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Abstract

Rule k (k=1,2,3,...) is a well known family of approximation algorithms that
can be used to find connected dominating sets in a graph. They were originally
proposed by Dai, Li, and Wu as the basis for efficient routing methods for ad
hoc wireless networks. In this paper we study the asymptotic performance of
Rules 1 and 2 on random unit disk graphs formed from n random points in an
`n × `n square region of the plane, and we show that:

• Rule 1 does poorly in the following sense: if `n = o(
√

n), then with asymp-
totic probability one, Rule 1 produces a connected dominating set consist-
ing of n− o(n) vertices.

• Rule 2 produces much smaller dominating sets on average: if `n = O(
√

n/ log n),
then Rule 2 produces a connected dominating set whose expected size is
O(n/(log log n)3/2).

These results complement our results in a companion paper [18] where we con-
sider the asymptotic performance of Rule k in the case where k ≥ 3.
keywords and phrases: coverage process, dominating set, localized algorithm,
performance analysis, probabilistic analysis, Rule 2, Rule k, unit disk graph



1 Introduction

In this paper we consider the problem of finding a small connected dominating
set for a unit disk graph G = (V, E), where the vertex set, V , is a set of points
in <2. Given the vertex set V , the edge set E is determined as follows: an
undirected edge e ∈ E connects vertices u, v ∈ V (and in this case we say that u
and v are adjacent) iff the Euclidean distance between them is less than or equal
to one. Unit disk graphs have been used by many authors as simplified math-
ematical models for the interconnections between hosts in a wireless network,
and random unit disk graphs have been used as stochastic models for these net-
works. e.g. [8],[13], [16],[17],[24],[25]. We particularly mention the work of the
Hipercom Project, e.g. [20],[21], because it is closely related to our work.

A dominating set in any graph G = (V, E) is a subset C ⊆ V such that every
vertex v ∈ V either is in the set C, or is adjacent to a vertex in C. We say C is a
connected dominating set if C is a dominating set and the subgraph induced by
C is connected. Obviously G cannot have a connected dominating set if G itself
is not connected. We use the acronym “CDS” for a dominating set C such that
the subgraph induced by C has the same number of components as G has. In
this paper we consider a random unit disk graph model, Gn, which is connected
with asymptotic probability one. So, in this case, any CDS for Gn will also be
connected with high probability.

The identification of a small connected dominating set for the graph which
represents a network is an important step in several routing methods. The gen-
eral idea of CDS-based algorithms is to select a small CDS, and have only those
nodes responsible for determining routes [9],[28],[30], [32]. However, it is an NP-
hard computational problem to find the minimal connected dominating set in
a unit disk graph [22]. Hence there is considerable practical interest in design-
ing good approximation algorithms for finding small connected dominating sets
(see, for example [2],[6],[7],[15],[26],[30]). In addition, in the context of ad hoc
wireless networks, it is particularly desirable to have decentralized algorithms
which allow individual hosts (i.e. vertices) to determine their membership in
the final CDS based on a very restricted set of information that is available
locally[12]. In a companion paper [18] we considered the average-case perfor-
mance of a family of such decentralized algorithms, called ‘Rule k’ (k ≥ 1),
which were proposed by Dai, Li, and Wu [10],[32] for determining a CDS. The
Rule k algorithm is decentralized in the sense that membership of a vertex v in
the CDS is determined solely by considering the two hop topology of the graph.
In other words, the only information used to determine whether to include v
in the CDS is the subgraph induced by vertices whose graph-distance from v is
two or less. Note in particular that no information about vertex v’s coordinates
in <2 or anything else about its global location within the network is used by
the algorithm.

In order to describe Rule k, we introduce some notation. We assume that
each vertex has a unique identifier taken from a totally ordered set. For con-
venience, when |V | = n, we will use the numbers 1, 2, . . . , n as IDs, and will
number the vertices accordingly. If xi is any vertex, with ID given by i, let
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N(xi) be the set consisting of xi and any vertices that are adjacent to xi. The
CDS constructed by the Rule k algorithm is denoted Ck(V ), and its cardinality
is Ck(V ) = |Ck(V )|. The elements of Ck(V ) are called “gateway nodes”. Ck(V )
consists of all vertices xi ∈ V that are not excluded under the following version
of Rule k:

Rule k: Vertex xi is excluded from Ck(V ) iff N(xi) contains at least one set
of k vertices xi1 , xi2 , . . . xik

such that

• i1 > i2 > · · · > ik > i, and

• The subgraph induced by
{
xi1 , xi2 , · · · , xik

}
is connected, and

• N(xi) ⊆
k⋃

t=1
N(xit).

Wu Li and Dai proved that Ck(V ) is a CDS, and they conjectured that Ck(V )
is, in some sense, small on average. In [18] we showed that, in the context of
an appropriate probability model and for k ≥ 3, their conjecture is true and in
this case E(Ck(V )) is also of the same order as the expected size of the minimal
CDS.

In this paper we give an average-case analysis of ‘Rule k’ for k = 1, 2 by
considering its performance when it is applied to a random unit disk graph
Gn. Specifically, let `1 ≤ `2 ≤ . . . be a sequence of real numbers such that
`n = O(

√
n/ log n) as n → ∞, but `n ≥ log n for all n. Let Qn be an `n × `n

square region in <2. Select n points Vn = {Xn,1, Xn,2, . . . , Xn,n} independently
and uniform randomly from an Qn, and use these n points as the vertex set
for a unit disk graph Gn. With this probabilistic model, C1(Vn) and C2(Vn)
are random variables and we prove asymptotic estimates for E(C1(Vn)) and
E(C2(Vn)) as n →∞.

To provide some perspective on our choice of growth rates for `n, we mention
that it is known that the threshold for connectivity is `n = Θ(

√
n/ log n); if `n

grows faster than this, then the random unit disk graph Gn will be disconnected
with probability 1− o(1) as n →∞. In this case, with high probability, Ck(Vn)
will not be a connected dominating set for Gn. More precise versions of these
remarks are provided in the new book by Penrose[27] which gives an up to date
survey of random geometric graphs.

We also note here that the bound obtained in [18] for E(Ck(Vn)) (k ≥ 3)
depends in a crucial way on the fact that for any unit disk D1 in <2 there
are always three points u, v, w ∈ D1 such that D1 is contained in the union
of the unit disks centered at u, v, and w. On the other hand, it is impossible
to find two points u, v ∈ D1 (other than the center of the disk) such that D1

is contained in the union of the unit disks centered at u and v. This means
that to analyze the performance of Rule 1 and Rule 2 we must also consider
certain geometrical issues. In particular, the analysis involves some interesting
problems in elementary geometry and geometric probability.
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The rest of this paper is organized as follows. In the next section we analyze
Rule 1 and show that E(C1(Vn)) = n − o(n) when `n = o(n1/2). In Section
3 we prove a geometric lemma that is needed in Section 4 to obtain a local
coverage result. In the remainder of the paper, we use the local coverage result to
obtain an upper bound for E(C2(Vn) and we discuss optimality issues. Finally,
throughout the remainder of this paper we adopt the following notation. For
any points P = (p1, p2) and Q = (q1, q2) in <2, let d(P, Q) denote the ordinary
Euclidean distance between P and Q in <2. For any r > 0, and any P ∈ <2,
let Dr(P ) =

{
W ∈ <2|d(P, Q) ≤ r

}
be a closed disk of radius r, centered at P .

2 Analysis of Rule 1

According to Rule 1, a vertex v is excluded from C1(Vn) only if it has a neighbor
w such that N(v) ⊆ N(w). We need not consider node IDs (the ordering of the
vertices) in this section because we are using a necessary condition rather than a
sufficient condition for a node to become a non-gateway under Rule 1. We prove
that, with high probability in the random graph Gn, most nodes do not have
such a neighbor; most nodes end up as gateways and Rule 1 does not construct
a ‘small’ CDS.

To this end, we now construct a random graph Hm, and use it to prove the
crucial Lemma 1 below. Fix a point x ∈ <2. Without loss of generality, assume
x = (0, 0). Let V̂ =

{
P1, P2, . . . , Pm} be m points sampled independently and

uniform randomly from D1(x). Form a graph Hm with the m points as vertices,
and two vertices adjacent iff the Euclidean distance between them is less than
or equal to 1. (Note that Hm is not the same as Gm since it has a small disk
rather than a large square as the region.) It is possible that a single point Pi

will be have degree m − 1 in Hm and therefore be a one-point dominating set.
For example, if one of the Pi happens to coincide with x, the center of the unit
disk, then Pi is adjacent to Pj for all j 6= i. However this is very rare: we shall
prove that, with asymptotic probability one, there is no one point dominating
set for Hm.

Let Wm be the size of the smallest dominating set in Hm, i.e. the smallest
set C of vertices with the property that all m vertices in Hm are within distance
1 of at least one of the points in C.

Lemma 1 Pr(Wm = 1) = O(m−1/2).

Proof. Let %m := Pr(V̂ ⊆ D1(Pm)) be the probability that all the m−1 points
P1, P2, . . . , Pm−1 are elements of D1(Pm). By Boole’s inequality,

Pr(Wm = 1) ≤ m%m. (1)

Let R be the distance from Pm to x, and let A be the area of D1(x)
⋂

D1(Pm).
Using elementary geometry, we express the area A = A(R) in terms of R. Given
that R = r, the conditional probability that the points P1, P2, . . . , Pm−1 all lie
D1(x)

⋂
D1(Pm) is just

(A(r)
π

)m−1
. Since the density of R is 2r, it follows that

3



%m =

1∫

0

2r

(
A(r)

π

)m−1

dr. (2)

Let b1 and b2 be be the two points where the circles ∂D1(v) and ∂D1(Pm)
intersect, i.e. the two points that lie at distance 1 from both v and Pm. By
inclusion-exclusion, the area A of D1(x)

⋂
D1(Pm) is

A = A1 + A2 −A3 (3)

where

• A1 is the area of the sector of D1(x) that extends from b1 to b2,

• A2 is the area of the sector of D1(Pm) that extends from b1 to b2, and

• A3 is the area of the parallelogram (x, b1, Pm, b2).

Let θ be the acute angle between the line segments x, b1 and x, Pm. Then

A1 = A2 = θ. (4)

Since R
2 = cos(θ), we have

A3 = sin(2θ). (5)

Putting (5) and (4) back into (3) and then into (2), we get

%m =

π/2∫

π/3

4
(2θ − sin 2θ

π

)m−1 sin(2θ)dθ. (6)

We estimate %m by splitting the interval of integration into two parts. Let
u = 2θ, ξm = π − πm−3/4, and define I1 and I2 as follows:

%m =

π∫

2π/3

2
(u− sin u

π

)m−1 sinu du =

ξm∫

2π/3

+

π∫

ξm

=: I1 + I2. (7)

To estimate I1, note that u− sin u is increasing, and that sin u ≤ 1. Therefore,
for all u in [ 2π

3 , ξm], we have

2
(

u− sin u

π

)m−1

sin u ≤ 2
(

ξm − sin ξm

π

)m−1

< 2
(

ξm

π

)m−1

.

Hence

I1 ≤ 2π

(
ξm

π

)m−1

≤ 2π

(
1− 1

m3/4

)m−1

= O(e−m1/4
).
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We only need the cruder estimate

I1 = O(
1

m3/2
). (8)

For the second integral, we use
(

u−sin(u)
π

)
≤ 1 :

I2 ≤ 2

π∫

ξm

1m−1 sin(u)du = 2− 2 cos(m−3/4π) = O(
1

m3/2
). (9)

Putting (8) and (9) together, we get

%m = O(
1

m3/2
). (10)

The lemma now follows from (1) and (10). ¤
The bound (10) is asymptotic; we cannot use it to estimate %m for specific

values of m. Equation (6) is exact, and m%m can be evaluated numerically to
get upper bounds specific values of m. On the other hand, the inequality (1) is
rather crude, so this method yields rather loose upper bounds for Pr(Wm = 1)
for specific values of m.

Lemma 1 is the key tool that is needed to evaluate the asymptotic perfor-
mance of Rule 1 on the random geometric graph Gn. Let Sn = n − C1(Vn) be
the number of nodes that are excluded from C1(Vn) under Rule 1.

Theorem 2 If `n = o(n1/2), then E(Sn) = O(`n
√

n) = o(n).

Proof. In this section, let indicator variable Ii = 1 iff vertex i has a neighbor

j such that every neighbor of i is a neighbor of j. Thus Sn ≤
n∑

i=1

Ii and

E(Sn) ≤ nE(I1). (11)

Let A1 be the event that that D1(1) ⊆ Qn, i.e. that vertex 1 is not one
of the exceptional vertices near the border of the region Qn. In order to apply
Lemma 1, we need to take into account the variability in the degrees of the
vertices. Let ρ1 be the degree of vertex 1, i.e. number of nodes in D1(1) other
than vertex 1 itself. Let µ = E(ρ1|A1) = (n−1)π

`2n
. We can write ρ1 as a sum

of n − 1 independent indicator variables: ρ1 =
n∑

j=2

I
(1)
j where I

(1)
j is one iff

the distance from vertex 1 to vertex j is less than one. Hence we can apply
Chernoff’s inequality to conclude that,

Pr
(
ρ1 <

µ

2

∣∣A1

)
< exp(−µ/8) = exp

(
−π(n− 1)

8`2n

)
= o(1). (12)

(The asymptotic estimate uses the fact that `n = o(n1/2).) Now let B1 be the
event that ρ1 > µ/2, and let T1 = A1

⋂B1. Then

Pr(T1) = Pr(A1) Pr(ρ1 > µ/2|A1) = 1− o(1). (13)
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By Lemma 1,

Pr(I1 = 1|T1) = O(µ−1/2) = O

(
`n√
n

)
. (14)

But then

Pr(I1 = 1) = Pr(I1 = 1|T1) Pr(T1) + Pr(I1 = 1|T c
1 ) Pr(T c

1 ) = O

(
`n√
n

)
= o(1),

(15)
and

n− E(C1(Vn) = E(Sn) ≤ n Pr(I1 = 1) = O(`n

√
n) = o(n)

¤

3 A Geometric Lemma

As observed in [21], a unit disk centered at a point x cannot be completely
covered with two unit disks having centers at points u and w (u 6= x 6= w):
(D1(u)

⋃
D1(w))c

⋂
D1(x) 6= ∅. One might infer that a typical vertex v ∈ Vn is

not likely to be be excluded from C2(Vn) under Rule 2 because no two points
in N (v) will cover all the vertices in N (v). This reasoning suggests that, as in
the case of Rule 1, Rule 2 does not construct a small CDS, but such reasoning
is not sound. Typically there are points u,w ∈ Vn such that D1(u) ∪ D1(w)
covers all but a negligible fraction of the disk D1(v) and the uncovered region
is small enough so that it usually does not include any vertices. A more precise
version of this statement is proved in the next section, but first we need to look
carefully at the area of regions such as (D1(u)

⋃
D1(w))c

⋂
D1(v). In particular,

we need Lemma 3, which is the main result in this section.
To state Lemma 3 we adopt some notation. Throughout this section b > 1

will be a parameter and in terms of b we let Lb = bb1/3(log b)2c, δ = δb = 1
3√

b log b
,

and θb = π/Lb. We fix o = (xo, yo) ∈ <2. We are going to partition the
small disk Dδb

(o) into 2Lb sectors as follows. Choose a new coordinate system
centered at o, and for 0 ≤ i < Lb, let Qi be the sector consisting of those
points (x, y) = (r cos θ, r sin θ) whose polar coordinates satisfy 0 < r ≤ δ and
(i − 1

2 )θb ≤ θ ≤ (i + 1
2 )θb. Similarly let Ri be the sector that is obtained by

reflecting Qi about o, namely the points with 0 < r < δ and (i− 1
2 )θb < θ−π <

(i + 1
2 )θb. Also, let q̃i and ũi be the extreme points whose polar coordinates

are respectively (δ, (i − 1
2 )θb) and (δ, (i + 1

2 )θb + π). Finally, for any points
u,w ∈ D1(o), let X(u,w) denote the area of (D1(u)

⋃
D1(w))c

⋂
D1(o), i.e. the

area of the region in D1(o) that is not covered by D1(u)
⋃

D1(w) .
The analysis of Rule 2 depends on following geometric lemma about these

sectors.

Lemma 3 There is a uniform constant C > 0 which is independent of the
parameter b such that, for 0 ≤ i < Lb, and for all qi ∈ Qi, ui ∈ Ri, we have
X(qi, ui) ≤ X(q̃i, ũi) ≤ C

b log3 b
.
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Proof. We prove four facts which together imply Lemma 3. In the first fact,
we observe that for any v, w ∈ D1(o) the omitted area X(v, w) increases if we
move one (or both) of the two points v and w away from the origin along a
radial line.

Fact 1 Let v1, v2 and w1, w2 be four points in D1(o) such that v1 lies on the
line segment o, v2 and w1 lies on the line segment o, w2. Then X(v2, w2) ≥
X(v1, w1).

Proof. It suffices to show that D1(v2) ∩ D1(o) ⊆ D1(v1) ∩ D1(o) and that
D1(w2) ∩ D1(o) ⊆ D1(w1) ∩ D1(o). Suppose p ∈ D1(v2) ∩ D1(o). Since v1 lies
on the line segment from o to v2, we have d(v1, p) ≤ max(d(o, p), d(v2, p)) ≤ 1.
Hence p ∈ D1(v1) ∩ D1(o). By a similar same argument, D1(w2) ∩ D1(o) ⊆
D1(w1) ∩D1(o).

¤

Fact 2 Let a, b be the two points where the circles ∂D1(p), ∂D1(q) intersect.
Then, a, b ⊥ p, q, and the two line segments a, b and p, q intersect at their
midpoints.

Proof. This follows immediately from the fact that d(p, a) = d(p, b) = d(q, a) =
d(q, b) = 1. ¤

Fact 3 Let o1, o2 be two points on the circle x2 + y2 = δ2
b . Then, X(o1, o2) is

a decreasing function of ∠o1oo2.

Proof. For convenience, we will use polar coordinates. Without loss of general-
ity, let o1 be the point with polar coordinates (ro1 , φo1) = (δb, π). Let o2 be an
arbitrary point on the circle with the polar coordinates (δb, φ2). By symmetry,
we only need to consider the case when o2 is in the first or second quadrant;
we may, without loss of generality, assume that 0 ≤ φ2 ≤ π. We will show that
X(o1, o2) is an increasing function of φ2, then the result follows from the fact
that ∠o1oo2 = π − φ2.

Let a1, b1 be the two points where the circles ∂D1(o1) and ∂D1(o) intersect,
with a1 in the second quadrant and b1 in the third quadrant.

Let o∗ be a point on the circle x2 + y2 = δ2
b so that ∂D1(o∗) meets with

both ∂D1(o) and ∂D1(o1) at a1. Let b∗, d∗ be the other intersection points of
∂D1(o∗) with ∂D1(o) and ∂D1(o1), respectively. For convenience, let’s denote
φo∗ by φ∗. Figure 1 illustrates the position of ∂D1(o1), ∂D(o), and ∂D1(o∗) and
their intersections.
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1a

o

o*

1

φ∗

φ∗/2

b

d* b*

o1

Figure 1: The position of the circle ∂D1(o∗)

As in the proof of Fact 2,we have a1, d∗ ⊥ o1, o∗, a1, b∗ ⊥ o, o∗. Notice also
that o is on the line segment a1, d∗. So,

∠b∗a1o = ∠oo∗o1 = ∠o∗o1o =
φ∗

2
. (16)

It follows that
0 < φ∗/2 < π/2, and, sin

φ∗

2
=

δb

2
(17)

Now, for the point o2 with polar coordinates (δb, φ2), let a2, b2 denote the two
points where ∂D1(o2) and ∂D1(o) intersect, and let c2, d2 denote the two points
where ∂D1(o2) and ∂D1(o1) intersect. There are two cases to consider: φ2 ≤ φ∗,
and φ2 ≥ φ∗

Case 1. φ2 ≤ φ∗.

φ2

c2

o2

d 2

b 2
b 1

o1

a1
2a

o*

o
y

Figure 2: The case when φ2 ≤ φ∗
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Notice that a1, b1 partitions the circle ∂D1(o) into two arcs: the right section
and the left section. When, φ2 ≤ φ∗, as illustrated in Figure 2, a2, b2 are both
on the right section of the circle ∂D1(o) between a1, b1. Similarly, c2, d2 are
both on the right section of the circle ∂D1(o1) between a1, b1. Clearly,

X(o1, o2) = B1 − (B2 −B3) = B1 −B2 + B3,

where

• B1 = area(D1(o1)c ∩D1(o))

• B2 = area(D1(o) ∩D1(o2))

• B3 = area(D1(o1) ∩D1(o2)), the shaded area in Figure 2

Notice that B3 is the only area that depends on φ2. We shall now give an
expression for B3. Let’s denote ∠c2o1o2 = y. Since ∠o2o1o = φ2

2 , we have

0 < y <
π

2
, and, cos y = δb cos

φ2

2
(18)

By symmetry, one can see that the shaded region is partitioned equally by
the line c2, d2. So,

B3 = 2(
2y

2π
π − 1

2
(2 sin y)(cos y)) = 2y − sin 2y.

Here, the first term is the area of the sector D1(o1) that extends from c2 to d2,
and the second term is the area of the triangle(c2, o1, d2).

¿From the above two equations, we have

dX(o1, o2)
dφ2

=
dB3

dφ2
=

dB3

dy
· dy

dφ2
= (1− cos 2y) · δb sin φ2

2

2 sin y
> 0.

Here the last inequality follows from the fact that 0 < φ2
2 , y < π

2 . Thus X(o1, o2)
is an increasing function in φ2.

Case 2. φ2 > φ∗.
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o*

o

2a

d 2

1ac2

b 1

b 2

o2

o1

Figure 3: The case when φ2 > φ∗

One can see from Figure 3 that

X(o1, o2) = B1 − (B2 −B3) = B1 −B2 + B3

Where B1, B2 are defined the same as those in the case 1, but

B3 = area(D1(o1) ∩D1(o2) ∩D1(o)), the shaded area in Figure 3

Again, B3 is the only area that depends on φ2. We will now give an expression of
B3. We show first that ∠c2oa1 = ∠a2oc2 by showing that φc2−φa1 = φa2−φc2 .
Then, it follows that the region with area B3 is split in half by the line segment
c2, d2.

¿From Figure 1, one can see that

φa1 = φ∗ + (
π

2
− ∠b∗a1o) = φ∗ + (

π

2
− φ∗

2
) =

π

2
+

φ∗

2
(19)

To find φa2 , observe that, as in the proof of Fact 2, we have a2, b2 ⊥ o, o2.
So, sin ∠b2a2o = δb

2 . Comparing with (17), we see that sin∠b2a2o = sin φ∗

2 .
This implies that ∠b2a2o = φ∗

2 . Thus,

φa2 = φ2 + (
π

2
− ∠b2a2o) = φ2 + (

π

2
− φ∗

2
) (20)

Lastly, using the fact that c2, o ⊥ o1, o2, we have

φc2 = π − (
π

2
− ∠o2o1o) = π − (

π

2
− φ2

2
) =

π

2
+

φ2

2
(21)

It follows that φc2 − φa1 = φa2 − φc2 = φ2
2 − φ∗

2 . Using that the circle ∂D1(o1)
in the polar system is

r =
√

1− δ2
b sin2 φ− δb cosφ

10



and that
φd2 = −(π − φc2) = −(

π

2
− φ2

2
) (22)

we get

B3 = 2(
∫ π

2 + φ∗
2

−( π
2−

φ2
2 )

∫√1−δ2
b sin2 φ−δb cos φ

0
r drdφ +

φ2
2 −φ∗

2
2π · π)

=
∫ π

2 + φ∗
2

−( π
2−

φ2
2 )

1− δ2
b sin2 φ + δ2

b cos2 φ− 2δb cosφ
√

1− δ2
b sin2 φdφ + φ2−φ∗

2

Thus,

dX(o1,o2)
dφ2

= dB3
dφ2

= − 1
2 [1− δ2

b sin2(−π
2 + φ2

2 ) + δ2
b cos2(−π

2 + φ2
2 )

−2δb cos(−π
2 + φ2

2 )
√

1− δ2
b sin2(−π

2 + φ2
2 )] + 1

2

= 1
2 [δ2

b cos2 φ2
2 − δ2

b sin2 φ2
2 + 2δb sin φ2

2

√
1− δ2

b cos2 φ2
2 ]

= 1
2 [−(δb sin φ2

2 −
√

1− δ2
b cos2 φ2

2 )2 + 1]

≥ 0

The last inequality follows because 0 ≤ δb sin φ2
2 ≤ 1, 0 ≤

√
1− δ2

b cos2 φ2
2 ≤ 1,

and thus (δb sin φ2
2 −

√
1− δ2

b cos2 φ2
2 )2 < 1.

¤

Fact 4 Uniformly for all i, we have X(q̃i, ũi) = O( 1
b log3 b

).

Proof. Without loss of generality, let i = 0 and v = (0, 0). To simplify notation,
define xb = δb cos(− 1

2θb), yb = δb sin(− 1
2θb). Let (ξ, η) be the point in the first

quadrant where the circles x2 +y2 = 1 and (x−xb)2 +(y−yb)2 = 1 meet. Then

X(q̃0, ũ0) ≤ 4

ξ∫

0

√
1− x2 − (yb +

√
1− (x− xb)2)dx

= −4ybξ + 4

ξ∫

0

−2xxb + x2
b√

1− x2 +
√

1− (x− xb)2
dx

Hence we have
X(q̃0, ũ0) = O(ξyb) + O(xbξ

2) + O(x2
bξ). (23)

Note that x2
b +y2

b = δ2
b = 1

b2/3 log2 b
, that ξ2+η2 = 1, that (ξ−xb)2+(η−yb)2 = 1,

that xb = δb(1 + O(θ2
b )), and that yb = −δbθb

2 (1 + O(θ2
b )). Combining these

equations, we get ξ = O(δb). Putting this estimate back into (23), we get

X(q̃0, ũ0) = O(
1

b log3 b
). (24)

11



¤
In the analysis of Rule 2 it is necessary to consider vertices in Gn which are

close to the boundary of the square Qn. For this reason we define, for o ∈ <2
+,

the “truncated unit disk” D̂1(o) := D1(o)∩<2
+ and we note that D̂1(o) ⊆ D1(o),

and D̂1(o) = D1(o) iff xo, yo ≥ 1. Then for Lb and δb as defined above, we have
the following corollary to Lemma 3:

Corollary 4 There is a uniform constant C > 0, independent of the parameter
b, such that, for all o ∈ <2

+ such that Dδb
(o) ⊆ <2

+, for 0 ≤ i < Lb, and for all
qi ∈ Qi, ui ∈ Ri, we have X̂(qi, ui) ≤ X(q̃i, ũi) ≤ C

b log3 b
, where X̂(q, u) is the

area of (D1(q) ∩D1(u))c ∩ D̂1(o).

Proof. Clearly X̂(qi, ui) ≤ X(qi, ui) since D̂1(o) ⊆ D1(o). So the result follows
from Lemma 3 (since q̃i, ũi ∈ Dδb

(o) ⊆ <2
+). ¤

4 Local Coverage by Two Discs

Recall that under Rule 2 a vertex vi is excluded from C2(Vn) if there are two
adjacent vertices, vi1 , vi2 ∈ N (vi), with higher IDs than vi which also ‘cover’
vi, i.e. N (vi) ⊆ N (vi1) ∪ N (vi2). In the analysis of Rule 2 we will distinquish
vertices in N (vi) with higher ID than vi by coloring them blue; all other vertices
in N (vi) are colored white. With this in mind, we consider in this section a
two-colored random unit disk graph and prove a local coverage result.

Let w and b be positive integers such that w < b(log b)2 and, as before, let
Lb = bb1/3(log b)2c and δb = 1

b1/3 log b
. Fix o ∈ <2

+ such that Dδb
(o) ⊆ <2

+ and
select w+b points independently and uniform randomly from the truncated disk
D̂1(o). Color the first w points white, and the remaining b points blue. Form a
random (improperly colored) unit disk graph Ĥw,b by putting an edge between
two of the w + b colored points iff the distance between them is one or less.
Our goal in this section is to prove that, with high probability, Ĥw,b contains a
dominating set consisting of two blue vertices that are adjacent to each other.

For 0 ≤ i < Lb, let Qi, Ri denote the sectors of Dδb
(o) as defined in the

previous section and let N(Qi), N(Ri) respectively be the number of blue ver-

tices of Ĥw,b that lie in Qi and Ri. Let τb =
Lb−1∑
i=0

Ii where, in this section only,

the indicator variable Ii = 1 if and only if N(Ri) = N(Qi) = 1 (and otherwise
Ii = 0.) We note that the distribution of τb depends on the position of o and we
indicate this dependence by using the notation Pro(τb ∈ ·). Provided o is not
too close to the boundary of <2

+, we can obtain uniform bounds on the tail of
the distribution of τb:

Lemma 5 Pro

(
τb < b1/3

16 log6 b

)
= O( log6 b

b1/3 ) uniformly for all o ∈ <2
+ such that

Dδb
(o) ⊆ <2

+.

12



Proof. Let |D̂1(o)| denote the area of D̂1(o), let λ̂ = λ̂(o) = π
|D̂1(o)| , and define

p̂ =
Area(Qi)
|D̂1(o)|

=
πδ2

b/2Lb

|D̂1(o)|
=

λ̂

2b log4 b

(
1 + O(

1
b1/3 log2 b

)
)

. (25)

The expected value of Ii depends on o:

Eo(Ii) = b(b− 1)p̂2(1− 2p̂)b−2 =
λ̂2

4 log8 b

(
1 + O(

1
log4 b

)
)

. (26)

Hence

Eo(τb) = LbEo(Ii) =
b1/3λ̂2

4 log6 b

(
1 + O(

1
log4 b

)
)

. (27)

We likewise have, for i 6= j,

Eo(IiIj) = b(b−1)(b−2)(b−3)p̂4(1−4p̂)b−4 =
λ̂4(o)

16 log16 b

(
1 + O(

1
log4 b

)
)

. (28)

Note that
π

4
≤ |D̂1(o)| ≤ π, (29)

and therefore
1 ≤ λ̂(o) ≤ 4. (30)

Therefore we have uniformly for all o ∈ <2
+ such that Dδb

(o) ⊆ <2
+

V aro(τb) = O

(
b1/3

log6 b

)
. (31)

Observe that

Pro

(
τb <

b1/3

16 log6 b

)
≤ Pro

(
τb ≤ 1

2
Eo(τb)

)
≤ Pro

(
|τb − Eo(τb)| > 1

2
Eo(τb)

)
.

(32)
The lemma now follows from (27), (30)-(32) and Chebyshev’s inequality. ¤

Recall our assumptions that w < b(log b)3/2, δb = 1
b1/3 log b

, and xo, yo ≥ δb.

With these assumptions, we have:

Theorem 6 There is a constant c > 0, independent of the position of o, such
that with probability at least 1− c

(log b)3/2 , the random graph Ĥw,b has a connected
dominating set that consists of two blue vertices in Dδb

(o).

Proof.
Let Tb ⊆

{
0, 1, 2, 3, . . . , Lb − 1

}
be the random subset of indices such that

i ∈ Tb iff N(Qi) = N(Ri) = 1. If Tb 6= ∅, define Y = min Tb to be the smallest
of the indices in Tb; otherwise, if Tb = ∅, set Y = −1.

13



Define the random variable Xb as follows: If τb = |Tb| = 0 then Xb = 0;
otherwise, if Tb =

{
i1, i2, . . . iτb

}
and i1 < i2 < . . . < iτb

, then Xb = 1 iff
Qi1 ∪Ri1 contains a blue connected dominating set for Ĥw,b.

Let B =
{
g1, g2, . . . , gb

}
be the set of blue nodes, selected independently and

uniform randomly from D̂1(o). Define Z = B⋂
Dδb

(o) to be set of blue points
that fall near the origin o, and let Z = |Z| be the number of these points. Then

Pro(Xb = 0) ≤ Pro

(
Xb = 0, τb 6= 0, Z ≤ 2λ̂b1/3

(log b)2

)
+Pro(τb = 0)+Pro

(
Z >

2λ̂b1/3

(log b)2

)
.

(33)
Note that Z has a binomial distribution: Z

d=Bin(b, λ̂δ2
b ) where λ̂ is as defined

in the proof of Lemma 5. If β = 2λ̂b1/3

(log b)2 , then by Chernoff’s inequality,

Pro(Z ≥ β) ≤ exp(−b1/3/4(log b)2). (34)

By Lemma 5, Pro(τb = 0) = O( log6 b
b1/3 ). Therefore

Pro(Xb = 0) ≤ Pro(Xb = 0, τb 6= 0, Z ≤ β) + O(
log6 b

b1/3
). (35)

Now we decompose the first term on the right side of (35) according to the
value of Y .

Pro(Xb = 0, τb 6= 0, Z ≤ β) =
Lb−1∑

k=0

Pro(Xb = 0|Y = k, Z ≤ β)Pro(Y = k, Z ≤ β).

(36)
(The redundant condition τb 6= 0 need not be included on the right side of (36)
because it a consequence of the condition Y ≥ 0.) We have

Pro(Xb = 0|Y = k, Z ≤ β) =
∑

S

Pro(Xb = 0|Z = S, Y = k)Pro(Z = S
∣∣Y = k, Z ≤ β)

(37)
where the sum is over subsets S ⊆ [b] such that 2 ≤ |S| ≤ β.

Pr(Xb = 0|Z = S, Y = k) = 1− Pr(Xb = 1|Z = S, Y = k), (38)

so it is enough to find a lower bound for Pr(Xb = 1|Z = S, Y = k).
To simplify notation, let γ = X(q̃0, ũ0), and recall that γ = O( 1

b log3 b
). In

this section of the paper, define |Dδb
(o)| = π

b2/3(log b)2
to be the area of the

disk Dδb
(o), and let |D̂1(o)| = Area(D̂1(o)). An important observation is that,

once we have specified b − |S| = the number of blue points that fall outside
Dδb

(o), the locations in Dδb
(o)c ∩ D̂1(o) of these b− |S| points are independent

of the locations of the |S| blue points in Dδb
(o), and are also independent of the

14



locations of the white points. Hence

Pro(Xb = 1|Z = S, Y = k) ≥
(1− |Dδb

(o)|
|D̂1(o)| −

γ

|D̂1(o)| )
b−|S|

(1− |Dδb
(o)|

|D̂1(o)| )
b−|S|

(
1− γ

|D̂1(o)|

)w

(39)

≥
(

1− C

b(log b)3

)b−|S|+w

(40)

for some constant C that is independent of o. With our assumption w <
b(log b)3/2 we get, for all sufficiently large b, the lower bound

Pro(Xb = 1|Z = S, Y = k) ≥
(

1− C
′

b(log b)3

)b(log b)3/2

≥ 1− C
′′

(log b)3/2
(41)

for some constants C ′ and C ′′ which are independent of Z, Y , and o. Hence

Pro(Xb = 0) ≤ c

(log b)3/2
(42)

for some constant c that is independent of the point o.
¤

5 Analysis of Rule 2

For n ≥ 1, Un be the number of vertices that are excluded from C2(Vn) when
Rule 2 is applied to the random graph Gn: Un =

∑
i

Ii where (in this section) the

indicator variable Ii = 1 iff the node with ID i becomes a non-gateway under
Rule 2. Assume that there is a positive constant c̄ such that, for all n > 1,
log n ≤ `n ≤ c̄

√
n

log n . Let ξn = αn

`2n
, where 〈αn〉 is any sequence of real numbers

satisfying the following three conditions:

• αn = o(n) as n →∞.

• ξn = αn

`2n
→∞ as n →∞.

• For all sufficiently large n, 16n
log3/2 ξn

< αn.

For example, if `n = Θ(
√

n/ log n), then the sequence αn = 32n
(log log n)3/2 satisfies

the three conditions. On the other hand, if `n = Θ((n/ log n)t) for some fixed
positive t < 1/2, then αn = n

log n satisfies the three conditions above. With
these three assumptions, our goal is to prove

Theorem 7 E(Un) ≥ n−O(αn).
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Proof. The idea of the proof is to use Theorem 6 to bound the probability that
a typical vertex vi is pruned by Rule 2. In this case the blue vertices correspond
to nodes in D1(vi) with IDs higher than i, and the white vertices correspond to
nodes in D1(vi) with lower IDs. Let r = 1

log3/2 ξn
, and let Ai be the event that

Dr(vi) ⊆ Qn. Then

Pr(Ai) =
(`n − 2r)2

`2n
≥ 1− 4r

`n
. (43)

Let D̂1(vi) = D1(vi) ∩ Qn be the set of points in Qn whose distance from vi is
one or less, and let |D̂1(vi)| be the area of D̂1(vi). Let ρ

(b)
i denote the number of

nodes in D̂1(vi) having a label that is larger than i, and let ρ
(w)
i be the number

of nodes in D̂1(vi) having a label that is smaller than i. Then, given the location
of the i’th vertex vi, ρ

(b)
i has a Binomial

(
n− i, |D̂1(Vi)|

`2n

)
distribution. Define

µb = µb(i) to be the expected value of ρ
(b)
i given the location of the i’th point:

µb = E(ρ(b)
i |vi) =

(n− i)|D̂1(vi)|
`2n

. (44)

Similarly ρ
(w)
i has a Binomial

(
i− 1, |D̂1(vi)|

`2n

)
distribution, and we define µw =

µw(i) to be the expected value:

µw = E(ρ(w)
i |vi) =

(i− 1)|D̂(vi)|
`2n

. (45)

If Ai occurs, then by Chebyshev’s inequality,

Pr(|ρ(b)
i − µb(i)| < µb

2
|Ai) ≥ 1− 16`2n

n− i
, (46)

and similarly for ρ
(w)
i .

If we let Di be the event that both of the inequalities |ρ(b)
i − µb(i)| < µb

2 and
|ρ(w)

i − µw(i)| < µw

2 are satisfied, then

Pr(Di|Ai) ≥ 1− 16`2n
n− i

− 16`2n
i− 1

. (47)

Combining (47) and (43), we get

Pr(Di ∩ Ai) ≥
(

1− 16`2n
n− i

− 16`2n
i− 1

) (
1− 4r

`n

)
. (48)

Now let λn = n− αn, then clearly

E(Un) ≥
λn∑

i=αn

Pr(Ii = 1) ≥
λn∑

i=αn

Pr(Ii = 1|Di ∩ Ai) Pr(Di ∩ Ai) (49)

To obtain a lower bound for the right hand side of inequality (49), we prove
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Lemma 8 There is a constant c̃ > 0 such that for all sufficiently large n and
all αn ≤ i < λn, Pr(Ii = 1|Di ∩ Ai) ≥ 1− c̃

(log ξn)3/2 .

Proof. We begin by noting that given the event Di ∩ Ai and αn ≤ i < λn =
n− αn, we have

ρ
(w)
i <

3
2
µw(i) =

3(i− 1)|D̂1(vi)|
2`2n

≤ 3πn

2`2n
. (50)

Similarly

ρ
(b)
i >

1
2
µb(i) =

(n− i)|D̂1(vi)|
2`2n

>
αnπ

8`2n
=

ξnπ

8
(51)

It follows from inequalities (50) and (51) and from the conditions on the se-
quences 〈ξn〉 and 〈αn〉 that, given Di ∩ Ai and αn ≤ i < λn,

ρ
(b)
i (log ρ

(b)
i )3/2 ≥ ρ

(w)
i . (52)

Next we consider the conditional probability Pr(Ii = 1|ρ(b)
i , ρ

(w)
i , vi,Di ∩ Ai)

where the values of ρ
(b)
i and ρ

(w)
i and the location of vi are consistent with the

event Di ∩ Ai. In this case, it follows from inequality (51) that

δb(ρ
(b)
i ) :=

1

(ρ(b)
i )1/3 log(ρ(b)

i )
≤ 1

(ξn/3)1/3 log(ξn/3)
≤ 1

(log(ξn))3/2
= r. (53)

Since the event Ai implies Dr(vi) ⊆ <2
+, it follows from (53) that D

δb(ρ
(b)
i )

(vi) ⊆
<2

+. Finally, it follows from Theorem 4 that for some fixed positive constant c̃

Pr(Ii = 1|ρ(b)
i , ρ

(w)
i , vi,Di ∩ Ai) ≥ 1− c

(log(ρ(b)
i ))3/2

≥ 1− c̃

(log(ξ(b)
i ))3/2

(54)

for all sufficiently large n and all αn ≤ i < λn. The lemma now follows from
(54). ¤

Recall that λn = n − αn, that αn = o(n), that ξn = αn

`2n
→ ∞ as n → ∞,

and that for all sufficiently large n, αn > 16n
(log ξn)3/2 . So it follows from Lemma

8 and (48) and (49), that

E(Un) ≥ n− 2αn + o(αn).

¤

6 Discussion

The results in this paper show that if log n ≤ `n ≤ c
√

n
log n then on average,

for large n, C2(Vn) is small relative to n but C1(Vn) is not. However, Theorem
7 only gives us an upper bound on E(C2(Vn) (i.e. E(C2(Vn)) = O(αn)). In
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the companion paper [18] we have shown that necessarily, for all large n and
k ≥ 1, E(Ck(Vn) ≥ `2/4, and, in addition, for all k ≥ 3 we have E(Ck(Vn)) =
Θ(`2). So, in the case k = 2, there remains a gap between the lower bound
for E(C2(Vn) and the O(αn) upper bound from Theorem 7. For example, if
`n = Θ(

√
n/ log n), the lower and upper bounds for the expected size of the

Rule 2 dominating set are respectively Θ(n/ log n) and Θ(n/(log log n)3/2). If
we take `n = O((n/ log n)t) with t < 1/2 the gap is even wider: the lower
and upper bounds are respectively Θ(( n

log n )2t) and Θ( n
log n ). It remains an open

problem to close this gap. We conjecture that, in fact, the expected size of the
Rule 2 dominating set is Θ(`2n).
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