Random mappings with Ewens cycle structure

Jennie C. Hansen^{*} and Jerzy Jaworski^{†‡}

Abstract

In this paper we consider a random mapping, $\hat{T}_{n,\theta}$, of the finite set $\{1, 2, ..., n\}$ into itself for which the digraph representation $\hat{G}_{n,\theta}$ is constructed by: (1) selecting a random number, \hat{L}_n , of cyclic vertices, (2) constructing a uniform random forest of size n with the selected cyclic vertices as roots, and (3) forming 'cycles' of trees by applying to the selected cyclic vertices a random permutation with cycle structure given by the Ewens sampling formula with parameter θ . We investigate $\hat{k}_{n,\theta}$, the size of a 'typical' component of $\hat{G}_{n,\theta}$, and we obtain the asymptotic distribution of $\hat{k}_{n,\theta}$ conditioned on $\hat{L}_n = m(n)$. As an application of our results, we show in Section 3 that provided \hat{L}_n is of order much larger than \sqrt{n} , then the joint distribution of the normalized order statistics of the component sizes of $\hat{G}_{n,\theta}$ converges to the Poisson-Dirichlet (θ) distribution as $n \to \infty$.

^{*}Actuarial Mathematics and Statistics Department and The Maxwell Institute for Mathematical Sciences, Heriot–Watt University, Edinburgh EH14 4AS, UK; email: J.Hansen@hw.ac.uk

[†]Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland; email: jaworski@amu.edu.pl

 $^{^{\}ddagger}$ J. Jaworski acknowledges the support by the Marie Curie Intra-European Fellowship No. 236845 (RANDOMAPP) within the 7th European Community Framework Programme and by National Science Centre - DEC-2011/01/B/ST1/03943.

¹