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Abstract

Suppose that C = {cij : i, j ≥ 1} is a collection of i.i.d. nonneg-
ative continuous random variables and suppose T is a rooted, directed
tree on vertices labelled 1,2,. . . ,n. Then the ‘cost’ of T is defined to be
c(T ) =

∑
(i,j)∈T cij , where (i, j) is denotes the directed edge from i to j

in the tree T . Let Tn denote the ‘optimal’ tree, i.e. c(Tn) = min{c(T ) :
T is a directed, rooted tree in with n vertices}. We establish general con-
ditions on the asymptotic behaviour of the moments of the order statistics
of the variables c11, c12, . . . , cin which guarantee the existence of sequences
{an}, {bn}, and {dn} such that b−1

n (c(Tn)− an)→ N(0, 1) in distribution,
d−1
n c(Tn) → 1 in probability, and d−1

n E(c(Tn)) → 1 as n → ∞, and we
explicitly determine these sequences. The proofs of the main results rely
upon the properties of general random mappings of the set {1, 2, . . . , n}
into itself. Our results complement and extend those obtained by McDi-
armid [9] for optimal branchings in a complete directed graph.

1 Introduction

In this paper we consider the following optimization problem. Suppose C =
{cij : i, j = 1, 2, . . .} is a collection of i.i.d. nonnegative continuous random
variables with distribution function F . For each n ≥ 1, let Dn denote the
complete directed graph on n vertices, labelled 1, 2, . . . , n. A directed edge
from i to j in Dn is denoted by the ordered pair (i, j) and the random ‘cost’
of each edge (i, j) is cij . A directed, rooted tree T in Dn is a set of directed
edges such that if we ignore edge orientations, the corresponding graph is a
tree, and such that the out-degree of each vertex in T is at most one. Note
that all directed paths in T terminate at the same vertex vT , which is called
the root of the tree T . For any rooted tree T in Dn, define the cost, c(T ), of
T by c(T ) =

∑
(i,j)∈T cij . The problem is to find a directed rooted tree Tn on

the n vertices of Dn such that c(Tn)=min{c(T ) : T is a directed, rooted tree in
Dn with n vertices}. We call the tree Tn the optimal tree and we note that it
is almost surely unique since the distribution of the edge costs is continuous.
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This problem is equivalent to the problem of finding an optimal branching in
Dn. McDiarmid [9] considered the optimal branching problem and established
that c(Tn) → 1 in mean square as n → ∞ provided the variables {cij} are
either exponentially distributed with mean 1 or uniformly distributed on (0,1).
This result follows from a more general result by McDiarmid concerning the
cost of the random greedy base of a heriditary system on a set E. McDiarmid’s
general result is proved under the assumption that the costs for elements of
E are i.i.d. and exponentially distributed, and the special properties of the
exponential distribution are exploited in his proof.

Our approach is different to McDiarmid’s. Rather than considering the
problem as an example of a general random optimization problem, we investi-
gate the asymptotic distribution of c(Tn) by explicitly constructing a directed
rooted tree T̂n such that c(T̂n) is ‘close’ to c(Tn). To construct the tree T̂n, we
start with a random mapping on the vertices in Dn and modify the mapping
until we obtain the tree T̂n. The idea behind the construction is similar to
the‘patching algorithm’ described by Karp and Steele [8] which constructs a
nearly optimal assignment by patching together the cylcles of a random permu-
tation. In our case, we patch together the components of a random mapping to
construct a nearly optimal tree T̂n. Another feature of our construction is that
we do not need to place any restrictions on the distribution of the costs {cij},
other than the assumption that the cost distribution is continuous. The analysis
of the asymptotic distribution of c(T̂n) and c(Tn) depends on various properties
of random mappings and on the asymptotic behaviour of the moments of the
order statistics of the variables c11, c12, . . . , c1n. In particular, we show how
to determine constants an, bn and dn such that b−1

n (c(Tn) − an) → N(0, 1) in
distribution, d−1

n c(Tn)→ 1 in probability, and d−1
n E(c(Tn))→ 1 as n→∞.

The paper is organised as follows. In Section 2 we describe the algorithm
which constructs the heuristic tree T̂n and we establish some useful probability
bounds which are needed for the proofs of the main results. In Section 3 we
prove the main distributional results for c(Tn) and in Section 4 we provide some
examples and further discussion.

2 The Algorithm and Probability Bounds

In this section we describe the algorithm which constructs a nearly optimal
directed, rooted tree T̂n on the n labelled vertices in Dn. Before proceeding to
this description, we introduce some notation. For each i ≥ 1 and 1 ≤ r ≤ n, let
ci(r : n) denote the rth smallest value of ci1, ci2, . . . , cin, i.e. the variables ci(1 :
n), c1(2 : n), ..., ci(n : n) are the order statistics for the variables ci1, ci2, ..., cin.

The Algorithm.

Let n, the number of vertices in Dn be fixed.

Step 1: The first step is to define a random mapping φn,1 : {1, 2, . . . , n} →
{1, 2, . . . , n}. The mapping is defined by setting φn,1(i) = j if cij = ci(1 : n).
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Since the variables {cij : i, j = 1, 2, . . . , n} are independent and identically
distributed, P (φn,1(i) = j) = 1/n for each i, j ∈ {1, 2, . . . , n} and, in particular,
the variables φn,1(1), φn,1(2), . . . , φn,1(n) are i.i.d. and uniformly distributed
on the set {1, 2, . . . , n}. It follows that P (φn,1 = f) = 1/nn, where f ∈ Πn,
the set of all mappings of {1, 2, . . . , n} into itself. The cost, c(f), of a function
f ∈ Πn is defined by c(f) =

∑n
i=1 ci,f(i), so it follows by construction that

c(φn,1) = min{c(f) : f ∈ Πn}. Let ı̂ denote the vertex such that cı̂,φn,1 (̂ı) =
max{ci,φ1(i) : i = 1, 2, . . . , n}. Then clearly c(φn,1)-cı̂,φn,1 (̂ı) ≤ c(Tn).

The mapping φn,1 has a graphical representation as a directed graph, Gφn,1 ,
on the vertices 1, 2, . . . , n. There is a directed edge in Gφn,1 from i to j if
φn,1(i) = j. Each connected component of Gφn,1 consists of a directed cycle with
directed trees attached such that all paths in an attached tree terminate at a
vertex in the component’s cycle. If Gφn,1 has exactly one connected component,
then select the vertex i1 from the unique cycle in Gφn,1 such that ci1,φn,1(i1) =
max{cij : (i, j) is a cyclic edge in Gφn,1}. Delete the edge (i1, φn,1(i1)) from
Gφn,1 to obtain the directed rooted tree T̂n. If Gφn,1 is not connected proceed
to Step 2.

Step 2: Let m1(n) denote the number of components in Gφn,1 and suppose
that m1(n) > 1. Let C1, C2, . . . , Cm1(n) denote these components, and suppose
that the components are labelled so that |C1| ≥ |C2| ≥ . . . ≥ |Cm1(n)|. Select a
cyclic vertex i1 from the unique cycle in C1 such that ci1,φn,1(i1) = max{cij : (i, j)
is a cyclic edge in the component C1}. For the other components Ck, 2 ≤
k ≤ m1(n), select a cyclic vertex ik from the unique cycle in Ck such that
ik = min{i : i is the label of a cyclic vertex in the component Ck}. The vertex
i1 will be the root of the directed tree T̂n which is finally constructed by the
algorithm. Let V1 = {i2, i3, . . . , im1(n)}. We define the new mapping φn,2 as
follows:

(a) For each vertex i /∈ V1, set φn,2(i) = φn,1(i).

(b) For each vertex ik ∈ V1, do the following:

i. with probability 1/n, set φn,2(ik) = φn,1(ik), otherwise
ii. determine jk such that cik ,jk = cik(2 : n). If jk ∈ Ck (i.e. the

vertex jk is in the same component as ik), set φn,2(ik) = φn,1(ik).
Otherwise, set φn,2(ik) = jk.

If the graph Gφn,2 associated with the mapping φn,2 is connected, then remove
the edge (i1, φn,2(i1)) to obtain the directed rooted tree T̂n with root i1. Oth-
erwise, proceed to Step 3.

Step 3: Let mr(n) denote the number of components in the graph Gφn,r

and suppose that mr(n) > 1 (r ≥ 2). By construction of φn,r, we must have
mr(n) ≤ mr−1(n), where mr−1(n) equals the number of components in φn,r−1.
Let Cr

1 , Cr
2 , ..., Cr

mr denote the components of φn,r, labelled so that Cr
1 is the

component of Gφn,r which contains the ‘special’ cyclic vertex i1 defined in Step
2. (Note that by construction, the vertex i1 is a cyclic vertex of φn,r for each
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r ≥ 1). It follows from the construction of φn,r that for each component Cr
k of

Gφn,r , there is a vertex in the set Vr−1 which is also a cyclic vertex in Cr
k . Noting

this, we can construct the set Vr ⊆ Vr−1 as follows: For each 2 ≤ k ≤ mr(n),
consider the vertices Vr−1 which are cyclic in Cr

k and select the vertex which
has smallest index in Vr−1. Include the selected vertex in the set Vr. Once the
set Vr is constructed, reindex the vertices so that Vr = {i2, i3, ..., imr(n)} and
ik ∈ Cr

k for 2 ≤ k ≤ mr(n).
Define the new mapping φn,r+1 as follows:

(a) For each vertex i /∈ Vr, set φn,r+1(i) = φn,r(i).

(b) For vertex ik ∈ Vr, the value of φn,r+1(ik) is determined as follows:

i. Initially, select a vertex jk at random such that for each 1 ≤
m ≤ r, cik ,jk = cik(m : n) with probability 1/n and such that
cik ,jk = cik(r + 1 : n) with probability (n− r)/n.

ii. If jk /∈ Cr
k , set φn,r+1(ik) = jk. If jk ∈ Cr

k and cik ,jk < φn,r(ik),
set φn,r+1(ik) = jk; otherwise set φn,r+1(ik) = φn,r(ik).

If the graph Gφn,r+1 associated with the mapping φn,r+1 is connected, remove
the edge (i1, φn,r+1(i1)) to obtain the directed rooted tree T̂n with root i1. If
Gφn,r+1 is not connected, then repeat Step 3.

Remark. Here is the idea behind the algorithm. To create the mapping
φn,r+1, we break the cycles of the components of Gφn,r at each of the vertices
in Vr = {i2, i3, . . . , imr(n)} (the cycle containing the vertex i1 is never broken).
We then map the vertices i2, i3, . . . , imr(n) to ‘new’ vertices and the other edges
in the mapping remain unchanged. The new graph Gφn,r+1 typically has fewer
connected components than Gφn,r and if Gφn,r+1 is not connected then at least
some of the vertices in the set Vr = {i2, i3, . . . , imr(n)} will also be cyclic vertices
in Gφn,r+1. We construct a new set of vertices Vr+1 by selecting a subset of Vr
which consists of cyclic vertices of Gφn,r+1. One iteration of the algorithm is
illustrated by Figures 1 and 2.

In the next section we investigate the asymptotic distribution of the variable
c(Tn). Our analysis is based on the observation that

c(φn,1)− cı̂,φn,1(̂ı) ≤ c(Tn) ≤ c(T̂n).

The magnitude of the difference c(T̂n) − (c(φn,1) − cı̂,φn,1(̂ı)) depends, in part,
on the number of iterations, Nn, of the algorithm which are required to con-
struct the heuristic tree T̂n and on the number of components, m1(n), in the
first mapping which is constructed by the algorithm. We conclude this sec-
tion by establishing suitable bounds for the tail probabilities P (Nn > M) and
P (m1(n) > a). These bounds are needed for the calculations in Section 3.

We begin by noting that Nn > M if and only if the graphs Gφn,1 , Gφn,2 , . . . , Gφn,M

are not connected. Thus, a bound for P (Gφn,1 , Gφn,2 , . . . , Gφn,M are not con-
nected) yields a bound for P (Nn > M). To obtain this bound we appeal to the
following theorem.
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Figure 1: Gφn,1 with V1 = {i2, i3, i4}
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Figure 2: Gφn,2 with V2 = {i3}
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Theorem (Ross [10]). Suppose that X1,X2, ...,Xn are i.i.d. random variables
such that

P (X1 = j) = λj j = 0, 1, . . . , n and
n∑
j=0

λj = 1.

Let G be the random digraph on the vertices 0, 1, . . . , n obtained by constructing
a directed edge from i to j if Xi = j. Then P (G is connected) = λ0.

Remark. Note that the vertex 0 in Ross’s random digraph G always has
out-degree zero.

We use Ross’s theorem to obtain a bound for the conditional probability

P (Gφn,2 , Gφn,3 , . . . , Gφn,M are not connected | Gφn,1 is not connected, |C1|),

where |C1| is the size of the largest component in Gφn,1 . We begin by considering
the probability that the graph Gφn,2 is not connected given that the graph Gφn,1

is not connected and given |C1|. To apply the theorem, we treat each component
Ck in Gφn,1 as a ‘vertex’ and we construct a directed graph on these ‘vertices’
such that there is a directed edge from ‘vertex’ Ck to ‘vertex’ Cj if φn,2(ik) ∈ Cj .
It follows from the construction of the mapping φn,2 that

P (vertex Ck is mapped to vertex Cj) = P (φn,2(ik) ∈ Cj) =
|Cj |
n

,

and this holds for every k and j. Note that the ‘graph’ on the ‘vertices’
C1, C2, .., Cm1 is connected if and only if the graph Gφn,2 is connected. In
this case, the ‘vertex’ C1 plays the special role of the vertex 0 in Ross’s theorem
and, applying the theorem, we have

P (Gφn,2 is not connected | Gφn,1 is not connected, |C1|) = 1− |C1|
n

.

Similarly, for r > 1, if Gφn,r is not connected, we can treat the components
Cr

1 , Cr
2 , . . . , Cr

mr of Gφn,r as ‘vertices’ of a directed graph. In this case, the
component Cr

1 which contains i1 is the ‘special’ vertex, and Ross’s theorem
yields

P (Gφn,r+1 is not connected | Gφn,r is not connected, |Cr
1 |) = 1− |C

r
1 |

n
.

Note that |Cr
1 | ≥ |C1| for r > 1, so it follows that

P (Gφn,2 , Gφn,3 , . . . , Gφn,M are not connected | Gφn,1 is not connected, |C1|)

≤
(

1− |C1|
n

)M−1

. (1)

It is clear from inequality (1) that we need to determine the distribution
of |C1| = |C1(n)|, the size of the largest component, C1(n), in Gφn,1 . (We
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write C1(n) in order to emphasize that the distribution of |C1(n)| depends
on the number of vertices, n, in the underlying graph Gφn,1 .) In particular,
we need to approximate P (|C1(n)| < m) for suitable values of m. As it is
difficult to determine P (|C1(n)| < m) directly, we exploit the following simple
observation. Let Ĉ1(n) denote the component in Gφn,1 which contains vertex
1, then |Ĉ1(n)| ≤ |C1(n)|. Hence, for all 1 ≤ m ≤ n, P (|Ĉ1(n)| < m) ≥
P (|C1(n)| < m). It is relatively easy to obtain an upper bound for P (|Ĉ1(n)| <
m), and thus an upper bound for P (|C1(n)| < m).

To bound P (|Ĉ1(n)| < m), we first determine P (|Ĉ1(n)| = k). The number
of ways to construct a connected random mapping on k labelled vertices is
given by (k− 1)!

∑k−1
n=0 kn/n! (see Bollobás [3]). Using this and straightforward

counting, we obtain

P (|Ĉ1(n)| = k) =

(
n− 1
k − 1

)
(k − 1)!

k−1∑
n=0

kn

n!
(n− k)n−k

nn

=
n!(n− k)n−k

(n− k)!nn+1

k−1∑
n=0

kn

n!
. (2)

It follows from the Berry-Esseen theorem (see Feller [5]) that for all k ≥ 1,∣∣∣∣∣
k−1∑
n=0

kne−k

n!
− 1

2

∣∣∣∣∣ ≤ 8
k3/2

,

and it follows from this and Stirling’s formula that for 1 ≤ k ≤ n− 1,∣∣∣∣∣P (|Ĉ1(n)| = k)− 1
2n
√

1− k/n

∣∣∣∣∣ ≤ C√
n

(
1

k3/2
+

1
(n− k)3/2

)
where C is a constant which does not depend on n or k. So, for 1 < M <

√
n,

we obtain

P (|C1(n)| < n

M
) ≤ P (|Ĉ1(n)| < n

M
)

≤
∑

k<n/M

1
2n
√

1− k/n
+ O(1/

√
n)

≤
∫ 1/M

0

1
2
√

1− x
dx + O(1/

√
n)

= 1−
√

1− 1/M + O(
1√
n

)

≤ C̃

M
(3)

where the constant C̃ does not depend on n or M .
The bound obtained above is not tight enough for our purposes, but we can

use (3) to obtain a tighter bound. We first introduce some further notation.
Let Ĉ2(n) denote the component in Gφn,1 which contains the smallest vertex
not in Ĉ1(n) (let Ĉ2(n) = ∅ if Ĉ1(n) = Gφn,1). In general, for k > 1, let
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Ĉk(n) denote the component in Gφn,1 which contains the smallest vertex not
in Ĉ1(n) ∪ ... ∪ Ĉk−1(n) provided Ĉ1(n) ∪ ... ∪ Ĉk−1(n) 6= Gφn,1 . Otherwise, let
Ĉk(n) = ∅. We note that if |C1(n)| < n

M , then Gφn,1 must have at least M
components and we must have

P (|C1(n)| < n

M
) ≤ P (|Ĉ1(n)| < n

M
, |Ĉ2(n)| < n

M
, . . . , |Ĉk(n)| < n

M
) (4)

for any 1 < k < M < n. This observation and the following lemma establish a
sufficiently tight bound for P (|C1(n)| < n/M) for suitable values of M .

Lemma 2.1. For any k ≥ 1 and all M and n such that k < M <
√

n

P

(
|Ĉ1(n)| < n

M
, |Ĉ2(n)| < n

M
, . . . , |Ĉk(n)| < n

M

)
≤
(

C̃

M

)k k−1∏
j=1

(
1− j

M

)−1

where C̃ is a constant which does not depend on k,M, or n.

Proof. The proof is by induction on k. For k = 1 and 1 < M <
√

n, the
result follows from (3).

Suppose that the result holds for k − 1 ≥ 1 and suppose that M and n are
such that k < M <

√
n, then we have

P

(
|Ĉ1(n)| < n

M
, . . . , |Ĉk(n)| < n

M

)
=

∑
j1,j2,...,jk−1<n/M

P
(
|Ĉ1(n)| = j1, . . . , |Ĉk−1(n)| = jk−1

)
·
∑

jk<n/M

P
(
|Ĉk(n)| = jk

∣∣∣ |Ĉ1(n)| = j1, . . . , |Ĉk−1(n)| = jk−1

)
.(5)

Let a(j) = (j − 1)!
∑j−1
n=0 jn/n!, the number of ways to construct a connected

mapping on j labelled vertices. Then for j1, j2, . . . , jk < n/M , counting yields

P
(
|Ĉk(n)| = jk

∣∣∣ |Ĉ1(n)| = j1, . . . , |Ĉk−1(n)| = jk−1

)
=

(n−1
j1−1

)(n−j1−1
j2−1

)
· · ·
(n−j1−···−jk−1−1

jk−1

)∏k
m=1 a(jm)

(
n−∑k

m=1 jm
)n−j1−···−jk

(n−1
j1−1

)
· · ·
(n−j1−···−jk−2−1

jk−1−1

)∏k−1
m=1 a(jm)

(
n−∑k−1

m=1 jm
)n−j1−···−jk−1

=

(n−j1−···−jk−1−1
jk−1

)
a(jk)

(
n−∑k jm

)n−j1−···−jk
(n− j1 − · · · − jk−1)n−j1−···−jk−1

= P (|Ĉ1(n− j1 − · · · − jk−1)| = jk).

The last equality follows from formula (2). Thus, for any j1, . . . , jk−1 <
n/M , ∑

jk<n/M

P (|Ĉk(n)| = jk | |Ĉ1(n)| = j1, . . . , |Ĉk−1(n)| = jk−1)
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=
∑

jk<n/M

P (|C1(n− j1 − · · · − jk−1)| = jk)

= P

(
|Ĉ1(n− j1 − · · · − jk−1)| <

n

M

)
≤ C̃n

M(n− j1 − · · · − jk−1)

≤ C̃

M(1− (k − 1)/M)
.

The first inequality follows from the bound (3). Substituting this bound into
(5), summing over j1, j2, . . . , jk−1 < n/M , and using the induction hypothesis,
we obtain

P

(
|Ĉ1(n)| < n

M
, . . . , |Ĉk(n)| ≤ n

M

)
≤ P

(
|Ĉ1(n)| < n

M
, . . . , |Ĉk−1(n)| < n

M

)
C̃

M(1− (k − 1)/M)

≤
(

C̃

M

)k k−1∏
j=1

(1− j

M
)−1.

It follows from the lemma and inequality (4), that for any M <
√

n

P

(
|C1(n)| < n

M

)
≤
(

C̃

M

)b√Mc b√Mc−1∏
j=1

(
1− j

M

)−1

≤ e

(
C̃

M

)b√Mc
.

Using this bound and (1), we obtain the following lemma.

Lemma 2.2. Suppose that M is a positive integer such that eC̃ <
√

M <
√

n,
where C̃ is the constant in Lemma 2.1, then

P (Nn > M) ≤ Ke−
4√
M ,

where K is a constant which does not depend on n (but which may depend on
C̃).

Proof.

P (Nn > M) = P (Gφn,1 , . . . , Gφn,M are not connected)

=
n∑

m=1

P (Gφn,1 , . . . , Gφn,M are not connected | |C1(n)| = m) P (|C1(n)| = m)

≤
∑

m≥n/
√
M

P (Gφn,1 , . . . , Gφn,M are not connected | |C1(n)| = m)P (|C1(n)| = m)

+
∑

m<n/
√
M

P (|C1(n)| = m)
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≤
∑

m≥n/
√
M

(
1− m

n

)M−1

P (|C1(n)| = m) + P
(
|C1(n)| < n/

√
M
)

≤
(

1− 1√
M

)M−1

+ P

(
|C1(n)| < n√

M

)

≤
(

1− 1√
M

)M−1

+ e

(
C̃√
M

)b 4√Mc

≤ K(e−
4√M )

where K is a constant which does not depend on n.
Finally, we state the bound for P (m1(n) > a) as a lemma.

Lemma 2.3. Suppose that a > 1, then

P (m1(n) > a) ≤ K̃ exp

−√2a√
log n

+

√
log n

2


where K̃ is a constant which does not depend on n.

Proof. The random variable m1(n) equals the number of connected compo-
nents in a (uniform) random mapping on n labelled vertices and has a moment
generating function Φn(t) = E(etm1(n)), which exists for all t ∈ R. Flajolet and
Soria [6] have shown that as n→∞

e−
√

logn/2Φn

( √
2t√

log n

)
→ et

2/2.

It follows that the distribution of m1(n) has exponential tails. In particular,

P (m1(n) > a) = P

(√
2m1(n)√
log n

>

√
2a√

log n

)

= P

(
exp

(√
2m1(n)√
log n

)
> exp

( √
2a√

log n

))

≤ exp

(
−
√

2a√
log n

)
E

(
exp

(√
2m1(n)√
log n

))

= exp

−√2a√
log n

+

√
log n

2

(exp(−
√

log n/2)Φn

(√
2/ log n

))

≤ K̃ exp

−√2a√
log n

+

√
log n

2

 .

Remark. Note that the bound obtained in the lemma is meaningful only if
a > (log n)/2.
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3 Asymptotic Results for c(Tn)

In this section we establish asymptotic results for c(Tn). The results are based
upon the following observations. First, by construction, c(φn,1) =

∑n
i=1 ci(1 :

n), where c1(1 : n), . . . , cn(1 : n) are i.i.d. random variables, so standard results
from probability theory can be employed to establish various limit laws for
c(φn,1). Now provided that c(Tn) is suffificiently close to c(φn,1) (with high
probability) as n → ∞, a limit law which holds for c(φn,1) can be shown also
to hold for c(Tn). Thus, to convert a limit law for c(φn,1) into a result for c(Tn)
we first need a bound for |c(Tn)− c(φn,1)|. The bound that we use is based on
the observation that

c(φn,1)− cı̂,φn,1(̂ı) ≤ c(Tn) ≤ c(T̂n) = c(φn,Nn)− ci1,φn,1(i1).

It follows that

|c(Tn)− c(φn,1)| ≤ |c(φn,Nn)− c(φn,1)|+ cı̂,φn,1 (̂ı). (6)

By construction of the mapping φn,Nn , we have

c(φn,Nn) ≤
∑
i/∈V1

ci(1 : n) +
∑
ik∈V1

cik(Nn : n)

and so

|c(φn,Nn)− c(φn,1)| ≤
∑
ik∈V1

(cik(Nn : n)− cik(1 : n)) ≤
∑
ik∈V1

cik(Nn : n). (7)

Combining (6) and (7) yields the bound

|c(Tn)− c(φn,1)| ≤
∑
ik∈V1

cik(Nn : n) + cı̂,φn,1 (̂ı).

Using this bound, we now establish conditions which guarantee that a central
limit theorem holds for c(Tn) whenever a central limit theorem holds for c(φn,1).

Theorem 3.1. For n ≥ 1, let the variables Tn, {ci(k : n) : 1 ≤ i ≤ n, 1 ≤
k ≤ n, n = 1, 2, . . .},and cı̂,φn,1(̂ı) be as defined in Section 2. Suppose that
V ar(c1(1 : n)) <∞ and that

c(φn,1)−E(c(φn,1))√
V ar(c(φn,1)

=
c(φn,1)− nE(c1(1 : n))√

n
√

V ar(c1(1 : n))

converges in distribution to the Normal(0,1) distribution as n→∞. If

• (a)

lim
n→∞

E(cı̂,φn,1 (̂ı))√
n(V ar(c1(1 : n))1/2

= 0, and

• (b) if for each integer M > 0

lim
n→∞

(log n)E(c1(M : n))√
n(V ar(c1(1 : n))1/2

= 0,

11



then
c(Tn)−E(c(φn,1))√

V ar(c(φn,1))

also converges in distribution to the N(0, 1) distribution as n→∞.

Remark. To show that

(c(φn,1)−E(c(φn,1))√
V ar(c(φn,1))

converges weakly to the standard normal distribution, one can appeal to Lia-
pounov’s theorem (see Chung [4]). In particular, it suffices to check that

lim
n→∞

E(c1(1 : n))3

√
n(V ar(c1(1 : n)))3/2

= 0.

Proof. Since
c(φn,1)−E(c(φn,1))√

V ar(c(φn,1))

converges in distribution to the standard normal distribution, it suffices to show
that

|c(Tn)− c(φn,1)|√
V ar(c(φn,1))

→ 0

in probability. Let An = {Nn < M,m1(n) < log n} where M is an arbitrary
positive integer and let the ordered triple (j,m, S) denote the event {Nn =
j, m1(n) = m, V1 = S} where |S| = m− 1. Then for any ε > 0

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε


≤

∑
(j,m,S)∈An

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε

∣∣∣∣∣ (j,m, S)

P ((j,m, S)) + P (Ac
n).

(8)

In order to bound the conditional probabilities in the sum on the RHS of
(8), we first establish that the variables {ci(k : n) : 1 ≤ i ≤ n, 1 ≤ k ≤ n} are
independent of the event {Nn = j, m1(n) = m, V1 = S} for each j,m > 0 and
S ⊆ {1, 2, . . . , n} such that |S| = m− 1.

For each n ≥ 1, define variables Xi(k : n) for 1 ≤ i ≤ n, 1 ≤ k ≤ n, by
setting Xi(k : n) = j if cij = ci(k, n). Note that for each n ≥ 1, the σ-algebras
generated by {ci(k : n) : 1 ≤ i ≤ n, 1 ≤ k ≤ n} and {Xi(k : n) : 1 ≤ i ≤ n, 1 ≤
k ≤ n}, respectively, are independent. Also, given the values of Xi(k : n) for
1 ≤ i ≤ n and 1 ≤ k ≤ n, then the set V1 and the values of Nn and m1(n) are
completely determined, i.e. the event {V1 = S,Nn = j,m1(n) = k} ∈ σ{Xi(k :

12



n) : 1 ≤ i ≤ n, 1 ≤ k ≤ n}, and hence this event is independent of the variables
{ci(k : n) : 1 ≤ n, 1 ≤ k ≤ n}.

Now suppose that V1 = S = {i2, i3, . . . , im1(n)},Nn = j ≤M , and m1(n) =
m. Then it follows from (6) and (7) that

|c(Tn)− c(φn,1| ≤ |c(φn,j)− c(φn,1)|+ cı̂,φn,1(̂ı)

≤
∑
ik∈V1

(cik(j : n) + cı̂,φn,1(̂ı)

≤
∑
ik∈V1

cik(M : n) + cı̂,φn,1(̂ı).

Thus, since the event {V1 = S,Nn = j,m1(n) = m} and the variables {ci(k :
n) : 1 ≤ i ≤ n, 1 ≤ k ≤ n} are independent, we have

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε

∣∣∣∣∣ (j,m, S)


≤ P

∑ik∈S cik(M : n) + cı̂,φn,1(̂ı)√
V ar(c(φn,1))

> ε

∣∣∣∣∣ (j,m, S)


= P

∑ik∈S cik(M : n) + cı̂,φn,1(̂ı)√
V ar(c(φn,1))

> ε


≤

mE(c1(M : n)) + E(cı̂,φn,1(̂ı))

ε
√

nV ar(c1(1 : n))

≤
(log n)E(c1(M : n)) + E(cı̂,φn,1(̂ı))

ε
√

nV ar(c1(1 : n))
. (9)

The last inequality holds since m < log n. We substitute the bound given by
(9) into the terms in the sum on the RHS of inequality (8) to obtain

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε


≤

(
(log n)E(c1(M : n)) + E(cı̂,φn,1 (̂ı))

ε
√

nV ar(c1(1 : n))

)
P (An) + P (Ac

n).

It follows from the above inequality and the hypotheses that

lim sup
n→∞

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε

 ≤ lim sup
n→∞

P (Ac
n).

Since Ac
n corresponds to the event ‘Nn ≥M or m1(n) ≥ log n’,

P (Ac
n) ≤ P (Nn ≥M) + P (m1(n) ≥ log n).

It follows from Lemmas 2.2 and 2.3 that lim supn→∞ P (Nn ≥ M) ≤ Ke−
4√M

and limn→∞ P (m1(n) ≥ log n) = 0, so

lim sup
n→∞

P (Ac
n) ≤ Ke−

4√M .
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Since M was arbitray, we conclude that

lim sup
n→∞

P

 |c(Tn)− c(φn,1)|√
V ar(c(φn,1))

> ε

 = 0.

Adapting the arguments from the proof of Theorem 3.1, we can also establish
the following result.

Theorem 3.2. For n ≥ 1, let the variables Tn, cı̂,φn,1 (̂ı) and {ci(k : n) : 1 ≤
i ≤ n, 1 ≤ k ≤ n, n ≥ 1} be as in Section 2. Suppose that E(c1(1 : n)) < ∞
and that

c(φn,1)
E(c(φn,1))

=
c(φn,1)

nE(c1(1 : n))
→ 1

in probability as n→∞. If

• (a)

lim
n→∞

E(cı̂,φn,1(̂ı))
nE(c1(1 : n))

= 0, and

• (b) if for each integer M > 0

lim
n→∞

(log n)E(c1(M : n))
nE(c1(1 : n))

= 0,

then we also have
c(Tn)

nE(c1(1 : n))
→ 1

in probability as n→∞.

Proof. Since
c(φn,1)− cı̂,φn,1 (̂ı)

nE(c1(1 : n))
≤ c(Tn)

nE(c1(1 : n))
≤

c(φn,1) +
∑
ik∈V1

cik(Nn : n)
nE(c1(1 : n))

, (10)

it suffices to show that, in probability, both cı̂,φn,1(̂ı){nE(c1(1 : n))}−1 → 0 and∑
ik∈V1

cik(Nn : n){nE(c1(1 : n))}−1 → 0 as n→∞.
It is immediate, by assumption (a), that cı̂,φn,1(̂ı){nE(c1(1 : n))}−1 → 0

in probability. To show that
∑
ik∈V1

cik(Nn : n){nE(c1(1 : n))}−1 → 0 in
probability, we repeat the conditioning argument given in the proof of Theorem
3.1 to establish that

P


∣∣∣∑ik∈V1

cik(Nn : n)
∣∣∣

nE(c1(1 : n))
> ε

 ≤ (log n)E(c1(M : n))
εnE(c1(1 : n))

P (An) + P (Ac
n)

where An = {Nn < M, m1(n) < log n} and M is an arbitrary postive integer.
Using assumption (b) and repeating the argument from the proof of Theorem
3.1 we obtain

lim sup
n→∞

P


∣∣∣∑ik∈V1

cik(Nn : n)
∣∣∣

nE(c1(1 : n))
> ε

 ≤ lim sup
n→∞

P (Ac
n) ≤ Ke−

4√M .

Since M was arbitrary, the result follows.
Finally, we establish a result for the asymptotic value of E(c(Tn)).
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Theorem 3.3. For n ≥ 1, let the variables Tn, cı̂,φn,1 (̂ı) and {ci(k : n) : 1 ≤
i ≤ n, 1 ≤ k ≤ n, n ≥ 1} be as in Section 2. Suppose that E(c1(n : n)) <∞ for
all n ≥ 1 and that

• (i)

lim
n→∞

E(cı̂,φn,1(̂ı))
nE(c1(1 : n))

= 0.

In addition, suppose there exist sequences {an} and {Mn} such that an → ∞
and Mn →∞ as n→∞, and such that

• (ii)

lim
n→∞

anE(c1(Mn : n))
nE(c1(1 : n))

= 0,

• (iii)

lim
n→∞

E(c1(n : n))
E(c1(1 : n))

P (m1(n) > an) = 0, and

• (iv)

lim
n→∞

E(c1(n : n))
E(c1(1 : n))

P (Nn > Mn) = 0.

Then we have

lim
n→∞

E(c(Tn))
E(c(φn,1))

= 1.

Remark. To apply Theorem 3.3, some care must be used when choosing
the sequences {an} and {Mn}. The choice of an and Mn will depend on the
distribution of the cost variables cij . Both an and Mn must grow slowly enough
to ensure the that condition (ii) holds whilst growing fast enough to guarantee
that (iii) and (iv) also are satisfied.

Proof. As before, it follows from the construction of the algorithm and from
(10) that

1−
E(cı̂,φn,1(̂ı))

nE(c1(1 : n))
≤ E(c(Tn))

nE(c1(1 : n))
≤ 1 +

E
(∑

ik∈V1
cik(Nn : n)

)
nE (c1(1 : n))

.

By condition (i), we have 1 ≤ lim infn→∞{E(c(Tn))/E(c(φn,1))}, so it suffices
to show that

lim
n→∞

E
(∑

ik∈V1
cik(Nn : n)

)
nE(c1(1 : n))

= 0.

Let Bn = {m1(n) ≤ an,Nn ≤Mn}. Then by suitably modifying the condi-
tioning argument given in the proof of Theorem 3.1, we obtain

E
(∑

ik∈V1
cik(Nn : n)

)
nE(c1(1 : n))
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≤ anE(c1(Mn : n))
nE(c1(1 : n))

+
E
(∑

ik∈Vk cik(Nn : n) | Bc
n

)
nE(c1(1 : n))

P (Bc
n)

≤ anE(c1(Mn : n))
nE(c1(1 : n))

+
E (
∑n
i=1 ci(n : n))

nE(c1(1 : n))
P (Bc

n)

≤ anE(c1(Mn : n))
nE(c1(1 : n))

+
E(c1(n : n))
E(c1(1 : n))

(P (m1(n) > an) + P (Nn > Mn)) .(11)

Hence, it follows from (ii), (iii), and (iv) that the limit of the LHS of (11) is 0
as n→∞, and this completes the proof of the theorem.

Remark. The theorems proved above are not necessarily the most general
results that can be obtained, but the hypotheses of the theorems are usually
straightforward to check. In particular, we only need to verify certain moment
conditions for the order statistics of the variables c11, c12, ...c1n. Nevertheless,
verifying these conditions for some cost distributions can still be quite tricky.
In the next section we consider two examples, costs with a power distribution
and costs with a Weibull distribution, and we indicate some of the calculations
that are typically used to verify the hypotheses of the theorems. Calculations
for other distributions are left to the reader.

4 Examples and Discussion

4.1 Random costs with a power distribution

Suppose that for each i, j ≥ 1, the cost variable cij has a power distribution
with parameter ν > 0 and density f(x) = νxν−1 for 0 < x < 1. To apply
Theorem 3.1, we first verify that the Central Limit Theorem holds for the array
{ci(1 : n) : 1 ≤ i ≤ n, n ≥ 1}. By Liapounov’s theorem, it suffices to show that
limn→∞E(c1(1 : n)3)/

√
n(V ar(c1(1 : n)))3 = 0. It is known (see [1]) that for

1 ≤ k ≤ n and m ≥ 1,

E ((c1(k : n))m) =
Γ(n + 1)Γ(k + m/ν)
Γ(n + 1 + m/ν)Γ(k)

and Stirling’s formula yields

E(c1(1 : n)) =
Γ(n + 1)Γ(1 + 1/ν)

Γ(n + 1 + 1/ν)
∼ Γ(1 + 1/ν)

n1/ν
(12)

V ar(c1(1 : n)) =
Γ(n + 1)Γ(1 + 2/ν)

Γ(n + 1 + 2/ν)
−
(

Γ(n + 1)Γ(1 + 1/ν)
Γ(n + 1 + 1/ν)

)2

∼ Γ(1 + 2/ν)− (Γ(1 + 1/ν))2

n2/ν
(13)

E((c1(1 : n))3) =
Γ(n + 1)Γ(1 + 3/ν)

Γ(n + 1 + 3/ν)
∼ Γ(1 + 3/ν)

n3/ν
. (14)

Thus, it follows from Liapounov’s theorem that the Central Limit Theorem
holds for the array.
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Next we check that conditions (a) and (b) of Theorem 3.1 are satisfied. To
establish condition (a), note that for any β < 0

E(cı̂,φn,1 (̂ı)) ≤ nβ +
∫ 1

nβ
P (cı̂,φn,1(̂ı) > x)dx

≤ nβ + n

∫ 1

nβ
P (c1(1 : n) > x)dx

= nβ + n

∫ 1

nβ
(P (c11 > x))ndx

= nβ + n

∫ 1

nβ
(1− xν)ndx

≤ nβ + n(1− nβν)n.

It follows from this and from the asymptotics for V ar(c1(1 : n)) that

E(cı̂,φn,1(̂ı))√
nV ar(c1(1 : n))

≤ C(nβ−1/2+1/ν + n1/2−1/ν(1− nβν)n) (15)

where C is a positive constant which may depend on ν, but which does not
depend on n. Choose β so that − 1

ν < β < min(0, 1/2 − 1/ν), then the RHS of
(15) goes to 0 as n→∞, and this establishes condition (a).

Next we verify that consition (b) is satisfied. Stirling’s formula yields

(log n)E(c1(M : n))√
nV ar(c1(1 : n))

∼ Γ(M + 1/ν)
Γ(M)

√
Γ(1 + 2/ν)− (Γ(1 + 1/ν))2

log n√
n

so the condition is satisfied and we have
c(Tn)− nE(c1(1 : n))√

nV ar(c1(1 : n))
→ N(0, 1)

in distribution as n → ∞. It also follows from the asymptotic formulas for
E(c1(1 : n)) and V ar(c1(1 : n)), that

n1/ν−1/2c(Tn)√
Γ(1 + 2/ν) − (Γ(1 + 1/ν))2

−
√

nΓ(1 + 1/ν)√
Γ(1 + 2/ν)− (Γ(1 + 1/ν))2

→ N(0, 1)

in distribution as n→∞.
It is easy to check (the calculations are similar to those given above) that the

hypotheses of Theorem 3.2 are satisfied and so c(Tn)/{nE(c1(1 : n))}−1 → 1 in
probability as n→∞. Since E(c1(1 : n)) ∼ Γ(1 + 1/ν)n−1/ν , we also have

c(Tn)
Γ(1 + 1/ν)n1−1/ν

→ 1

in probability.
Finally, the conditions of Theorem 3.3 are satisfied if we let an = (1/ν)(log n)3/2

and Mn = d(log n)5e. It is easy to check that conditions (i) and (ii) hold. To ver-
ify that conditions (iii) and (iv) hold, note that the variables {cij} are bounded,
and in particular, E(c1(n : n) ≤ 1 for all n ≥ 1. Thus

E(c1(n : n))P (m1(n) > an)
E(c1(1 : n))

≤ P (m1(n) > an)
E(c1(1 : n))

∼ n1/νP (m1(n) > an)
Γ(1 + 1/ν)

. (16)
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Applying Lemma 2.3 with an = (1/ν)(log n)3/2, we obtain

n1/νP (m1(n) > (1/ν)(log n)3/2) ≤ K̃n1/ν exp(−
√

2(1/ν)(log n) +
√

log n/2)

where K̃ is a positive constant that may depend on ν but which does not depend
on n. Thus, when an = (1/ν)(log n)3/2, the RHS of (16) goes to 0 as n → ∞,
and condition (iii) is satisfied. Likewise,

E(c1(n : n))P (Nn > Mn)
E(c1(1 : n))

≤ P (Nn > Mn)
E(c1(1 : n))

∼ n1/νP (Nn > Mn)
Γ(1 + 1/ν)

, (17)

and it follows from Lemma 2.2, that for Mn = d(log n)5e,

n1/νP (Nn > Mn) ≤ Kn1/ν exp(−(log n)5/4)

where K is a positive constant which may depend on ν, but which does not
depend on n. Hence the RHS of (17) goes to 0 as n → ∞, condition (iv) is
satisfied, and we obtain

lim
n→∞

E(c(Tn)
Γ(1 + 1/ν)n1−1/ν

= 1

4.2 Random costs with a Weibull distribution

Suppose that for each i, j ≥ 1, cij has a Weibull distribution with parameter
δ > 0 and density f(x) = δxδ−1 exp(−xδ) for x ≥ 0. To apply Theorem 3.1,
we must verify that the Central Limit Theorem holds for the array {ci(1 :
n) : 1 ≤ i ≤ n, n ≥ 1}. Recall that it suffices to show that limn→∞E(c1(1 :
n)3)/

√
n(V ar(c1(1 : n)))3 = 0. It is known (see [1]) that for 1 ≤ k ≤ n and

m ≥ 1,

E ((c1(k : n))m) =
n!

(k − 1)!(n− k)!
Γ(1+m/δ)

k−1∑
r=1

(
k − 1

r

)
(n−k+r+1)−1−m/δ.

Thus

E(c1(1 : n)) =
Γ(1 + 1/δ)

n1/δ
,

V ar(c1(1 : n)) =
Γ(1 + 2/δ) − (Γ(1 + 1/δ))2

n2/δ
,

E((c1(1 : n))3) =
Γ(1 + 3/δ)

n3/δ

and hence the Central Limit Theorem holds for the array.
Next we check that conditions (a) and (b) of the theorem are satisfied. For

all the calculations given below, let γ = (Γ(1 + 2/δ) − (Γ(1 + 1/δ))2)−1/2. To
establish condition (a), note that for any β ∈ R,

E(cı̂,φn,1(̂ı)) ≤ nβ +
∫ ∞
nβ

P (cı̂,φn,1 (̂ı) > x)dx

18



≤ nβ + n

∫ ∞
nβ

P (c1(1 : n) > x)dx

= nβ + n

∫ ∞
nβ

(P (c11 > x))ndx

= nβ + n

∫ ∞
nβ

e−nx
δ
dx

= nβ + n1+1/δ
∫ ∞
nβ+1/δ

e−u
δ
du.

Thus

E(cı̂,φn,1 (̂ı))√
nV ar(c1(1 : n))

≤ γ

(
nβ−1/2+1/δ + n1/2+2/δ

∫ ∞
nβ+1/δ

e−u
δ
du

)
, (18)

and, provided we choose β so that −1
δ < β < 1

2 −
1
δ , the RHS of (18) goes to 0

as n→∞. This establishes condition (a).
To check that condition (b) is satisfied we must obtain a bound for E(c1(M :

n). It is difficult to work directly with the exact expression for E(c1(M : n)),
so we employ a different approach. For each x > 0 and 1 ≤ j ≤ n, define
the indicator function Ij(x) by setting Ij(x) = 1 if c1j ≤ x (and Ij(x) = 0
otherwise). Let Sn(x) =

∑n
j=1 Ij(x), then for any β ∈ R

E(c1(M : n)) ≤ nβ +
∫ ∞
nβ

P (c1(M : n) > x)dx

= nβ +
∫ ∞
nβ

P (Sn(x) < M)dx.

There are two cases to consider. First, suppose that δ > 2 and choose β such
that 0 < β < 1/2 − 1/δ, then

log nE(c1(M : n))√
nV ar(c1(1 : n))

≤ γ(log n)nβ−1/2+1/δ+γ(log n)n1/δ−1/2
∫ ∞
nβ

P (Sn(x) < M)dx.

(19)
Clearly the first term on the RHS of (19) goes to zero as n→∞ (by choice of
β). Next, note that E(Sn(x)) = n(1−e−x

δ
) and V ar(Sn(x)) = ne−x

δ
(1−e−x

δ
),

so

γ(log n)n1/δ−1/2
∫ ∞
nβ

P (Sn(x) < M)dx

≤ γ(log n)
n1/2−1/δ

∫ ∞
nβ

P (|Sn(x)− n(1− e−x
δ
)| > n(1− e−x

δ
)−M)dx

≤ γ(log n)
n1/2−1/δ

∫ ∞
nβ

ne−x
δ
(1− e−x

δ
)

(n(1− e−xδ)−M)2
dx

≤ γ(log n)
(1− exp(−nβδ)−M/n)2n3/2−1/δ

∫ ∞
nβ

e−x
δ
dx. (20)

Thus the second term on the RHS of (19) goes to 0 as n → ∞ since the RHS
of (20) goes to 0 as n→∞.
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If δ ≤ 2, choose β such that −1/δ < β < 1/2− 1/δ < 0. Again, by choice of
β, the first term on the RHS of (19) goes to 0 as n → ∞. Next, observe that
P (Sn(x) < M) is a decreasing function of x, so

γ(log n)n1/δ−1/2
∫ ∞
nβ

P (Sn(x) < M)dx

≤ γ(log n)nα+1/δ−1/2P (Sn(nβ) < M) + γ(log n)n1/δ−1/2
∫ ∞
nα

P (Sn(x) < M)dx,

(21)

for any α > 0. Observe that 1− e−n
βδ ≤ nβδ since β < 0. So

P (Sn(nβ) < M) =
M−1∑
m=0

(
n

m

)
(1− e−n

βδ
)m(e−n

βδ
)n−m

≤
M−1∑
m=0

(n1+βδ)m(e−n
βδ

)n−m

≤ log n(n(1+βδ) logn)(e−(1/2)n1+βδ
).

Since 1 + βδ > 0, it follows from this inequality that the first term on the
RHS of (21) tends to 0 as n → ∞. To bound the second term on the RHS of
(21), we repeat the calculations used to obtain inequality (20) to obtain

γ(log n)
n1/2−1/δ

∫ ∞
nα

P (Sn(x) < M)dx ≤ γ(log n)
(1− exp(−nαδ)−M/n)2n3/2−1/δ

∫ ∞
nα

e−x
δ
dx.

(22)
Thus the second term on the RHS of (21) goes to 0 as n→∞, since the RHS
of (22) goes to 0 as n → ∞. So for all δ > 0, condition (b) of the theorem is
satisfied and we have

c(Tn)− Γ(1 + 1/δ)n1−1/δ√
nV ar(c1(1 : n))

→ N(0, 1)

in distribution as n→∞.
The weak law for c(Tn) follows immediately from the above calculations. In

particular, it is trivial to check that c(φn,1)

Γ(1+1/δ)n1−1/δ → 1 in probability as n→∞.
Also, both conditions (a) and (b) of Theorem 3.2 are satisfied since the hypothe-
ses of Theorem 3.1 are satisfied and since nE(c1(1 : n)) >

√
nV ar(c1(1 : n)) for

all sufficiently large n.
To apply Theorem 3.3, let an = (1+1/δ)(log n)3/2 and Mn = d(log n)5e, then

condition (i) is satisfied and, by suitably modifying the estimates calculated
above, it is easy to check that condition (ii) is satisfied. To verify that conditions
(iii) and (iv) hold, let F (x) denote the distribution function of c11 and note that

E(c1(n : n)) =
∫ ∞

0
P (c1(n : n) > x)dx

=
∫ ∞

0
1− (F (x))ndx

≤ lim
x→∞

xP (c1(n : n) > x) + n

∫ ∞
0

xf(x)dx

= nE(c11).
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Therefore, it follows from Lemma 2.3 that

E(c1(n : n))
E(c1(1 : n))

P (m1(n) > an) ≤
n1+1/δE(c11)
Γ(1 + 1/δ)

P (m1(n) > an)

≤ K̃n1+1/δ exp(−
√

2(1 + 1/δ) log n +
√

log n/2)
(23)

where K̃ is a constant which may depend on δ, but which does not depend on
n. Thus condition (iii) is satisfied since the RHS of (23) goes to 0 as n → ∞.
Similarly, it follows from Lemma 2.2, that

E(c1(n : n))
E(c1(1 : n))

P (Nn > Mn) ≤
n1+1/δE(c11)
Γ(1 + 1/δ)

P (Nn > Mn)

≤ Kn1+1/δ exp(−(log n)5/3) (24)

where K is a positive constant which may depend on δ, but which does not
depend on n. Thus condition (iv) is satisfied since the RHS of (24) goes to 0
as n→∞ and we have

E(c(Tn))
Γ(1 + 1/δ)n1−1/δ

→ 1

as n→∞.

Remark. Note that the uniform distribution corresponds to a power distri-
bution with ν = 1 and the exponential distribution with mean 1 corresponds
to a Weibull distribution with δ = 1. So the results obtained above for random
costs with either a power distribution or a Weibull distribution complement
and extend those obtained by McDiarmid [9].

There are various ways in which the results in this paper could be extended
and generalized. For example, much of the analysis of the algorithm remains
the same under the assumption that for each n ≥ 1 and 1 ≤ i ≤ n, the vectors
(ci1, ci2, . . . , cin) are i.i.d. and with a common nondegenerate, continuous and
exchangeable joint distribution. In particular, the distribution of m1(n) and Nn

remain the same and the statements of the theorems are unchanged. However,
it becomes more difficult to check the moment conditions for the order statistics
of the costs under the assumption of exchangeability.

It would be interesting to determine whether the methods of this paper
could be applied to other problems. Basically, results for c(Tn) can be obtained
because c(Tn) is bounded below by a sum of random variables whose distribution
is known and it is bounded above by a sum of variables which is obtained by
changing a relatively small number of values in the sum which bounds c(Tn)
from below. The magnitude of the difference between c(Tn) and its lower bound
is a function of the number of terms in the sum that are altered (which is just
m1(n)) and of the typical magnitude of an alteration of any given term (which
depends on the number of iterations, Nn, of the algorithm). This method
works because, for random mappings, m1(n)=O(log n) with high probability
and because size of the largest component of a random mapping is typically

21



Ω(n), which guarantees, by Ross’s theorem, that with high probability the
number of iterations of the algorithm will be relatively small compared to n.

Random mappings are one example of a random logarithmic combinatorial
structure (other examples include random permutations and 2-regular graphs).
A random logarithmic structure of size n decomposes into disjoint ‘components’
such that, with high probability, the number of components is O(log n) and the
size of the largest component is Ω(n) (see [2], [6], [7]). Hence, it may be pos-
sible to devise other algorithms to solve other optimisation problems so that
the algorithm sequentially modifies a random logarithmic structure and it can
be analyzed by methods similar to those used above. In fact, the ‘patching
algorithm’ of Karp and Steele [8] which modifies a minimal cost random per-
mutation to obtain a nearly optimal assignment does this but unfortunately
precise results for the cost of the minimal random permutation are not yet
known.

Acknowledgement. The author would like to thank Colin McDiarmid for
suggesting simplifications of the statements of Theorems 3.1 and 3.2.
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