Random mappings with a given number of cyclical points

Jennie C. Hansen* and Jerzy Jaworski ${ }^{\dagger \ddagger}$

Abstract

In this paper we consider a random mapping, \hat{T}_{n}, of the finite set $\{1,2, \ldots, n\}$ into itself for which the digraph representation \hat{G}_{n} is constructed by: (1) selecting a random number, \hat{L}_{n}, of cyclic vertices, (2) constructing a uniform random forest of size n with the selected cyclic vertices as roots, and (3) forming 'cycles' of trees by applying a random permutation to the selected cyclic vertices. We investigate \hat{k}_{n}, the size of a 'typical' component of \hat{G}_{n}, and, under the assumption that the random permutation on the cyclical vertices is uniform, we obtain the asymptotic distribution of \hat{k}_{n} conditioned on $\hat{L}_{n}=m(n)$. As an application of our results, we show in Section 3 that provided \hat{L}_{n} is of order much larger than \sqrt{n}, then the joint distribution of the normalized order statistics of the component sizes of \hat{G}_{n} converges to the Poisson-Dirichlet(1) distribution as $n \rightarrow \infty$. Other applications and generalizations are also discussed in Section 3.

[^0]
[^0]: *Actuarial Mathematics and Statistics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK. E-mail address: J.Hansen@ma.hw.ac.uk
 ${ }^{\dagger}$ Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland. E-mail address: jaworski@amu.edu.pl
 \ddagger J.Jaworski acknowledges the generous support by the Marie Curie Intra-European Fellowship No. 501863 (RANDIGRAPH) within the 6 th European Community Framework Programme.

