Dj

Lj(1 − Zj(T 2
K,L))

∣∣∣Bj ∩ Aj

}
(4.10)

for all 1 ≤ j ≤ t − 1 and K > max{(2C̃(j))3 : 1 ≤ j ≤ t − 1}.

Next, for j ≥ 2

Pr
{

Rj = r,Bj = b
∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj−1

}
= Pr

{
R1(k, l) = r, B1(k, l) = b

} (4.11)

where R1(k, l) is the number of red vertices and B1(k, l) is the number of blue vertices

in the connected component C1(Tk,l). So for k, l and m chosen such that λk/2j ≤ l < L,

K
∏j

s=1(1 − bs) ≤ k < K
∏j

s=1(1 − as), and ajk < m ≤ bjk, we have

Pr
{
|Dj | > l2/3, Rj = m

∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj−1

}
≤

∑
|i|>l2/3−1

Pr
{

R1(k, l) = m,B1(k, l) = dlxe + i
}

≤ Ĉ(j) exp(−l1/6) ≤ Ĉ(j) exp(−Ĉ(j)K1/6)

(4.12)

where x = m
k and Ĉ(j) is a constant which may depend on λ, j and a1, a2, . . . , aj ,

b1, b2, . . . , bj but which does not depend on K. We note that the second inequality

in (4.12) follows from arguments similar to those which established inequalities (3.6)

and (3.7) and the last inequality follows from the inequality λ
2j K

∏j
s=1(1 − bs) ≤ l.

Since these bounds are uniform over all k, l, and m satisfying λk/2j ≤ l < L,

K
∏j

s=1(1 − bs) ≤ k < K
∏j

s=1(1 − as), and ajk < m ≤ bjk, we have

Pr
{
|Dj | > l2/3, ajk < Rj ≤ bjk | Kj = k, Lj = l, Bj−1 ∩ Aj−1

}

=
bjk∑

m>ajk

Pr
{
|Dj | > l2/3, Rj = m | Kj = k, Lj = l, Bj−1 ∩ Aj−1

}

≤ KĈ(j) exp(−Ĉ(j)K1/6)

(4.13)
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It follows from (4.13) and identity (4.11) that for 1 ≤ j ≤ t − 1 and all large K,

Pr
{
|Dj | > l2/3

∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj

}

=
Pr

{
|Dj | > l2/3, ajk < Rj ≤ bjk

∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj−1

}
Pr

{
ajk < Rj ≤ bjk

∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj−1

}

=
Pr

{
|Dj | > l2/3, ajk < Rj ≤ bjk

∣∣ Kj = k, Lj = l, Bj−1 ∩ Aj−1

}
Pr

{
ajk < C1(T 2

k,l) ≤ bjk
}

≤ Ĉ(j)
K

provided K
∏j−1

s=1(1−bs) ≤ k < K
∏j

s=1(1−as), and λk/2j−1 ≤ l < L. Since {Bj∩Aj}
=

⋃
k,l{Kj = k, Lj = l, Bj−1 ∩Aj} where K

∏j−1
s=1(1− bs) ≤ k < K

∏j
s=1(1− as) and

λk/2j−1 ≤ l < L, it follows that

Pr
{
|Dj | ≤ L2/3

∣∣∣Bj ∩ Aj

}
≥ 1 − Ĉ(j)

K
(4.14)

for 1 ≤ j ≤ t − 1. Inequality (4.8) now follows from (4.9), (4.10) and (4.14) and so for

all large K and 1 ≤ j ≤ t − 1,∣∣∣∣∣
t−1∏
j=1

Pr
{ 1

2j+1
≤ Lj+1

Kj+1
,

∣∣∣Bj ∩ Aj

}
− 1

∣∣∣∣∣ ≤
t−1∑
j=1

Ĉ(j)
K

. (4.15)

Finally, it follows from (4.3), (4.7), and (4.15) that∣∣∣∣∣ Pr
{
Bt ∩ At

}
−

t∏
i=1

∫ bi

ai

du√
1 − u

∣∣∣∣∣ ≤
∑t

i=1 C(i)
K1/16

+

∑t−1
j=1 Ĉ(j)

K
. (4.16)

To complete the proof of the lemma, observe that

Pr
{
Bc

t ∩ At

}
≤

t−1∑
j=1

Pr
{ Lj+1

Kj+1
<

λ

2j

∣∣∣Bj ∩ Aj

}
Pr

{
Bj ∩ Aj

}
≤

∑t−1
j=1 Ĉ(j)

K
. (4.17)

The result now follows from (4.2), (4.16), and (4.17).

Proof of Theorem 2. It suffices to note that equation (4.1) now follows immediately

from Lemma 4 and proof of Theorem 1.

5. Final remarks

The results above give some indication of which limit results for the uniform random

mapping model TK are ‘robust’ under the introduction of extra randomness into the
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random mapping model. In particular, we have seen that the limiting distributions

for the number of cyclic vertices and the number of predecessors of a vertex in GK(λ)

cannot be the same as for the GK , whereas the limiting distribution for the normalized

order statistics of the component sizes in both GK(λ) and GK is PD(1/2).

It would be interesting to determine which other limit results for the uniform

mapping TK remain the same for the Poisson compound mapping TK(λ). For example,

it is not difficult to show, using the methods of this paper, that a central limit theorem

for SK(λ), the total number of components in GK(λ), follows from Theorem 7 in [26].

In particular, we have

SK(λ) − 1
2 log K√

1
2 log K

d−→ N (0, 1)

as K → ∞, where the normalizing constants above are the same as in the case

of the uniform random mapping. We also conjecture that the joint distribution of

(M1,M2, . . . , Mb) is close, in the sense of total variation, to the joint distribution of

a sequence of independent Poisson random variables when b = o(K/ log K) where Mk

denotes the number of components of size k in GK(λ). This result, however, does not

follow from the results of Arratia, et al. (see [5]) as a compound random mapping is

not a logarithmic combinatorial assembly.

We conclude by noting that our results can also be interpreted as a Bayesian

approach to random mappings, and as such, they are in the spirit of recent work by

Diaconis and Holmes [12] on Bayesian versions of the classic birthday problem, coupon

collector’s problem and matching problem. In this light, it would also be interesting

to determine whether there are other tractable (and non-trivial) models TK(Π) which

differ in their their component structure from that of either the uniform model TK or

the Poisson compound mapping model TK(λ).
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