
WAVETRAIN
Software for Studying Periodic Travelling Wave

Solutions of Partial Differential Equations

Jonathan A. Sherratt

Dept of Mathematics and Maxwell Institute for Mathematical Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, UK.

If you publish research done using this software, please cite

J.A. Sherratt: Numerical continuation methods for studying periodic trav-

elling wave (wavetrain) solutions of partial differential equations. Applied

Mathematics & Computation 218, 4684-4694 (2012).

If your research includes results on wave stability, please also cite

J.D.M. Rademacher, B. Sandstede, A. Scheel: Computing absolute and

essential spectra using continuation. Physica D 229, 166-183 (2007).

and

J.A. Sherratt: Numerical continuation of boundaries in parameter space

between stable and unstable periodic travelling wave (wavetrain) solutions

of partial differential equations. Advances in Computational Mathematics

39, 175-192 (2013).

This user guide is for version wavetrain1.2

Copyright c© 2011, 2013 by Heriot-Watt University, Edinburgh, UK. All rights reserved

worldwide. Printing of parts or the whole of this document for the purposes of research or

private study, or criticism or review, are permitted. No part of this document or the re-

lated files may be distributed by any means (electronic, photocopying, recording, or other-

wise) without the prior written permission of either Heriot-Watt University or the author.

All requests for such permission should be sent by e-mail to j.a.sherratt@hw.ac.uk;

please include the word wavetrain (upper or lower case) in the subject heading.

Limit of Liability and Disclaimer of Warranty: The information provided in this docu-

ment is provided “as is”. Heriot-Watt University and the author make no representation

or warranties with respect to the accuracy or completeness of the contents of this docu-

ment and specifically disclaim any implied warranties of merchantability or fitness for any

particular purpose. Under no circumstances will Heriot-Watt University or the author be

liable for any loss of use, interruption of business or any direct, indirect, special, incidental,

and/or consequential damages of any kind (including loss of profits) even if Heriot-Watt

University or the author have been advised of the possibility of such damages. Neither

Heriot-Watt University nor the author warrant that this document will be error-free.

2

Contents

1 Introduction to WAVETRAIN and Installation 7

1.1 Aims and Scope . 7

1.2 System Requirements . 8

1.3 Authorship and Use of Other Software . 9

1.4 Copyright, Distribution and Disclaimer . 9

1.5 Acknowledgements . 10

1.6 Feedback . 10

1.7 Installation . 11

2 How to Use WAVETRAIN 13

2.1 Getting Started With Wavetrain . 13

2.1.1 Investigation of Periodic Travelling Wave Existence 13

2.1.2 Investigation of Periodic Travelling Wave Stability 21

2.2 Details of the Wavetrain Input Files . 32

2.2.1 Details of constants.input . 32

2.2.2 Details of equations.input . 38

2.2.3 Details of other parameters.input 45

2.2.4 Details of parameter list.input 45

2.2.5 Details of parameter range.input 45

2.2.6 Details of variables.input . 46

2.3 A Worked Example . 46

2.3.1 Stage 1 (Input): Create the Initial Input Files 47

2.3.2 Stage 2 (Run): Formulate a Wave Search Method 51

2.3.3 Stage 3 (Input): Add a Preliminary Wave Search Method 52

2.3.4 Stage 4 (Run): Look for Waves near the Hopf Bifurcation Locus . . 53

2.3.5 Stage 5 (Input): Amend the Wave Search Method 54

2.3.6 Stage 6 (Run): Test Runs of the ptw Command 54

2.3.7 Stage 7 (Input): Alter the File constants.input 55

2.3.8 Stage 8 (Run): Further Test Runs of ptw, and a Run of ptw loop . 55

2.3.9 Stage 9 (Run): Choose nmesh2 for Stability Calculations 57

2.3.10 Stage 10 (Input): Change order in constants.input 58

2.3.11 Stage 11 (Run): Further Tests of Eigenvalue Convergence 58

3

2.3.12 Stage 12 (Input): Change nmesh1 and nmesh2 in constants.input 60

2.3.13 Stage 13 (Run): Test Runs of the stability Command 60

2.3.14 Stage 14 (Input): Change nmesh3 in constants.input 60

2.3.15 Stage 15 (Run): Further Test Runs of stability, and a Run of

stability loop . 62

2.3.16 Stage 16 (Input): Change nmesh1 and nmesh2 in constants.input 64

2.3.17 Stage 17 (Run): Run of stability for δ = −2, c = 3 64

2.3.18 Stage 18 (Input): Reset nmesh1 and nmesh2 in constants.input . 65

2.3.19 Stage 19 (Run): Plot the Results of the stability loop Run . . . 65

2.3.20 Stage 20 (Run): Run of stability boundary 65

2.3.21 Stage 21 (Input): Reduce the Step Sizes for stability boundary . 67

2.3.22 Stage 22 (Run): Rerun of stability boundary 67

2.3.23 Stage 23 (Run): Calculate Contours of Constant Period 68

2.3.24 Stage 24 (Input): Copy PDE Simulation Data File 69

2.3.25 Stage 25 (Run): Final Plots . 69

2.3.26 Stage 26 (Run): Delete Unwanted Output Files 71

2.4 Documentation and Help Facilities . 72

2.5 Troubleshooting . 73

3 Advanced Features of WAVETRAIN 75

3.1 Further Details of Run Commands . 75

3.1.1 The Format of Numerical Inputs, and Precision 75

3.1.2 Optional Arguments of the stability boundary Command 76

3.1.3 Optional Arguments of the period contour Command 76

3.1.4 The Commands set homoclinic and unset homoclinic 77

3.1.5 The Command new pcode . 79

3.1.6 The Command bifurcation diagram 79

3.1.7 Keeping Track of Wavetrain Runs 85

3.1.8 The Parameter iposim . 86

3.1.9 The Parameter iwave . 89

3.1.10 Tracing the Loci of Folds . 95

3.1.11 Commands for Deleting Data Files 97

3.1.12 Setting theWave Search Method and Hopf Bifurcation Search Range

in Complicated Cases . 99

3.1.13 Details of the Matrix Eigenvalue Calculation 106

3.1.14 An Outline of How the stability boundary Command Works . . . 110

3.1.15 Multiple Simultaneous Runs of wavetrain 117

3.2 Details of defaults.input . 119

3.3 Further Details of Plot Commands . 125

3.3.1 Changing Plotter Styles . 125

3.3.2 Changing Other Plotter Settings 126

4

3.3.3 Labelling of Contours of Constant Period 126

3.3.4 Adding Additional Lines, Points and Text to Plots 128

3.3.5 Plotting Parameter Planes Using Wavelength or Wavenumber . . . 131

3.3.6 Shading Regions of the Control Parameter–Wave Speed Plane . . . 131

3.3.7 Record Keeping for Postscript Plots 134

3.3.8 The Bounding Box for Postscript Plots 135

3.3.9 Abbreviations for Plot Commands 135

3.4 Details of Plotter Input Files . 136

3.4.1 Details of plot defaults.input 136

3.4.2 Details of Plotter Style File . 144

4 Reference Guide to WAVETRAIN 150

4.1 Alphabetical List of Run Commands . 150

4.2 Alphabetical List of Plot Commands . 158

4.3 Wavetrain Directory Structure . 162

4.3.1 The Structure of Subdirectories of the Main wavetrain Directory 162

4.4 Details of Output Data Files . 164

4.4.1 The Directory Structure of wavetrain Output 165

4.4.2 pcode Subdirectories . 166

4.4.3 bcode Subdirectories . 168

4.4.4 ccode Subdirectories . 169

4.4.5 ecode Subdirectories . 171

4.4.6 fcode Subdirectories . 172

4.4.7 hcode Subdirectories . 172

4.4.8 rcode Subdirectories . 173

4.4.9 scode Subdirectories . 175

Appendix: Commands Used to Generate Figures 177

References 184

5

How to Use this User Guide

This user guide is rather long. However, new users should be reassured that only a
relatively small proportion of it is needed in order to begin using wavetrain. Part 1 of
the user guide contains some introductory comments, followed by details of the installation
procedure and of some post-installation tests. Part 2 is an introductory description of
the package, via two examples, that explain how to use wavetrain. Part 3 is concerned
with more advanced features, and is intended for users who already have some familiarity
with the package. Part 4 is a reference section, containing lists of commands and details
of output data files.

In order to facilitate the printing of individual parts of this user guide, page numbering
begins with the title page being page 1. This means that page selections in the print
window give user guide pages with the same numbers.

Restrictions on Distribution

The wavetrain software and this user guide are both freely available. However, please
note that the formal statements on page 2 and in §1.4 specify that neither the user guide
nor the software (in whole or in part) can be distributed in either electronic or printed
(or any other) form. In particular, you cannot post this user guide or the information
it contains, or part or all of the wavetrain software, on any electronic bulletin board,
web site, ftp site, newsgroup, or similar forum. The only places from which either the
wavetrain software or this document should be available are the wavetrain web site
www.ma.hw.ac.uk/wavetrain and the authors’ web site www.ma.hw.ac.uk/∼jas. Please
respect this restriction: one of the reasons for it is to ensure that new users always
download the most up-to-date version of the software and user guide.

6

Part 1

Introduction to WAVETRAIN and
Installation

1.1 Aims and Scope

Wavetrain is a software package for investigating periodic travelling wave solutions of
partial differential equations. Typically such equations will contain a number of param-
eters. Wavetrain requires that one of these be selected; this parameter will be termed
the control parameter throughout this user guide. Focussing on periodic travelling waves
introduces an additional parameter, the wave speed. The basic task performed by wave-

train is the calculation of the region of the control parameter–wave speed plane in which
periodic travelling waves exist, and additionally where they are stable.

Wavetrain is suitable for systems of equations with only single time derivatives,
which can be coupled with equations involving space derivatives only. Mixed space and
time derivatives are not allowed. Specifically, wavetrain can be used to study systems
of N ≥ 1 equations whose form is either

∂ui/∂t = Fi

(
u, ∂u/∂x, ∂2u/∂x2, ∂3u/∂x3, . . .

)
, 1 ≤ i ≤ N (1.1a)

or

∂ui/∂t = Fi

(
u, ∂u/∂x, ∂2u/∂x2, ∂3u/∂x3, . . .

)
, 1 ≤ i < M (1.1b)

0 = Fi

(
u, ∂u/∂x, ∂2u/∂x2, ∂3u/∂x3, . . .

)
, M ≤ i ≤ N (1.1c)

where 2 ≤ M ≤ N . There is no upper limit on N or on the order of spatial derivatives
on the right hand side of the equations.†

The three main underlying principles of wavetrain are that it should

(i) be easy to use, even for users with limited mathematical background;

(ii) produce publication-quality graphical output that can be fine-tuned by the user if
required;

†In fact, there is an upper limit on N : some of the temporary files created during wavetrain runs
are formatted under the assumption that N < 2 × 106. This is not expected to be a limitation in any
practical situation.

7

(iii) provide detailed output data files that are accessible to the user if required, and that
have an easily comprehensible format.

Once the user has acquired some familiarity with wavetrain, application to a new prob-
lem should require a relatively small amount of user time. However, users should be aware
that some of the computations may involve significant computer time; such runs can be
performed in the background.

1.2 System Requirements

Wavetrain requires a unix-like operating system; thus linux and Mac OS X are both suit-
able. Users with Windows operating systems can use wavetrain via a virtual machine,
for which there is freely available software; see for example www.virtualbox.org/wiki.
After downloading a virtual machine, the user will have to download a linux operating
system, such as Ubuntu linux (www.ubuntu.com/download/ubuntu/download), which is
freely available. Once a virtual machine and linux operating system have been down-
loaded, one simply opens the virtual machine and follows the installation procedure. For
example, opening the Oracle VM VirtualBox gives the options New, Settings, Start
and Discard. Selecting “New” opens a Virtual machine wizard window which guides the
user through the setup of a new operating system; additional help is available from the
VirtualBox user guide (www.virtualbox.org/wiki/Documentation).

Systems on which wavetrain has been tested include an HP Compaq PC with the
CentOS 6.4 (linux) operating system, a AMD64 PC running Oracle VM VirtualBox

with the ubuntu-11.04-desktop-i386 operating system, and a MacBook Air with ver-
sion 10.7.5 of the Mac OS X operating system.

Wavetrain also requires a Fortran77 compiler that is compatible with some ex-
tensions to the Fortran77 standard. Details of how to check whether your system has
a suitable compiler are given in §1.7; if it does not, a number of suitable compilers
are freely available. For example, wavetrain has been tested with the GNU compiler
gfortran-4.0, downloaded from the website packages.ubuntu.com/dapper/gfortran.

Graphical output in wavetrain can be performed using either gnuplot or sm. The
plotting commands are the same for both plotting packages. The gnuplot package is
supplied automatically on many unix-like operating systems, but if it needs to be in-
stalled, it is freely available from www.gnuplot.info. The sm package is commercial but
inexpensive, and can be obtained from www.supermongo.net. Wavetrain graphics were
originally developed using sm, but it is anticipated that most users will use gnuplot. The
plots generated by the two plotters are completely equivalent. The figures in this user
guide were generated using sm.

To check whether gnuplot is installed on your system, simply type gnuplot at the
system prompt. Either an error message will appear indicating that gnuplot is not
installed, or gnuplot will start. In the latter case, type

show version long

at the gnuplot> prompt. This will give details of the version of gnuplot and various
details of the compilation. Wavetrain requires version 4.2 or higher of gnuplot, and

8

requires that it has been compiled with the following options enabled: macro expan-
sion, string variables, and data strings. These options will be indicated by “+MACROS”,
“+STRINGVARS” and “+DATASTRINGS” being listed amongst the compile options. If one of
these criteria is not met, then it will be necessary to reinstall or recompile gnuplot before
it can be used as the plotter for wavetrain. By default, wavetrain uses x11 as the
gnuplot plotting terminal. To confirm that this is available on your system, type

set terminal x11 0 enhanced font "Sans,10"

at the gnuplot> prompt. If an error message appears, it will be necessary to edit the file
defaults.input in order to change the terminal setting; see §3.4.1.2 for details.

To exit gnuplot, type quit at the gnuplot> prompt.

1.3 Authorship and Use of Other Software

Wavetrain was written by Jonathan Sherratt. It includes (with permission) software
from several other packages:

auto97, developed by Eusebius Doedel (currently Concordia University, formerly Cali-
fornia Institute of Technology) and coworkers (indy.cs.concordia.ca/auto; Doe-
del, 1981; Doedel et al., 1991). Auto97 is a numerical continuation package that is
used extensively by wavetrain. Current auto users should note that the relevant
parts of the auto code are incorporated into wavetrain, which will therefore run
independently of existing auto settings. Note that previous experience with auto

is not necessary for using wavetrain. The auto97 distribution includes code
from the software package eispack, a software package for numerical computation
of eigenvalues and eigenvectors of matrices, and this code is also distributed as part
of wavetrain. Eispack was developed by Brian Smith and coworkers at Argonne
National Laboratory (www.netlib.org/eispack; Smith et al., 1976).

lapack, a software package for numerical linear algebra developed by researchers at
many institutions (www.netlib.org/lapack; Anderson et al., 1999). Note that the
eispack package used by auto97 is a forerunner of lapack.

blas, the Basic Linear Algebra Subprograms, developed by Jack Dongarra (currently
University of Tennessee, formally Argonne National Laboratory) and coworkers
(www.netlib.org/blas; Lawson et al., 1979; Dongarra et al., 1988a,b; Dongarra
et al., 1990a,b).

minpack, a software package for studying nonlinear systems of algebraic equations, de-
veloped by the University of Chicago, as operator of Argonne National Laboratory
(www.netlib.org/minpack; Moré et al., 1984).

1.4 Copyright, Distribution and Disclaimer

Copyright. Wavetrain software is intended for free personal private and academic
use only and was developed by Jonathan Sherratt at Heriot-Watt University, Edin-

9

burgh, UK, and is protected by copyright. The copyright owner is Heriot-Watt Uni-
versity, with the exception of the routines from the packages auto, blas, eispack,
lapack and minpack, which are included with permission, which are clearly identi-
fied in the source code, and the use of these packages is under the conditions of the
original owners which are available at the websites www.netlib.org/blas/faq.html#2;
www.netlib.org/lapack/# licensing; www.netlib.org/minpack/disclaimer.

Persons or organisations wishing to use this wavetrain software for commercial pur-
poses or purposes other than its original intention should contact the owners to request
specific written permissions.

Distribution. Distribution ofwavetrain software, in part or as a whole, by any means
(electronic, printed copy or otherwise), is prohibited without the prior written permission
of either Heriot-Watt University or the author Jonathan A. Sherratt. All requests for
such permission should be sent by e-mail to j.a.sherratt@hw.ac.uk; please include the
word wavetrain (upper or lower case) in the subject heading.

Warranty limitations. The product and service are provided “as is”. The owner
disclaims any and all warranties, including but not limited to, all expressed or implied
warranties of merchantability and fitness for a particular purpose. Under no circumstances
will the owner be liable to you for any loss of use, interruption of business or any direct,
indirect, special, incidental, and/or consequential damages of any kind (including loss of
profits) even if the owner has been advised of the possibility of such damages. The owner
accepts no legal liability for any of the product and/or service sold, offered for sale, or
otherwise made available for public or private consumption in relation to this software.
The owner does not warrant that this software will be error-free.

1.5 Acknowledgements

While writing version 0.0 of wavetrain, I was supported in part by a Leverhulme Trust
Research Fellowship. I would have been incapable of writing wavetrain without my
research collaboration with Matthew Smith (Microsoft Research, Cambridge) and Jens
Rademacher (CWI, Amsterdam), and I am very grateful to them both for our many
discussions. I also thank Philipp Janert and Wasit Limprasert for help with gnuplot, Steve
Mowbray for computer advice, Lisa Keyse for secretarial help, and Ayawoa Dagbovie,
Osman Gani, Alan MacDonald and Jennifer Reynolds for testing the code and parts of
this user guide. Finally but most importantly, I am deeply grateful to Pam and Dorothy
for being so supportive, and for putting up with my many hours in front of the computer
screen.

1.6 Feedback

Feedback about wavetrain is strongly encouraged. It is particularly helpful to receive
details of any problems experienced in using wavetrain, and any suggestions for im-
provements that could be included in future releases. Comments about this user guide,
including typos, are also very welcome. Positive comments are also permitted! The e-mail
address for all feedback is j.a.sherratt@hw.ac.uk; please include the word wavetrain

10

(upper or lower case) in the subject heading. Please state in your e-mail which version of
wavetrain you are using; this information is contained in the file README in the main
wavetrain directory.

1.7 Installation

Wavetrain is freely available and can be downloaded from the wavetrain web site
www.ma.hw.ac.uk/wavetrain. The single file wavetrainn.m.tar should be downloaded;
here n.m is the version number. This file should be expanded in the usual way, by typing

tar -xf wavetrainn.m.tar

at the system prompt. This will create a directory wavetrainn.m containing all of the
wavetrain files. The directory wavetrainn.m will be referred to as “the main wave-

train directory” throughout this user guide. The tar file can then be deleted by typing

rm -f wavetrainn.m.tar

although this is not necessary. Now go into the new direcory by typing

cd wavetrainn.m

and then type

./install

which will list the copyright, distribution and disclaimer statement. Note that the “./”
before the command is recommended because the search path might not include the
current directory when this command is run; this issue is discussed further below. The
user must enter y or Y at the prompt to confirm that they have read and understood the
statement, and that they agree to the conditions.

After completing the installation, it is recommended that the user runs three tests:

Test 1: the search path. Wavetrain requires that the current directory (“.”) is included
in the search path. A user already using unix will almost certainly have this setting,
but this may not be the case for users who are new to unix. To check this setting,
the command

./pathtest

should be entered at the system prompt (from within the main wavetrain direc-
tory). This will check the search path, and if a change is required, the screen output
will contain advice on how to change the search path.

Test 2: the Fortran77 compiler. Once the search path is set appropriately, the user should
run a test of the Fortran77 compiler on their system. The default name for the
compiler is f77, but this can be changed by editing the file defaults.input in the
directory input files; the compiler name is set on line 15 (see §3.2 for details). To
test the compiler, one types the command

11

fortrantest

in the main wavetrain directory. If the resulting screen output is

Test completed

then the compiler is suitable for wavetrain. If an error message appears, such as
“f77: Command not found”, this indicates that a compiler needs to be installed,
or that the name needs to be changed: a number of compilers are freely available.
A third possibility is that “Test completed” appears, but is preceded by a list of
subroutines, such as

MAIN:

dotest:

which indicates that by default, the compiler operates in a non-silent mode. This
type of compiler output will make wavetrain’s screen output very difficult to
follow, and it should be suppressed. This can be done by editing defaults.input

in the input files subdirectory (see §3.2) and adding a suitable compiler flag on
line 15. The appropriate flag is compiler dependent, but “-silent” or “-fsilent”
are likely possibilities. Having made this change, the fortrantest command should
be run again to confirm that it has worked.

Test 3: a test run of auto97. Wavetrain makes extensive use of the numerical contin-
uation software auto97 (see §1.3). Having confirmed that the Fortran77 compiler
is working appropriately, the user is recommended to test the operation of auto97,
via the command

auto97test

(from within the main wavetrain directory). This test will begin by compiling
the auto97 code. This may not be successful even if fortrantest has worked,
because auto97 uses some extensions to the Fortran77 standard. Wavetrain

requires that the user’s Fortran77 compiler is able to compile the auto97 code. If
the compilation is successful, the auto97test command goes on to perform a test
run of auto97, and the output from this will be compared with reference output. If
the two sets of output are either identical or have only small numerical differences,
then the test will be declared successful.

Once these three tests have been completed successfully, the user is ready to begin using
wavetrain.

12

Part 2

How to Use WAVETRAIN

2.1 Getting Started With WAVETRAIN

The main wavetrain directory contains a subdirectory input files. Before starting
investigation of a new periodic travelling wave problem, the user must create a subdi-
rectory of input files in which the various input files must be placed. Several such
input subdirectories are provided in the installed version of wavetrain, and the input
subdirectory demo contains the input files for a very simple application of wavetrain,
intended as a tutorial case. The equations studied in demo are

∂u/∂t = wu2 −Bu+ ∂2u/∂x2

∂w/∂t = A− w − wu2 + ν∂w/∂x.

This is a dimensionless version of a model for vegetation patterns in semi-arid envi-
ronments, first proposed by Klausmeier (1999). For a more detailed discussion of this
problem, and for details of a more systematic study of these equations using wavetrain,
see Sherratt (2012). A description of the various input files is postponed until §2.2, and
the remainder of this section consists of an explanation of the use of wavetrain to study
the problem in demo. New users are encouraged to run the various commands on their
own system as they follow the description of this example.

2.1.1 Investigation of Periodic Travelling Wave Existence

The typical starting point for the investigation of periodic travelling waves is a series of
partial differential equation simulations in which such waves have been observed. Based
on this (or other) information, the user must decide upon a range of values of the control
parameter and wave speed over which periodic travelling waves are to be investigated;
this information is entered in the input file parameter range.input. For demo the range
0.1 < A < 3.4 and 0.3 < c < 1.1 has been chosen. Here A has been chosen as the
control parameter, and c is the name chosen for the wave speed; these are set in the
input file variables.input. The first stage in the use of wavetrain is to test the
suitability of (some of) the various computational inputs in the file constants.input for
the particular problem. To do this, one must enter manually a pair of A and c values for
which a periodic travelling wave is expected to exist: a good choice is values corresponding

13

This run has been assigned run code 1001

STARTING CALCULATION OF PERIODIC TRAVELLING WAVE SOLUTION

THE AUTO LIBRARIES NEED TO BE CREATED

THE AUTO SOURCE CODE WILL NOW BE RECOMPILED

END OF CALCULATION FOR demo WITH pcode=100 rcode=1001

THE OUTCOME WAS:

PERIODIC TRAVELLING WAVE FOUND, STABILITY NOT REQUESTED

PERIOD = 0.21580722E+02

THERE WERE NO ERRORS OR WARNINGS DURING THE RUN

Figure 2.1: The output that should appear on the screen during the execution of the
command ptw demo 2.0 1.0. There may also be a message about warnings generated
during the compilation of the auto source code. The precise value of the period may
vary according to the computer architecture and Fortran77 compiler.

to the observation of a wave in simulations of the partial differential equations. For demo,
the values A = 2.0 and c = 1.0 are suitable. One then types

ptw demo 2.0 1.0

and wavetrain will calculate the corresponding periodic travelling wave. Figure 2.1
shows the screen output that should appear during the run, which should only take a few
seconds. The run is allocated a four digit “rcode” (1001-9999) which will be used later
to specify the run, for example when plotting. Since this is the first run, the rcode value
is 1001, and this is reported in the screen output. One can then calculate the wave for a
second pair of control parameter and wave speed values, for example via the command

ptw demo 1.5 0.8

which is allocated an rcode value of 1002. Often it will be appropriate to run tests for
several pairs of values.

The user may wish to plot the periodic travelling waves that have been calculated. To
do this, one starts the wavetrain plotter by typing

plot demo

and one then types

@ptw 1001

14

at the plotter prompt to obtain a plot of the first wave that was calculated, and

@ptw 1002

for the second. The results are illustrated in Figure 2.2. The plotter should then be exited
by typing @quit or @exit. Note that all plotter commands begin with the “at” character
@.

Having confirmed that the computational constants are appropriate one can proceed
with investigation of the designated section of the A–c parameter plane. The input file
parameter range.input also contains the number of points in a grid of (A, c) parameter
values over which wave existence will be checked. For demo, a 5× 3 grid is used. This is
extremely coarse, and is chosen to reduce run times for demonstration purposes; typically
a 10×10 or 20×20 grid would be used in a real problem. To run over the grid, one types

ptw loop demo

and wavetrain will loop through the points in the parameter grid. As will be seen in
the screen output, wavetrain allocates a 3 digit “pcode” value to this run (the “p” in
pcode stands for “parameter loop”). Apart from rcode values (which are four-digit), all
wavetrain code numbers, including pcode values, are three-digit and range from 101 to
999. Since this is the first run to be performed, the pcode value will be 101.

To visualise the results of the run, one starts the wavetrain plotter again by typing

plot demo 101

(the number 101 is the pcode value) and then types

@pplane

at the plotter prompt. The plotter asks whether or not to use the default setting of
labelling the parameter sets by their rcode values. Hitting return (enter) to accept
this default gives the picture illustrated in Figure 2.3a: the colour of an rcode value
indicates the result of the corresponding calculation. Note that a rather small font is
used for the rcode values in Figure 2.3a. This default setting is chosen with much finer
parameter grids in mind (see for example Figure 3.8 on page 92). However, like most
aspects of wavetrain plots, the default font can be changed (see §3.3.1).

A key indicating the meaning of the colours is automatically generated when the
plotter is started; it is in the file pplane key.eps in the subdirectory postscript files

of the main wavetrain directory. The colours can all be changed if desired (see §3.3.1),
but with their default values, the key will be as shown in Figure 2.4. Figure 2.3a shows
that there are two different outcomes, depending on the control parameter and wave
speed values. For some pairs of values, a periodic travelling wave has been found, while
for others it has not. In the latter case, the phrase “no convergence” appears beside the
corresponding colour in the key in Figure 2.4. To search for periodic travelling waves,
wavetrain numerically continues periodic travelling waves along the solution branch as
the control parameter varies, starting at the Hopf bifurcation point in the travelling wave
equations. The phrase “no convergence” indicates that this continuation has ended with
a convergence failure because the solution approaches a homoclinic solution (the end of

15

(a)

(b)

Figure 2.2: Two periodic travelling wave solutions for the problem demo. The run and
plot commands used to generate these figures are given in the main text, and are also
listed in the Appendix. The first lines of the titles show the pcode and rcode numbers for
the run, together with the values of the control parameter A and the wave speed c. The
second lines show the periods of the solutions, and also the values of the two parameters
B and ν, which appear in the equations but which are not being used as the control
parameter; their values are specified in the file other parameters.input (see §2.2.3).

16

(a)

(b)

Figure 2.3: Results on the existence of periodic travelling wave solutions for the problem
demo. A key illustrating the meaning of the various colours is shown in Figure 2.4 on
page 18. The run and plot commands used to generate these figures are given in the main
text, and are also listed in the Appendix.

17

Figure 2.4: The key for the control parameter–wave speed plots, indicating the meaning
of the various points and lines. This key is automatically generated when the plotter is
started; it is in the file pplane key.eps in the relevant subdirectory of postscript files

(e.g. postscript files/demo); note that postscript files is a subdirectory of the
main wavetrain directory. The user can specify that only a subset of the lines in this
key be included: see §3.3.1 for details on how to change this and other plotter settings.
Additionally, if the user wishes to include a key in material for presentation or publication,
then they will probably prefer to use a single entry for cases where there is no periodic
travelling wave, and correspondingly to have a single entry in the key. This can be
achieved by resetting the plotter setting pplanekeytype (see §3.3.1).

the solution branch) without passing through the required value of the control parameter.
There are some situations in which there is no periodic travelling wave but for which
continuation finishes without a convergence failure; the wavetrain plotter then uses a
different symbol. This issue is discussed in detail in §3.1.9. If the user wishes to include
a key in material for presentation or publication, then they will probably prefer not to
include the “no convergence” phrase, and this can be achieved by changing the plotter
settings, as explained in §3.3.1.

The form of the periodic travelling wave solutions can again be visualised using the
@ptw plotter command. Thus

18

@ptw 1007

would generate a plot of the wave for A = 2.574 and c = 0.7, while

@ptw 1006

would give an error message, since no periodic travelling wave solution was found for this
rcode value. Rerunning the @pplane plot command but now entering period as the label
style gives the picture shown in Figure 2.3b; the colours are the same as in the previous
picture, but when the wave exists, its period is now displayed. The plotter should now
be exited by typing @quit or @exit.

At this stage one could proceed with investigation of the stability of the periodic
travelling wave solutions, but in this case we will first use wavetrain to obtain more
details of the region of the A–c parameter plane in which periodic travelling wave solutions
exist. Boundaries of the region can be of two possible types. They can correspond to
a Hopf bifurcation in the travelling wave equations, so that the wave amplitude is zero
on the boundary. Alternatively, they can correspond to a homoclinic solution, so that
the period (wavelength) is infinite. The parameter grid used for demo is too coarse to
clarify the nature of the left- and right-hand boundaries in Figure 2.3. (The coarse grid
is chosen to keep run times small). However with a finer grid, a plot of wave periods such
as Figure 2.3b shows that the period increases markedly near the boundary on the left,
but not near that on the right. Hence the left-hand boundary corresponds to homoclinic
solutions, while the right-hand boundary corresponds to Hopf bifurcation points.

Wavetrain can be used to trace these boundaries. From the previous results, it is
expected that the Hopf bifurcation locus (right hand boundary) crosses c = 0.8 between
A = 2.0 and A = 3.5. Typing

hopf locus demo 101 2.0 0.8 3.5 0.8

causes wavetrain to locate this crossing point and then continue the boundary starting
from that point. (The number 101 is the pcode value.) Similarly, the previous results
suggest that the locus of homoclinic solutions (left hand boundary) crosses c = 0.8 between
A = 0 and A = 1.5. There is no capability in wavetrain to locate/track true homoclinic
solutions but one can approximate the homoclinic (period=∞) locus by the locus of a
solution of large finite period. Typing

period contour demo 101 period=3000 1.5 0.8 0.0 0.8

causes wavetrain to calculate the contour of period 3000. Wavetrain allocates a 3
digit “ccode” number (101-999) to this period contour calculation; since this is the first
such calculation to be done, the ccode number is 101. In many cases, one will wish
to calculate contours for various different values of the period, and these will be given
different code numbers. Thus typing

period contour demo 101 period=80 2.5 0.8 0.5 0.8

causes wavetrain to calculate the contour for waves of period 80; the ccode number for
this run is 102. The command list periods can be used to list the periods corresponding
to the various ccode numbers; thus for instance

19

list periods demo 101

(where 101 is the pcode value) causes wavetrain to report that the period is 3000 for
ccode 101 and 80 for ccode 102. An “hcode” number (101-999) is also allocated to a run
of hopf locus; this is because in principle there may be more than one Hopf bifurcation
locus curve in the chosen part of the A–c plane; however this is not the case for demo.
Note that the period contour command also has optional additional arguments, which
are discussed in §3.1.3.

To visualise these new results, one starts the plotter again by typing

plot demo 101

and then draws the parameter grid results again by typing

@pplane

at the plotter prompt; for variety, select symbol as the plotting type. One can then draw
the Hopf bifurcation locus by typing

@hopf locus 101

where 101 is the hcode number. If more than one Hopf bifurcation locus has been calcu-
lated, the command

@hopf locus all

can be used to plot all of them. For the period contours, the separate commands

@period contour 101

and

@period contour 102

can be used to draw the contour for the two ccode numbers; alternatively the single
command

@period contour all

will draw them both. In either case, it is appropriate to press return (enter) when
prompted about the label location, to select default labelling. The plot resulting from
these various commands is illustrated in Figure 2.5. The plotter should now be exited by
typing @quit or @exit.

20

Figure 2.5: The Hopf bifurcation locus and two contours of constant wave period for
the problem demo, superimposed on a plot showing periodic travelling wave existence in
the control parameter–wave speed plane. A key illustrating the meaning of the various
colours and symbols is shown in Figure 2.4 on page 18. The run and plot commands used
to generate this figure are given in the main text, and are also listed in the Appendix.

2.1.2 Investigation of Periodic Travelling Wave Stability

The calculations and plots described above give a detailed account of the region of the A–c
parameter plane in which there are periodic travelling waves, but they give no information
about the stability of these waves, which is a fundamental issue in applications (Sherratt
& Smith, 2008). Wavetrain determines stability by calculating the eigenvalue spectrum
via numerical continuation, using the method of Rademacher et al (2007). Although a
detailed understanding of the method is not needed in order to use wavetrain, a brief
introduction will help users with their choice of computational constants. For a periodic
travelling wave, the system of equations satisfied by the (complex-valued) eigenfunctions
has coefficients that are periodic in the travelling wave coordinate. However, the eigen-
functions themselves need not be periodic; their amplitude must be periodic, but their
phase shift γ across one period of the wave is not constrained, and is the central player
in the method of Rademacher et al (2007). One begins by calculating the eigenvalues
for which γ = 0, i.e. those for which the corresponding eigenfunction is periodic with the
same period as the wave. This is done by discretising the eigenfunction equation and then

21

solving (numerically) the resulting matrix eigenvalue problem. These periodic eigenfunc-
tions and the corresponding eigenvalues can then be used as starting points for numerical
continuation in the phase shift γ, which effectively “joins the dots” in the eigenvalue com-
plex plane. Performing this continuation starting from each periodic eigenfunction results
in the whole eigenvalue spectrum being traced out. This spectrum will always contain
the origin (reflecting the neutral stability of the wave to translations), and the wave is
unstable if and only if the spectrum crosses into the right-hand half of the eigenvalue
complex plane.

In order to implement this procedure, wavetrain requires two basic computational
parameters to be set:

1. The number of periodic eigenfunctions to use as starting points for continuation in
γ (nevalues). Wavetrain uses the eigenvalues with largest real part, considering
either eigenvalues with real part ≥ 0, or all eigenvalues, depending on the value of
the constant iposim (see §3.1.8).

2. The number of points used in the discretisation of the eigenfunction equations
(nmesh2).

In principle, the spectrum may undergo a large excursion that crosses the imaginary axis
between any pair of consecutive eigenvalues corresponding to periodic eigenfunctions, but
in practice it is typical that a relatively small value of nevalues (8–10 say) is sufficient
to capture any crossing of the imaginary axis. For demo nevalues is fixed at 5 to reduce
computation time; this would be dangerously low for a real problem.

The choice of nmesh2 is very important. If it is too low, the discretisation introduces
eigenvalues that have no analogue in the actual partial differential equations. However too
high a value makes computation times excessive and also introduces significant errors into
the matrix eigenvalue calculation (see §3.1.13). The command eigenvalue convergence

enables a suitable value of nmesh2 to be determined. It has a variable (> 3) number of
arguments. The first three arguments are the problem name (demo in this case) and the
values of the control parameter and wave speed being considered; the rest are a list of
candidate nmesh2 values. The command eigenvalue convergence sorts these candidate
values into numerical order and calculates the requested number of eigenvalues (according
to nevalues and iposim). Thus

eigenvalue convergence demo 2.4 0.8 5 10 30 100 200

calculates the five eigenvalues for nmesh2= 5, 10, 30, 100 and 200. (Five is the value of
nevalues set in the input file constants.input; see §2.2.1). The run is allocated an
“ecode” value (101-999); since this is the first run of eigenvalue convergence, the ecode
value is 101. Note that this run takes several minutes on a typical desktop computer.

The eigenvalue convergence command does not display any results itself. Rather
the separate command convergence table is used for that purpose. For example, one
types

convergence table demo 101 2

22

(here 101 is the ecode value) to display a “convergence table”, showing how the second
out of the five eigenvalues changes as nmesh2 is varied. Here the eigenvalues are ordered
by the size of their real parts. The results are shown in Figure 2.6a, but note that the
precise numerical values will vary according to computer architecture and the Fortran77
compiler. Alternatively one can use

convergence table demo 101 3 4

to display a table using eigenvalues number 3 and 4 (ordered by their real parts). The
results of this are shown in Figure 2.6b, but again note that the precise numerical values
will vary according to computer architecture and the Fortran77 compiler. Finally one can
use the command

convergence table demo 101 all

to show all five of the eigenvalues (results not illustrated). The results in Figure 2.6b show
that the eigenvalue ≈ −0.426 is missing in the (very coarse) discretisation at nmesh2=5,
but is present at nmesh2=10; further increase improves accuracy. The choice nmesh2=30
is adequate for the purposes of demo. Note that as well as listing the real and imaginary
parts of the eigenvalues, the “convergence table” produced by the “convergence table”
command contains an estimated error bound for each eigenvalue displayed. This error
bound concerns the numerical errors in the calculation of the matrix eigenvalues. There-
fore the displayed eigenvalues are only reliable as matrix eigenvalues if this error bound
is significantly smaller in absolute value than both the real and imaginary parts of the
calculated eigenvalue.

Having fixed on nevalues=5 and nmesh2=30, one can test these choices by calculating
the eigenvalue spectrum. In practice, the convergence tests described above can only be
done for one or at most a few pairs of control parameter and wave speed values, and
one assumes that the appropriate values of nevalues and nmesh2 are not sensitive to
parameters. Thus test calculations need not be done for the same control parameter and
wave speed values as those used in the convergence tests, and a suitable command would
be

stability demo 2.2 0.8

where the second and third arguments are the values of A and c. This run will be given
a (four-digit) rcode value, which will be reported in the screen output; since two runs
(of the ptw command) have been done previously for a specified parameter set, the rcode
value will be 1003 in this case. It can be visualised by typing

plot demo

to start the plotter; no pcode value is needed since the results to be plotted do not come
from a parameter plane run. The command

@spectrum 1003

23

(a) Eigenvalue 2

nmesh Re of evalue 2 Im of evalue 2 Error bound 2

5 -0.38268891E+00 0.76626544E-01 0.33022440E-12

10 -0.35918911E+00 0.00000000E+00 0.19255672E-11

30 -0.36096484E+00 0.00000000E+00 0.60103036E-11

100 -0.36100219E+00 0.00000000E+00 0.22931134E-10

200 -0.36102336E+00 0.00000000E+00 0.93608241E-10

(b) Eigenvalues 3 and 4

nmesh Re of evalue 3 Im of evalue 3 Error bound 3 Re of evalue 4 Im of evalue 4 Error bound 4

5 -0.38268891E+00 -0.76626544E-01 0.33022440E-12 -0.50461854E+00 0.37706544E+00 0.11312082E-12

10 -0.42579712E+00 0.00000000E+00 0.18899599E-11 -0.51709584E+00 0.41066600E+00 0.28770486E-12

30 -0.42668430E+00 0.00000000E+00 0.73063981E-11 -0.52190354E+00 0.42118978E+00 0.61459815E-12

100 -0.42665738E+00 0.00000000E+00 0.28518558E-10 -0.52245312E+00 0.42252182E+00 0.25078373E-11

200 -0.42662685E+00 0.00000000E+00 0.11732264E-09 -0.52249548E+00 0.42262715E+00 0.10448786E-10

Figure 2.6: The change in the eigenvalues of the discretised eigenfunction equations as the constant nmesh2 (defined in
constants.input) is varied. The run command for these tables is eigenvalue convergence demo 2.4 0.8 5 10 30 100

200. Assuming that this is the first run of the eigenvalue convergence command for demo, it will be allocated an ecode value
of 101. The tables shown can then be generated via the commands (a) convergence table demo 101 2, (b) convergence table

demo 101 3 4. However, note that the precise numerical values will vary according to computer architecture and the Fortran77
compiler.

24

Figure 2.7: The eigenvalue spectrum for one pair of control parameter and wave speed
values, for the problem demo. The dots indicate eigenvalues corresponding to periodic
eigenfunctions, and the colours along the curve indicate the phase difference in the eigen-
function over one period of the periodic travelling wave. The run and plot commands used
to generate this figure are given in the main text, and are also listed in the Appendix.
The two parameters B and ν, whose values are given in the title, appear in the equations
but are not being used as the control parameter. Their values are specified in the file
other parameters.input (see §2.2.3). The cross, which is labelled with the correspond-
ing value of the real part of the eigenvalue, indicates the fold in the eigenvalue spectrum
with largest real part, other than the origin. The sign of the real part of the eigenvalue at
this point is used by wavetrain to classify the wave as either stable or unstable. Note
that if plotting is done using gnuplot then ticmarks will be absent from the horizon-
tal axis in this plot; this applies if spectrumcolour is set to rainbow or greyscale or
grayscale, but not if a single colour is used.

25

generates a plot of the eigenvalue spectrum (here 1003 is the rcode value). When prompted
about the axes limits, one can just press return (enter), since the default settings are
appropriate; if gnuplot is used as the plotter, there will also be a prompt about rescaling,
and again one can just press return (enter), since the default scaling is suitable. The
resulting plot is illustrated in Figure 2.7; the dots indicate eigenvalues corresponding to
periodic eigenfunctions (γ = 0), and the colours (red–green–blue) indicate the value of γ
along the spectrum curves in between. Note that both the colour scheme for the spectrum
curves and the marking of eigenvalues corresponding to periodic eigenfunctions are default
settings that can be changed (see §3.3.2). As usual, one exits the plotter by typing @quit

or @exit.
Having chosen values of nevalues and nmesh2, investigation of periodic travelling wave

stability using wavetrain is a two stage process. First, one scans the A–c parameter
plane looking for regions in which periodic travelling waves are stable/unstable. This is
done using the command stability loop, which is directly analogous to ptw loop except
that at each parameter point at which a wave exists, its stability is also determined. Thus
the command

stability loop demo

loops through the points in the parameter plane as specified in parameter range.input.
This run will be allocated a new pcode value; since only one previous parameter plane
has been determined (using ptw loop), the pcode value is 102. Note that this run of
stability loop repeats the computations done previously in the run of ptw loop, since
it is necessary to calculate the form of a periodic travelling wave before calculating its
spectrum; however this does not increase the computation time significantly, since the
majority of the run time is associated with the stability calculation.

To visualise the results, one starts the plotter again by typing

plot demo 102

(102 is the pcode value) and then types

@pplane

at the plotter prompt. If the default plot type (rcode) is selected, then the resulting plot
is illustrated in Figure 2.8; it is very similar to that generated previously by @pplane for
pcode value 101, but the colours indicating the existence of periodic travelling waves now
also show wave stability. It may be of interest to visualise the eigenvalue spectrum for
some of these waves, which can be done using the @spectrum plot command. Thus typing

@spectrum 1002

shows the eigenvalue spectrum for A = 2.574 and c = 1.1 (illustrated in Figure 2.9a),
while

@spectrum 1013

26

Figure 2.8: Results on the existence and stability of periodic travelling wave solutions
for the problem demo. A key illustrating the meaning of the various colours is shown in
Figure 2.4 on page 18. The run and plot commands used to generate this figure are given
in the main text, and are also listed in the Appendix.

shows the spectrum for A = 1.75 and c = 0.3 (illustrated in Figure 2.9b). (In both cases,
the default axes limits are appropriate, and if gnuplot is used as the plotter, the default
rescalings are appropriate.) In the first case, the wave is stable, and the spectrum remains
in the left hand half of the complex plane, while in the second case the wave is unstable,
and the spectrum crosses the imaginary axis. As usual, one exits the plotter by typing
@quit or @exit.

The second stage in determining wave stability is to compute the boundary curve(s)
between stable and unstable waves. To do this, wavetrain requires the coordinates of
two points in the A–c parameter plane lying either side of the boundary curve: a periodic
travelling wave must exist for the first point, but this is not necessary for the second. As
for the hopf locus and period contour commands, the two points must either have the
same value of A or the same value of c. Based on the results of the scan through the
parameter plane, one can therefore enter the command

stability boundary demo 102 1.75 0.3 1.75 0.7

to calculate the stability boundary. This run is significantly more time-consuming than
the previous runs (5-10 minutes on a typical desktop computer). During the run, various

27

(a)

(b)

Figure 2.9: The eigenvalue spectrum for two pairs of control parameter and wave speed
values, for the problem demo. The periodic travelling wave is stable for (a) and unstable
for (b). The dots indicate eigenvalues corresponding to periodic eigenfunctions, and the
colours along the curve indicate the phase difference in the eigenfunction over one period
of the periodic travelling wave. The run and plot commands used to generate these figures
are given in the main text, and are also listed in the Appendix. The two parameters B
and ν, whose values are given in the titles, appear in the equations but are not being used
as the control parameter. Their values are specified in the file other parameters.input

(see §2.2.3). Note that if plotting is done using gnuplot then ticmarks will be absent
from the horizontal axis in these plots; this applies if spectrumcolour is set to rainbow

or greyscale or grayscale, but not if a single colour is used.

28

warning messages will appear. The run is given a 3 digit “scode” value (101-999); in
this case scode=101 since this is the first stability boundary to be calculated. In general
there may be more than one segment of stability boundary in the region of the control
parameter–wave speed plane being considered; each can be calculated using different
starting coordinates, and they would be allocated different scode values. However, for
demo there is only one stability boundary curve. Note that the stability boundary

command also has optional additional arguments, which are discussed in §3.1.2.
For periodic travelling waves, changes in stability can be of either Eckhaus or Hopf

type (see §3.1.14 and Rademacher & Scheel, 2007). The stability boundary command
automatically detects which of these occurs. Details of how the stability boundary

works are given in §3.1.14, and an example problem with a change in stability of Hopf
type is given there; for demo, the stability boundary corresponds to a change of Eckhaus
type. This is reported in the output information and is available to the plotter, which
uses (by default) a different colour for stability boundary curves of the two types. To plot
the results one must first generate a parameter plane plot: one restarts the plotter via

plot demo 102

(102 is the pcode value), and then types

@pplane

at the plotter prompt, selecting the default plot type. One then superimposes the stability
boundary onto this plot via

@stability boundary 101

(101 is the scode value); the result is illustrated in Figure 2.10.
The final step in completing the parameter plane plot would be to superimpose the

Hopf bifurcation locus and the contours of constant period. These were calculated pre-
viously for the same model parameters, but they were computed as part of pcode 101
not pcode 102 and are therefore not currently available to the plotter, which must now
be exited via @quit or @exit. Of course, one could simply repeat the Hopf bifurcation
and period contour calculations for pcode 102, but this is not necessary. Instead one can
simply type

copy hopf loci demo 101 102

and

copy period contours demo 101 102

(here 101 and 102 are the two pcode values). These commands copy the previously
calculated solutions across. A check is made that the two sets of input files are the
same, and then all data files copied; note however that the hcode/ccode numbers may be
changed.

All calculations for demo are now completed. To plot the final result, one starts the
plotter again via

plot demo 102

29

Figure 2.10: The interface between regions of stable and unstable periodic travelling
waves, superimposed on results on wave stability, for the problem demo. A key illustrating
the meaning of the various colours is shown in Figure 2.4 on page 18. The run and plot
commands used to generate this figure are given in the main text, and are also listed in
the Appendix.

(here 102 is the pcode number) and then enters the relevant series of plot commands:

@pplane

(to draw the parameter plane, selecting symbol as the plot type),

@hopf locus 101

(to draw the Hopf bifurcation locus),

@period contour all

(to draw the contours of constant period, selecting the default label locations), and

@stability boundary 101

(to draw the stability boundary). The resulting plot is illustrated in Figure 2.11. To
generate a postscript file of this plot, one types

30

Figure 2.11: A complete plot of the specified part of the control parameter–wave speed
plane, for the problem demo. A key illustrating the meaning of the various colours and
symbols is shown in Figure 2.4 on page 18. The run and plot commands used to generate
this figure are given in the main text, and are also listed in the Appendix.

@postscript demoplot

and then re-enters this series of four plotter commands. However the postscript plot is at
this stage only present in a buffer: to complete the file one must either return to screen
output via the command @screen, or exit the plotter via @quit or @exit. (Alternatively,
one can use the @postscript command again to start a new postscript file: this also
flushes the output buffer). The plot is then available in the file demoplot.eps, in the
subdirectory postscript files/demo/ of the main wavetrain directory. Optionally,
one can also give a second argument to the @postscript command, which specifies the
aspect ratio (horizontal : vertical) of the plot. Thus for example

@postscript demoplot 0.3

would give a tall, skinny plot. Recall also that a key showing the meaning of the various
dots and lines is given in pplane key.eps in the same subdirectory; the key is illustrated
in Figure 2.4. Note that each postscript file generated by wavetrain contains a single
plot: there is no capability to produce multi-page postscript files.

31

2.2 Details of the WAVETRAIN Input Files

For each problem to be studied using wavetrain, the user must create a subdirectory of
input files containing the following files:

constants.input This file contains computational constants.

equations.input This file specifies the equations to be studied.

other parameters.input (optional) This file can be used to specify values for parame-
ters other than the control parameter that occur in the model equations. If there
are no such parameters, then the file can either be present but empty (apart from
any comments) or can be absent.

parameter list.input This file is only required if the user wishes to run the command
add points list; it specifies a list of control parameter and wave speed values to
be studied via this command.

parameter range.input This file specifies the range of control parameter and wave speed
values to be studied. It also specifies the number of values of each to be used in a
parameter grid for the commands add points loop, ptw loop or stability loop,
and these numbers must be present even if the user does not intend to run any of
these commands. If iwave=0 or 1 (see §3.1.9), then parameter range.input is not
needed to run the commands ptw and stability

variables.input This file specifies the names to be used for the various variables.

For the input directories provided as examples in the installation copy of wavetrain,
each of these files contains detailed comments explaining their contents.

In fact, not all computational constants are defined in constants.input. Rather, this
file contains those constants that it is anticipated users will wish to change according to the
problem being studied. Remaining constants are contained in the file defaults.input

in the input files directory itself. It is not expected that users will need to change
the constants in defaults.input very often, but the file is available to be editted if
desired, and again it contains detailed comments explaining the meaning of each con-
stant. The input files directory also contains a number of plotter input files. The file
plotter defaults.input contains the default values for a wide range of plotter settings,
while files with the extension “.style” specify line styles, colours etc. (see §3.3.1). It
is not anticipated that new users will want to change these files, but more experienced
users may wish to do so, in order to “fine tune” the plots produced by wavetrain. Both
plotter defaults.input and the .style files contain detailed comments on each entry.

Full details of the files located in the input subdirectory for a particular problem are
given below. Details of the defaults.input file are given in §3.2, and details of the
.style files and the file plotter defaults.input are given in §3.4.

2.2.1 Details of constants.input

This file contains those computational constants that are expected to vary according to
the problem being studied. Apart from comment lines, the file for the example demo is as

32

follows.
1 3 # iclean: 1/2=clean/do not, info: 1/2/3/4=log/error/major/all
1 # iwave, wavefrac (optional)
30 # nmesh1: for accurate ptw calc (for ptw period)
30 # nmesh2: for ptw and eigenvalue calculations (< or = nmesh1)
30 # nmesh3: for spectrum continuation
0.005 0.002 0.05 # ds(>0),dsmin,dsmax for locating Hopf bifns
0.1 0.05 0.5 # ds(>0),dsmin,dsmax for continuation of ptws
0.001 0.001 0.252 # ds(>0),dsmin,dsmax for continuation of spectrum
0.2 0.2 1.0 # ds(>0),dsmin,dsmax for stability boundary calcs
5 0 # nevalues (no. of periodic evalues), iposim (0/1=all/only +ve Im)
2 # inttype (1=all ptw components, 2=only pde components)
1 # order: accuracy order of approx of highest spatial derivative

Note that here and in all wavetrain input files, # indicates that the remainder of the
line is a comment. The meaning of the various constants is as follows.

iclean

Wavetrain commands create a variety of temporary files during runs. These are
deleted at the end of a run if iclean=1, but not if iclean=2. Normally iclean

should be set to 1; the option iclean=2 may be useful as a diagnostic tool.

info

The level of output information written to the screen is determined by info. In all
cases, full output information is always written to the file info.txt in the relevant
output subdirectory. (See §4.4 for a discussion of the output directory structure).

info=4: full output information is written to the screen, as well as to info.txt.

info=3: a subset of information is written to the screen: this provides basic infor-
mation on the progress of the run.

info=2: only error messages are written to the screen, plus an output line indicating
the code number allocated to the run.

info=1: there is no screen output, and an output line indicating the code number
allocated to the run (which is needed for plotting the results) is written to the
file output files/logfile.

There two minor exceptions to the above, as follows:

Exception 1: an error may occur that prevents the determination of the value of
info. For example, there might be a typo in the subdirectory name so that
the relevant input subdirectory does not exist. In such a case an error message
is written to the screen only.

Exception 2: an error may occur that does not prevent the determination of the
value of info, but does prevent the creation of the output subdirectory. If
info=1, an error message is written to output files/logfile as usual in
such a case, but if info=2, 3 or 4 then an error message is written to the
screen only.

33

For interactive runs it is recommended to set info=3 since info=4 typically bom-
bards the user will too much information. For background runs it is recommended
to set info=1.

iwave

iwave>0 causes the program to select the periodic travelling wave at the iwave-th
occurrence of the specified value of the control parameter along the solution branch.
iwave=0 is similar to iwave=1 but specifies additionally that, during numerical
continuation in the control parameter to search for a Hopf bifurcation in the travel-
ling wave equations, if the specified value of the control parameter is reached before
a Hopf bifurcation is detected, then it is assumed that there is no periodic travelling
wave for the specified values of the control parameter and wave speed. This has the
advantage of eliminating a lot of unnecessary searching for non-existent periodic
travelling waves in some cases. It is strongly recommended that when first studying
a new problem, iwave is set to 1. It is also strongly recommended that iwave>1
only be used on the basis of a bifurcation diagram, which can be generated via the
command bifurcation diagram (see §3.1.6).

wavefrac

If iwave>1, the program determines the 2nd, 3rd, 4th,...,iwave-th occurrence of the
specified value of the control parameter along the periodic travelling wave solution
branch. At each stage the solution may be a genuine occurrence of an additional
wave for that parameter value, or it may be a repeat of the previous wave, caused
by the numerical continuation simply re-tracing a previously calculated solution
branch. The constant wavefrac is used to distinguish between these cases. The
new wave solution is deemed to be a repeat of the previous one if the difference
divided by the mean is less than wavefrac for both the two L2-norms and the two
periods. The value of wavefrac can be omitted, in which case the default value of
0.001 is used.

nmesh1, nmesh2, nmesh3

The constants nmesh1, nmesh2 and nmesh2 are the number of mesh intervals used
in the discretisation of the solutions, for the three different calculations. These
constants are used as the values of the auto parameter ntst; users familiar with
auto should note that the auto constant ncol is set to 4 for all wavetrain
computations.

If nmesh2<nmesh1, then the periodic travelling wave is calculated twice, first for an
accurate value of the periodic travelling wave period, and second for the periodic
travelling wave used in the eigenvalue calculations. The lower nmesh2 value is used
simply to reduce computation times. If nmesh2=nmesh1 then the periodic travelling
wave calculation is done only once. Setting nmesh2>nmesh1 gives an error. It is
recommended to set nmesh1=nmesh2 unless a particularly accurate value of the
wave period is needed. Note that if nmesh2 is set to too small a value, then the
first continuation run for the spectrum may fail because the approximations to the
periodic eigenfunctions and the corresponding eigenvalues are too poor, due to the
coarse discretisation (see §3.1.13).

34

For both periodic travelling wave calculations, the same value of nmesh (nmesh1
for the first calculation and nmesh2 for the second) is used for both the location
of the Hopf bifurcation point in the periodic travelling wave equations, and the
continuation of the periodic travelling wave solution from this Hopf bifurcation
point. For calculations of Hopf bifurcation loci, fold loci, and contours of constant
period, nmesh2 is used.

The run time for calculating the eigenvalues of the discretised equations (with pe-
riodic boundary conditions) increases rapidly with nmesh2, which determines the
size of the matrix whose eigenvalues are to be calculated. Therefore large values of
nmesh2 should be used only if necessary (see §3.1.13). If nmesh2 is too small then
two problems arise: (i) spurious eigenvalues, due to the discretisation, with no cor-
responding eigenvalues in the partial differential equation; (ii) poor approximations
to the partial differential equation eigenvalues.

Note that the value of nmesh2 in constants.input is not used by the command
eigenvalue convergence. Instead the various values of nmesh2 specified in the
command line are used. However the other parameters set in constants.input do
apply.

If nmesh3=nmesh2, so that the number of collocation points in the spectrum contin-
uation is the same as in the calculation of the periodic travelling wave solution, then
the periodic travelling wave solution used in the spectrum continuation is simply
inherited directly from the calculated solution. However this is not necessary, and
auto will interpolate to a new mesh as required. Setting nmesh3<nmesh2 is usually
desirable to reduce run times; setting nmesh3>nmesh2 is permitted but would rarely
be used.

For calculations of stability boundaries, nmesh3 is used.

ds, dsmin, dsmax

These are the initial, minimum and maximum step sizes used in the various nu-
merical continuation calculations. The signs of ds are set appropriately in the
relevant programs; they should all be set positive in this file. The appropriate
values are highly problem-dependent and some experimentation may be necessary
to identify appropriate values. Values that are too small can lead to excessive
run times; values that are too large can cause convergence errors or can cause
bifurcation points and other critical points to be “jumped over”. The first trio
of values is used when locating Hopf bifurcations in the periodic travelling wave
equations. The second trio of values is used for continuation of branches of pe-
riodic travelling wave solutions, including the calculation of bifurcation diagrams
and contours of constant period. They are also used for tracing the loci of Hopf
bifurcation points and folds in the control parameter–wave speed plane. How-
ever, in the calculation of bifurcation diagrams, Hopf bifurcation loci, fold loci,
and contours of constant period, continuations may be done to locate a Hopf bi-
furcation in the travelling wave equations with the wave speed being the princi-
ple continuation parameter rather that the control parameter. (This will occur
if the two control parameter values specified in the command arguments are the

35

same, while those for the wave speed are different). Then the ds values used
are based on those set in this file (the first trio of values), but with a rescaling.
The rescaling is based on the parameter ranges set in parameter range.input:
specifically, all three of ds, dsmin and dsmax are multiplied by the scaling factor
(wave speed min+wave speed max) / (control param min+control param max).
However, the values specified in this file are then used for the subsequent continua-
tions, in which the wave speed and control parameter are both continuation param-
eters.

The third trio of values is used for continuation along the eigenvalue spectrum.
When setting these values, it should be remembered that the principle continuation
parameter changes by 2π during each continuation. Therefore it is recommended to
set dsmax no larger than about 2π/50 = 0.126 in this case. The fourth trio of values
is used for locating and continuing stability boundaries of both Eckhaus and Hopf
type. In many cases these can be set to the same values as for periodic travelling
wave continuations. However, since these computations are typically rather time-
consuming, larger values should be used if possible. Note that the same step sizes
are used to locate the stability boundary whether this is done by varying the control
parameter for a fixed wave speed, or vice-versa.

A note for users familiar with auto: in the continuations for locating and con-
tinuing stability boundaries, derivatives of eigenfunctions are excluded from the
pseudo-arclength calculation. Also, in the Eckhaus case, the second derivative of
the real part of the eigenvalue with respect to the phase difference across the eigen-
function is excluded, while in the Hopf case, the first derivative of the imaginary
part of the eigenvalue with respect to the phase difference is excluded. As a result,
it is appropriate to use the same trio of values for both types of stability boundary.
However, the pseudo-arclength does include the eigenfunction, the eigenvalue, and
the first derivative of the real part of the eigenvalue with respect to the phase differ-
ence. This may cause the appropriate step sizes for stability boundary calculations
to be different from those for the continuation of periodic travelling wave solution
branches.

nevalues

The first stage in the calculation of the spectrum is to find eigenvalues for which
the eigenfunction is periodic with the period of the wave (“periodic eigenvalues”).
The constant nevalues specifies the number of these (chosen in order of real part)
to be used as starting points for the calculation of the spectrum itself. The issue
is that the spectrum may protrude into the right hand half of the complex plane
in between two periodic eigenvalues that both have negative real part. In principle
this can happen in between any two adjacent periodic eigenvalues, but it is most
common for periodic eigenvalues whose real part is almost maximal. Therefore the
recommended value of nevalues is about 10.

iposim

If iposim=1 then only eigenvalues with imaginary part > or = zero are used for
output; if iposim=0 then all eigenvalues are used for output. Often iposim=1

36

is adequate and almost halves the computational time required to calculate the
spectrum. However the spectrum can have a form for which the setting iposim=1
gives incorrect information about stability: a sketch illustrating this is given in the
user guide. Wavetrain gives an error message in most cases of this kind, informing
the user that iposim=0 is required. However there are unusual situations in which
the algorithm used for this error message will fail. Therefore if iposim=1, it is good
practice to visually inspect spectra.

inttype

When calculating stability boundaries, integral conditions are imposed which en-
sure that the derivatives of the eigenfunction of the periodic travelling wave with
respect to iγ are orthogonal to the nullspace of the eigenfunction ordinary dif-
ferential equations. Here γ is the phase difference in the eigenfunction over one
period of the periodic travelling wave. These integral conditions can be formu-
lated either in terms of all of the periodic travelling wave components (given by
inttype=1), or (in most cases) also in terms of just the periodic travelling wave
components that correspond to partial differential equation variables (given by
inttype=2). The recommended value is inttype=2 for most problems, which
tends to give greater computational reliability (Rademacher et al., 2007). Note that
setting inttype=2 requires that for each of the partial differential equation vari-
ables, there is a direct assignment of one of the periodic travelling wave variable
to that partial differential equation variable. Thus if one of the partial differential
equation variables is u, say, then one of the assignments in variables.input must
be “<periodic travelling wave variable>=u”.

order

The first step in calculating the eigenvalue spectrum is to discretise the linearised
partial differential equations for eigenfunctions that are periodic with the same pe-
riod as the periodic travelling wave; here the linearisation is about the periodic
travelling wave. This gives a matrix eigenvalue problem which is solved to obtain
the periodic eigenfunctions and the corresponding eigenvalues. To do this, spatial
derivatives must be converted into finite difference approximations. The constant
order specifies the order of this approximation for the highest spatial derivative.
This determines the number of grid points used to represent the derivative. The
approximation is calculated using the algorithm of Fornberg (1998). Since the ap-
proximation always uses the same number of grid points on either side of the point
at which the derivative is being calculated, the order will actually be one higher than
that specified if the number of the highest derivative number is odd, and it may be
higher anyway if there are particular symmetries. Usually order = 1 is sufficient,
and is the recommended value. However higher values may help the accuracy of the
approximations to the periodic eigenfunctions and the corresponding eigenvalues,
and hence may help if there are difficulties with convergence in the first auto run
in the calculation of the spectrum. (This run is a continuation in a dummy parame-
ter to locate a solution of the eigenfunction equations, starting from the discretised
periodic eigenfunction and corresponding eigenvalue). Examples of the use of order
> 1 are given in this section (see §2.3.9–2.3.11) and in §3.1.14.

37

Run times in wavetrain depend strongly on the values of the constants set in the file
constants.input. Typically run times can be reduced most easily by: (i) decreasing the
nmesh values, especially nmesh3; (ii) increasing dsmax for the spectrum continuation; (iii)
decreasing nevalues (iv) setting iposim=1 if the form of the spectrum permits this (see
§3.1.8).

2.2.2 Details of equations.input

This file specifies the equations to be studied. For the example demo, the file is as follows
(apart from some comment lines):

Travelling wave equations
U z=V
V z=-c∗V-W∗U∗U+B∗U
W z=(W∗U∗U+W-A)/(NU+c)
#
Steady states
A<2.001∗B

none
2.001∗B<=A

U=2∗B/(A-sqrt(A∧2-4∗B∧2))
V=0
W=(A-sqrt(A∧2-4∗B∧2))/2

#
Wave search method and Hopf bifurcation search range
direct # "direct" / "indirect" : control param / "file"
3.8 # start control param / start speed / soln control param
2.001∗B # end control param / end speed / soln speed
#
Linearised partial differential equations
u t=

u xx & 1

u & 2∗U∗W-B

w & U∧2

w t=

w x & NU

u & -2∗W∗U

w & -1-U∗∗2
#
The matrix A in the eigenfunction equations

0 & 1 & 0

B-2∗U∗W & -c & -U∧2

2∗U∗W/(NU+c) & 0 & (1+U∗∗2)/(NU+c)
#
The matrix B in the eigenfunction equations

38

0 & 0 & 0

1 & 0 & 0

0 & 0 & 1/(NU+c)

Wavetrain converts this file into a series of Fortran77 subroutines. Before describing
the various sections of this file, a summary is given of the syntax that is used.

Case sensitivity: Names of variables and parameters are case sensitive.

Derivatives: Derivatives are denoted by . For example, for a partial differential equation
variable u:

if x is the space variable then u x denotes du/dx and u xx denotes d2u/dx2;

if xi is the space variable then u xi denotes du/dxi and u xixi denotes d2u/dxi2;

if xx is the space variable then u xx denotes du/dxx and u xxxx denotes d2u/dxx2.

(It would be rather pathological to choose xx as the space variable, but it would
not cause difficulties.)

Spaces and blank lines: Spaces and blank lines are allowed and are ignored, but each of
the required entries must be on a single line: line breaks are not allowed.

Arithmetic:
Powers are denoted by ∧ or ∗∗
Multiplication is denoted by ∗
Division is denoted by /
Addition is denoted by +
Subtraction is denoted by −
Brackets must be rounded, (and)
Integer division is not allowed. For example (4/3) may be evaluated as 1 (integer

part) or 1.333 depending on the context. Therefore 4.0/3.0 should be
used instead.

Mathematical functions: The following standard mathematical functions are allowed:

abs: absolute value.

acos: inverse cosine; result between 0 and π.

asin: inverse sine; result between −π/2 and π/2.

atan: inverse tangent; result between −π/2 and π/2.

cos: cosine, angle in radians.

cosh: hyperbolic cosine.

exp: exponential function.

log: natural logarithm.

log10: base 10 logarithm.

sin: sine, angle in radians.

sinh: hyperbolic sine.

sqrt: square root.

39

step1: step function; result 0, 0, 1 for argument < 0, = 0,> 0.

step2: step function; result 0, 0.5, 1 for argument < 0, = 0,> 0.

step3: step function; result 0, 1, 1 for argument < 0, = 0,> 0.

tan: tangent, angle in radians.

tanh: hyperbolic tangent.

Either upper or lower case can be used for these functions: for example abs, Abs
and ABS are equivalent. Note that square roots can be denoted either by ∧0.5 (or
∗ ∗ 0.5) or sqrt (or Sqrt or SQRT).

It would be rather confusing to use one of these function names as a variable name,
but it is permitted: the conversion to Fortran77 can distinguish between the use of
these names as functions, when they must be followed by a left bracket “(”, and as
variable names, when they cannot be followed by a left bracket.

Comments: The hash symbol (#) is used to indicate a comment. Any part of a line after
a # is ignored.

Having established the syntax, the various sections of the file are now described, in order.
Note that it is essential that the sections are given in the correct order.

Travelling wave equations: These are specified using the syntax described above, and us-
ing the travelling wave variables and travelling wave coordinate given in the file
variables.input. It is recommended that the equations are formulated so that
the travelling wave variables, the control parameter, and the wave speed all have
roughly the same size. Large differences in size can lead to difficulties during nu-
merical continuation: for example, if the principle continuation parameter is much
larger than all other quantities, the pseudo-arclength continuation used by auto re-
duces approximately to parameter continuation, which may cause problems if there
is a fold in the solution branch being followed.

Steady states: Periodic travelling waves typically develop from a Hopf bifurcation of a
steady state solution of the travelling wave equations. In simple cases, this steady
state can be specified by a single formula for each travelling wave variable, valid
for all values of the control parameter being considered. More generally, the steady
state will exist only for some parameter values. Therefore the steady state solution
is specified via a series of conditions on parameter values, each of which is followed
either by a list of the steady states (using travelling wave variables), or by the single
word none (or None or NONE). The parameter conditions must cover all possible
values of the control parameter, and must consist of inequalities written using <, >,
<= and >=. Multiple inequalities must be written as single inequalities separated by
& (double-sided inequalities are not allowed).

In some cases an exact formula will not be available for the steady state. This
is not a problem if a formula for a suitable approximation can be given, since
the steady state formulae given in equations.input are not used directly: rather,
they are used as an initial guess for a numerical calculation of the steady states.
However it is often not possible to provide a suitable approximation as a function

40

of parameters. In this case, the user must enter the single word file (or File

or FILE), and must provide an additional input file called steadystate.input (in
the appropriate input subdirectory). This file should contain a series of control
parameter values and associated steady state information, which must be generated
by some other computer program. The required format is:

column 1: control parameter value

column 2: 0 or 1, indicating that a steady state does not or does exist

remaining columns, if 1 in column 2: the steady state values, given for the same
ordering of the periodic travelling wave variables as in variables.input.

The control parameter values must appear in either increasing or decreasing order.
This file is read in and then for any specified value of the control parameter, a steady
state is estimated by linear interpolation, and then refined via numerical calculation
of the steady states. Therefore the control parameter values in steadystate.input

must span the entire range of values being considered. The interpolation is conser-
vative with respect to steady state existence: if a steady state does not exist for
either of the two control parameter values straddling the specified value, then it
is assumed not to exist. The problem demo3, discussed in §3.1.14, illustrates the
provision of the steady state via a user-supplied file. Note that if the “file” wave
search method (see below) is used for all control parameter and wave speed values,
then the steady states are not used. However a dummy specification is still required;
this can be “file”, and then no steadystate.input file is needed.

A common situation is that the steady state exists only on one side of a parameter
threshold, with a saddle-node bifurcation at the threshold. In this case, there will
be two steady states on one side of the threshold, only one of which is of interest
(in any particular run). If the exact saddle-node point is specified in the parameter
inequalities, then it is quite possible that, starting from this saddle-node point,
wavetrain will numerically continue the steady state along the wrong steady state
branch. To avoid this, the user is strongly recommended to define the steady state
as not existing for parameter values very close to the threshold.

Wave search method and Hopf bifurcation search range: Typically, periodic travelling waves
develop from a Hopf bifurcation of the steady state specified in the previous part of
equations.input. The next part of the file specifies the method used to search for
periodic travelling waves, and the associated range of parameters used to search for
the initial Hopf bifurcation point. Three methods are available. Typically, periodic
travelling waves develop from a Hopf bifurcation of the steady state specified in the
previous part of this input file, and two of these methods involve first locating a
Hopf bifurcation in the steady state. These methods are termed “direct” and “indi-
rect” because after detecting the Hopf bifurcation, wavetrain locates the periodic
travelling wave in either one or two steps, respectively. The third available method
is termed “file”, and does not involve locating a Hopf bifurcation point. Rather,
the user is required to provide a periodic travelling wave solution for one pair of

41

control parameter and wave speed values (e.g. from simulations of the partial dif-
ferential equations). This solution is then used as a starting point for calculating
wave solutions for other control parameter and wave speed values.

Direct method: In this case the user specifies a search range of control parameter
values. Wavetrain will then search this range for a Hopf bifurcation in the
travelling wave equations, with the wave speed fixed at the value for which a pe-
riodic travelling wave is sought. Having found a Hopf bifurcation, wavetrain
then tracks the branch of periodic travelling waves as the control parameter
varies, again with fixed wave speed, until the required control parameter value
is reached.

Indirect method: In this case the user specifies a search range of wave speed values,
and a control parameter value for the search. Wavetrain will then search
for a Hopf bifurcation on this basis. Having found a Hopf bifurcation, it will
first track the branch of periodic travelling waves as the wave speed varies,
with the control parameter fixed at the value specified for the Hopf bifurcation
search, until the required wave speed is reached. Wavetrain then fixes the
wave speed at this value and tracks the periodic travelling waves as the control
parameter is varied, until the required value is reached.

File method: In this the user specifies a pair of control parameter and wave speed
values, and provides an additional input file that contains the solution for
these parameter values. By default, the file has the name ptwsoln.input.
Other names of the form ptwsoln*.input are also permissible, with the name
being specified in constants.input; the length of the string * is limited to 32
characters. The file must be placed in the relevant input subdirectory. Using
this solution as a starting point, wavetrain will first track the branch of
periodic travelling waves as the wave speed varies, with the control parameter
fixed at the value specified for the Hopf bifurcation search, until the required
wave speed is reached. Wavetrain then fixes the wave speed at this value and
tracks the periodic travelling waves as the control parameter is varied, until
the required value is reached. The required format for ptwsoln*.input files
is:

column 1: travelling wave (or space) coordinate

remaining columns: the travelling wave variables, in the same order as listed
in variables.input.

There are no particular constraints on the discretisation used for the solution
in the file. It must be given over one period of the periodic travelling wave, and
the travelling wave variable values given in the last line must be exactly the
same as those given in the first line. The corresponding space/travelling wave
coordinate will then be one period greater than that in the first line: usually
this coordinate will be an approximation, found by linear interpolation.

In simple cases a single method will be specified for all control parameter and wave
speed values, but the choice and details of the method can be parameter dependent,

42

specified using inequalities with the same syntax as described above for steady states.
Thus the parameter conditions (which must cover all values of the control parameter
and wave speed being studied) must consist of inequalities written using <, >, <=
and >=. Multiple inequalities must be written as single inequalities separated by &

(double-sided inequalities are not allowed). The following points should be noted in
connection with the specification of the wave search method and Hopf bifurcation
search range:

1. (direct and indirect cases) The start value(s) of control parameter/wave speed
can be either less than or greater than the end value(s).

2. (direct and indirect cases) The steady state must exist throughout the search
range(s).

3. (direct and indirect cases) The start and end values can depend on the control
parameter and/or the wave speed.

4. (direct and indirect cases) Choosing range limits that are closer together (and
thus closer to the Hopf bifurcation point) will speed up execution.

5. The setting iwave=0 (§3.1.9) is only permissible if the search method(s) is/are
direct. Then the end value of the search range (for the control parameter) is
not used, although a (dummy) value must still be given; it is replaced by the
value of the control parameter at which a periodic travelling wave is sought.
(This is the only difference between iwave=0 and iwave=1).

6. The start and end values of the search range (direct and indirect cases) and
the specific control parameter and wave speed value (file case) can lie outside
the limits specified in parameter range.input.

7. (direct and indirect cases) The Hopf bifurcation search range that is specified
in equations.input is not used by either the hopf locus command or the
bifurcation diagram command. In the former case, the search range is spec-
ified in the command arguments, and for the bifurcation diagram command
the limits specified in the file parameter range.input are used to search for
Hopf bifurcations.

8. (indirect case) Note the semi-colon after the word indirect, which is essential.

Linearised partial differential equations: The first step in the calculation of the eigen-
value spectrum is to calculate the eigenvalues corresponding to eigenfunctions that
are periodic with the same period as the travelling wave solution. To do this, one
first linearises the partial differential equations around the periodic travelling wave
solution, and then discretises this in space to give a matrix eigenvalue problem.
The discretisation is done automatically by wavetrain, but the linearised partial
differential equations must be specified. If the time variable is t, the partial dif-
ferential equation variables are u, v, w,. . . and the periodic travelling wave variables
are U, V, W,. . . (say), then each linearised equation will have either u t, v t, w t,. . .
or 0 on the left hand side of the equation, and a series of terms on the right hand
side, each of which contains exactly one of u, v, w,. . . or a spatial derivative of one of

43

these partial differential equation variables. The required format for inputting these
equations is u t= (or v t= or w t= or . . .) or 0= on a separate line, and then on sub-
sequent lines the partial differential equation variable or its derivative, followed by
&, and then the coefficient of this partial differential equation variable/derivative.
Each pair of partial differential equation variable/derivative and coefficient must be
on a separate line. The coefficients must involve just parameters and travelling wave
variables, not the derivatives of travelling wave variables. (If such derivatives arise
when the partial differential equations are linearised, these can always be expressed
in terms of other travelling wave variables). Note that the equations should be given
in terms of the space variable, rather than the travelling wave coordinate. They are
converted to a moving reference frame before being discretised.

Eigenfunction equations: Investigation of the stability of periodic travelling waves requires
solution of the eigenfunction equations that govern behaviour close to the wave
solution. These can be specified by two nptw × nptw matrices (where nptw

is the number of travelling wave variables). To derive these matrices it will be
necessary to do a few lines of mathematics on a piece of paper, but this should not
be difficult or time-consuming. The procedure is as follows:

Step 1: Linearise the partial differential equations about the periodic travelling wave
solution, which has been done for the previous part of equations.input. The
result of this calculation is a linear system of partial differential equations
given above. To fix notation, denote the linearised partial differential equation
variables by the npde-dimensional vector u lin(x, t). Here x and t are the space
and time variables, and npde is the number of partial differential equation
variables.

Step 2: Substitute the solution form u lin(x, t) = U lin(z) exp(λt) where z=x−ct is
the travelling wave variable with c denoting the wave speed. This gives a linear
system of ordinary differential equations for U lin, whose coefficients depend on
the travelling wave solution.

Step 3: Typically this linear system of ordinary differential equations will involve
second and/or higher order derivatives of U lin. In the file variables.input,
the user is required to provide formulae for converting the partial differential
equation variables into travelling wave variables. To be specific, denote these
formulae by u tw = F (u pde, ∂u pde/∂x, ∂

2u pde/∂x
2, . . .). Then the correspond-

ing formulae U lin,tw = F (U lin, ∂U lin/∂z, ∂
2U lin/∂z

2, . . .) should be used to
convert the linear ordinary differential equations into a first order system of
ordinary differential equations for U lin,tw. Important note: it is essential
that the components of the vector U lin,tw are kept in the order correspond-
ing to the order in which the travelling wave variables are listed in the file
variables.input.

Step 4: The resulting first order linear system of differential equations will always
have the form ∂U lin,tw/∂z = AU lin,tw + λB U lin,tw where A and B are nptw

× nptw matrices.

44

The final two sections of the file specify the matrices A and B, with columns sepa-
rated by ampersands (&).

2.2.3 Details of other parameters.input

This file can be used to specify values for parameters other than the control parameter
that occur in the model equations. Apart from comment lines, the file for the example
demo is as follows.

B=0.45 # <name> = <value>
NU=182.5

Spaces and comments (indicated by #) can be included in this file if desired: they will
simply be ignored. Note that if the partial differential equations being studied do not
contain any parameters other than the control parameter then this file can either be
absent, or can exist but be empty, or can exist but have only comment lines.

2.2.4 Details of parameter list.input

This file is only required if the user wishes to run the add points list command; it spec-
ifies a list of control parameter and wave speed values to be studied via this command.
Apart from comment lines, the file for the example demo is as follows.

2.0 0.61
2.0 0.65

0.2 0.7

0.4 0.7

The first column are control parameter values and the second column are wave speed
values. For each pair of values, the command add points list calculates the periodic
travelling wave; stability is also calculated if the pcode value in the argument list was gen-
erated using the stability loop command. The file can, if desired, contain points outside
the range specified in parameter range.input at the time of the initial run of ptw loop

or stability loop. In this case the axes limits in subsequent control parameter–wave
speed plots will be expanded to include the additional points.

2.2.5 Details of parameter range.input

This file specifies the range of control parameter and wave speed values to be studied. It
also specifies the number of values of each to be used in a parameter grid for the commands
add points loop, ptw loop or stability loop, and the numbers must be present even
if the user does not intend to run any of these commands. Apart from comment lines, the
file for the example demo is as follows.

0.1 3.4 5 # min,max,ngrid for control parameter
0.3 1.1 3 # min,max,ngrid for wave speed

The specified minimum and maximum values are inclusive. The file is also used when
calculating bifurcation diagrams, providing diagram limits for whichever of the control pa-
rameter or wave speed is the bifurcation parameter. If iwave=0 or 1, then the commands

45

ptw and stability do not require limits on the control parameter and wave speed values,
and the file parameter range.input is not required. However even these two commands
require parameter range.input for iwave≥2, since it provides constraints on the ranges
within which wavetrain tracks the periodic travelling wave solution branch, looking for
folds. When running the command add points loop, the new control parameter and wave
speed ranges can, if desired, extend beyond those specified in parameter range.input at
the time of the initial run of ptw loop or stability loop. In this case the axes limits in
subsequent control parameter–wave speed plots will be expanded to include the additional
points.

2.2.6 Details of variables.input

This file specifies the names to be used for the various variables. It contains comments
that explain what the various lines denote. For the example demo, the file is as follows
(apart from some explanatory comments):

variables.input
##
A # NAME FOR THE CONTROL PARAMETER
c # NAME FOR THE WAVE SPEED
x # NAME FOR THE SPACE COORDINATE
t # NAME FOR THE TIME COORDINATE
z # NAME FOR THE TRAVELLING WAVE COORDINATE
##
PDE VARIABLE NAMES, ONE PER LINE
u
w
##
TW VARIABLE NAME = FUNCTION OF PDE VARIABLES, ONE PER LINE
U = u
V = u x
W = w

It is essential that the various lines in this file are given in the correct order. Spaces, blank
lines and comments (indicated by #) are ignored. Variables can have any names, with
any number of characters, except that the words “file” and “variable” are not permitted
as either partial differential equation or travelling wave variables; a test for this is made
at the start of commands.

2.3 A Worked Example

Together, §2.1 and §2.2 describe the basic operation of wavetrain, and the details of
most of the input files. A number of details of the commands have not been discussed,
and a few wavetrain commands have not been mentioned at all; these are considered
in §3.1. Before this, I present a full worked example, illustrating how wavetrain can be
used to study periodic travelling wave solutions in practice. The example is based on the
work of Smith & Sherratt (2007), and concerns the following model for a predator-prey

46

interaction:

∂u

∂t
= eδ

∂2u

∂x2
+ u(1− u)−

uv

u+ k
(2.1a)

∂v

∂t
= e−δ ∂

2v

∂x2
+

suv

u+ k
− µv . (2.1b)

Here u and v denote prey and predator densities respectively, x and t are the space and
time coordinates respectively, and k, s, µ and δ are positive parameters. Based on the
numerical simulations of (2.1) (see Smith & Sherratt, 2007), the objective is to investigate
the existence and stability of periodic travelling waves for the parameter δ in the range
−2 < δ < 2, with wave speeds between 0.1 and 4, and with the other three parameters
fixed at k = 0.2, s = 0.15 and µ = 0.05. Note that periodic travelling waves do exist
for wave speeds between 0.1 and 0, and these can be investigated using wavetrain.
However the computations become significantly more difficult as the speed approaches
zero, requiring very small continuation step sizes, which leads to rather long run times.

For ease of presentation, the study is broken up into a number of stages, some involv-
ing the creation or replacement of input files, and others involving runs of wavetrain
commands. Deliberately, the installation files do not include an input subdirectory cor-
responding to this example. This is because the example is intended to illustrate all
of the stages involved in a wavetrain study, which includes the creation of an input
subdirectory. Users may which to perform each stage of this example manually, to help
familiarise themselves with the use of wavetrain. However, as an alternative, the com-
mand set worked example inputs is provided. This command takes as an argument the
number of a stage of the study involving input file creation/replacement. It first empties
the workedex input subdirectory, and then performs all of the steps involved in each of
the input stages, in order, up to and including the specified stage. Thus for example the
command

set worked example inputs 5

will first empty the workedex input subdirectory, if it exists, and will then perform the
various steps in Stage 1, then Stage 3, and finally Stage 5.

2.3.1 Stage 1 (Input): Create the Initial Input Files

The command “set worked example inputs 1” performs all of the steps described in
this stage of the study.

2.3.1.1 Create the Input Subdirectory

The very first step in any wavetrain study is to choose a problem name and create
the input directory. There is no constraint on the length of the name, although names
with more than 10 characters are abbreviated in screen output. In this case, the name
“workedex” seems appropriate, and the input directory is created by the command

mkdir input files/workedex

47

which must be entered from the main wavetrain directory. At installation, a dummy
set of input files is provided in the input directory template, and this should be copied
into the new input directory via the command

cp input files/template/∗ input files/workedex/.

(for the benefit of users unfamiliar with unix, it may be helpful to explain that the final
dot in this command indicates that the files should be given the same names in the new
directory as in template).

2.3.1.2 Create the File equations.input

To create an initial version of equations.input, the various parts of the file should be
completed in the order described in §2.2.2, beginning with the travelling wave equations.
Substituting u(x, t) = U(z) and v(x, t) = V (z) with z = x− ct into (2.1) gives

eδU ′′ + cU ′ + U(1− U)− UV/(U + k) = 0

e−δV ′′ + cV ′ + sUV/(U + k)− µV = 0

where prime denotes d/dz. This must be rewritten as a system of first order equations:

U ′ = P (2.2a)

P ′ = e−δ [−cP − U(1 − U) + UV/(U + k)] (2.2b)

V ′ = Q (2.2c)

Q′ = eδ [−cQ− sUV/(U + k) + µV] . (2.2d)

Setting the left hand sides of (2.2) to zero provides a system of algebraic equations that
can easily be solved for the unique steady state with U and V both non-zero:

Us = µk/(s− µ) Ps = 0 Vs = (1− Us)(Us + k) Qs = 0 . (2.3)

After calculating the travelling wave equations and steady state, the next part of
equations.input concerns the wave search method. At this stage no information is
available on which this can be based, and therefore the dummy entries provided in the
version of the file in the template directory should be retained. Note that dummy entries
are essential: a blank entry is not permitted.

Moving on to the linearised partial differential equations, these are given by linearising
(2.1) about the travelling wave solution u(x, t) = U(z), v(x, t) = V (z), giving

∂ulin

∂t
= eδ

∂2ulin

∂x2
+ ulin

[
1− 2U −

kV

(U + k)2

]
+ vlin

[
−U

U + k

]
(2.4a)

∂vlin
∂t

= e−δ ∂
2vlin
∂x2

+ ulin

[
skV

(U + k)2

]
+ vlin

[
sU

U + k
− µ

]
(2.4b)

where ulin(x, t) = u(x, t)− U(z) and vlin(x, t) = v(x, t)− V (z), and nonlinear terms have
been neglected.

48

Finally, it is necessary to calculate the matrices A andB in the eigenfunction equations,
via the method described in §2.2.2. Substituting ulin(x, t) = Ulin(z)e

λt into (2.4) gives

λUlin = eδ
d2Ulin

dz2
+ c

dUlin

dz
+ Ulin

[
1− 2U −

kV

(U + k)2

]
+ Vlin

[
−U

U + k

]

λVlin = e−δ d
2Vlin

dz2
+ c

dVlin

dz
+ Ulin

[
skV

(U + k)2

]
+ Vlin

[
sU

U + k
− µ

]
.

Substituting

Ulin = Ulin,tw dUlin/dz = Plin,tw Vlin = Vlin,tw dVlin/dz = Qlin,tw (2.5)

gives a system of the required form

d

dz

Ulin,tw

Plin,tw

Vlin,tw

Qlin,tw

 = (A+ λB)

Ulin,tw

Plin,tw

Vlin,tw

Qlin,tw

where A and B are the 4× 4 matrices

A =

0 1 0 0

e−δ

(
2U +

kV

(U + k)2
− 1

)
−e−δc e−δ U

U + k
0

0 0 0 1

−eδ
skV

(U + k)2
0 eδ

(
µ−

sU

U + k

)
−eδc

(2.6a)

B =

0 0 0 0
e−δ 0 0 0
0 0 0 0
0 0 eδ 0

 . (2.6b)

Equations (2.2), (2.3), (2.4) and (2.6) must be entered in the equations.input file, using
the format described in §2.2.2, and also in the comments at the end of the file. Apart
from explanatory comments at the end, the resulting file is as follows:

equations.input
##
Travelling wave equations
U z=P
P z=exp(-delta)∗(-c∗P-U∗(1-U)+U∗V/(U+k))
V z=Q
Q z=exp(delta)∗(-c∗Q-s∗U∗V/(U+k)+mu∗V)
##
Steady states
U=mu∗k/(s-mu)
P=0
V=(1-(mu∗k/(s-mu)))∗((mu∗k/(s-mu))+k)

49

Q=0
##
Wave search method and Hopf bifurcation search range
direct # "direct" / "indirect" : control param / "file"
0.0 # start control param / start speed / soln control param
0.0 # end control param / end speed / soln speed
##
Linearised partial differential equations
u t=

u xx & exp(delta)
u & 1-2∗U-k∗V/((U+k)∗∗2)
v & -U/(U+k)

v t=
v xx & exp(-delta)
u & s∗k∗V/((U+k)∗∗2)
v & s∗U/(U+k)-mu

##
The matrix A in the eigenfunction equations
0 & 1 & 0 & 0
exp(-delta)∗(2∗U+k∗V/((U+k)∗∗2)-1) & -exp(-delta)∗c & exp(-delta)∗U/(U+k) & 0
0 & 0 & 0 & 1
-exp(delta)∗s∗k∗V/((U+k)∗∗2) & 0 & exp(delta)∗(mu-s∗U/(U+k)) & -exp(delta)∗c
##
The matrix B in the eigenfunction equations
0 & 0 & 0 & 0
exp(-delta) & 0 & 0 & 0
0 & 0 & 0 & 0
0 & 0 & exp(delta) & 0

Note that although two of the rows of the matrix A cause rather long lines, they must be
entered on a single line: line breaks are not permitted in equations.input.

2.3.1.3 Create the File variables.input

The various parts of variables.input must now be completed, giving the file as follows
(apart from the explanatory comments at the end of the file):

variables.input
##
delta # NAME FOR THE CONTROL PARAMETER
c # NAME FOR THE WAVE SPEED
x # NAME FOR THE SPACE COORDINATE
t # NAME FOR THE TIME COORDINATE
z # NAME FOR THE TRAVELLING WAVE COORDINATE
##
PDE VARIABLE NAMES, ONE PER LINE
u
v
##
TW VARIABLE NAME = FUNCTION OF PDE VARIABLES, ONE PER LINE
U = u
P = u x
V = v
Q = v x

50

Note that it is essential that the order in which the travelling wave variables are listed
corresponds to the order used for the matrices A and B in equations.input.

2.3.1.4 Create the File other parameters.input

This file is simply a listing of the parameters other than the control parameter, and their
required values. Apart from explanatory comments at the end, the file is:

k=0.2 # <name> = <value>
s=0.15
mu=0.05

2.3.1.5 Create the File parameter range.input

This file specifies the range of control parameter (δ) and wave speed (c) values to be
considered. It also specifies the numbers of grid points used for scans of the control
parameter – wave speed plane. This latter information is not needed at this stage, but
it is convenient to enter appropriate values, to save changing the file later: an 8×8 grid
is suitable, and would be an appropriate initial choice for many problems. Apart from
explanatory comments at the end, the file is therefore:

-2 2 8 # min,max,ngrid for control parameter
0.1 3 8 # min,max,ngrid for wave speed

2.3.1.6 Create the File constants.input

In the directory template, the various entries in constants.input are given values that
are good starting points for many problems. Note that the entries are different from
those used for the problem demo, which were effective for demonstration purposes but
would not be suitable for many real problems. Therefore at this stage, the version of
constants.input that has been copied from the template directory can be used without
changes.

2.3.2 Stage 2 (Run): Formulate a Wave Search Method

The input files generated in Stage 1 lack one key ingredient: a wave search method was not
specified in equations.input. The key tool for formulating a method is the hopf locus

command, which does not use the wave search method part of equations.input. How-
ever, this command requires a pcode value as one of its arguments. In §2.1, hopf locus

was run after a run of ptw loop or stability loop so that a pcode value was available,
but that is not the case here. The wavetrain command new pcode is provided for this
purpose. This command will be described in §3.1.5, but it is very simple. It takes only
one argument, the input directory name, sets up a blank control parameter – wave speed
plane, and allocates a pcode value. Therefore, to begin investigation of the workedex

problem, one types

new pcode workedex

and wavetrain reports that the allocated pcode value is 101.

51

The hopf locus command can now be run. In the absence of any information about
control parameter and wave speed values for which the travelling wave equations might
have a Hopf bifurcation, it is necessary to experiment blindly. Typing

hopf locus workedex 101 -1 0 -1 6

causes wavetrain to report that it did not detect a Hopf bifurcation in the range 0 <
c < 6 for δ = −1. Here the range of c being investigated by the command is wider than
the range specified in parameter range.input, which is permitted. Note also that the
run is allocated an hcode value even though it is unsuccessful. It is of course possible
that a typo might be present in equations.input. This would first be manifested via the
above command, being the first time that the file is used; often the result would be a large
number of system errors. It is important to note that after fixing the typo, the new pcode

command would have to be rerun. This is because for any wavetrain command in which
a pcode value (6= 100) is specified, the equations.input file is inherited from the time
at which the pcode was initially allocated.

As a second attempt to find a Hopf bifurcation locus, type

hopf locus workedex 101 1 0 1 6

which does successfully locate a Hopf bifurcation and trace its locus. To plot this, start
the plotter by typing

plot workedex 101

and plot the locus by entering first

@pplane

and then

@hopf locus 102

at the plotter prompt. (Here 102 is the hcode value of the successful run). The resulting
plot is shown in Figure 2.12. One can now exit the plotter by typing @exit or @quit.

2.3.3 Stage 3 (Input): Add a Preliminary Wave Search Method

The command “set worked example inputs 3” performs the steps described in Stage 1
of the study, and then performs the steps described in this stage.

From the plot of the Hopf bifurcation locus in Figure 2.12 one cannot tell whether
periodic travelling waves exist for parameters above or below the locus. Indeed it is
possible that both of these possibilities apply, because of folds in the periodic travelling
wave solution branches. In fact, numerical simulations of the partial differential equations
(Smith & Sherratt, 2007) suggest that waves exist only above the locus, but this can be
determined usingwavetrain, without a priori knowledge. To do this, one must formulate
a preliminary wave search method that will apply for 0.1 < c < 1.0; this will be amended
to cover larger values of c in Stage 5. There is a Hopf bifurcation in the travelling wave

52

Figure 2.12: A plot of the locus of Hopf bifurcation points in the control parameter–wave
speed plane, for the worked example problem workedex. The run and plot commands
used to generate this figure are given in the main text, and are also listed in the Appendix.

equations for every value of c between 0.1 and 1, with the corresponding value of δ lying
between −1 and 2. Therefore the file equations.input can be editted, replacing the
dummy wave search method with

Wave search method and Hopf bifurcation search range
direct # "direct" / "indirect" : control param / "file"
-1.2 # start control param / start speed / soln control param
2.2 # end control param / end speed / soln speed

Note that the search range has been set slightly wider than strictly necessary; this is good
practice to avoid problems due to large jumps in the first few continuation steps.

2.3.4 Stage 4 (Run): Look for Waves near the Hopf Bifurcation Locus

With the preliminary wave search method in place, one can look for periodic travelling
waves on either side of the Hopf bifurcation locus. For example, the run

ptw workedex 0 0.7

successfully detects a periodic travelling wave, while

ptw workedex 1.0 0.3

53

fails to find a wave solution. Based on this and other similar runs (which must have
c between 0.1 and 1) one can draw the (tentative) conclusion that close to the Hopf
bifurcation locus, waves exist above the locus and not below.

2.3.5 Stage 5 (Input): Amend the Wave Search Method

The command “set worked example inputs 5” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

Based on the results of Stage 4, it is now necessary to amend the wave search method
to cover all points in the parameter plane under study that lie above the Hopf bifurcation
locus. One possible approach to this would be to calculate the Hopf bifurcation locus over
a large range of δ values. Depending on the shape of the locus, it might then be possible
to formulate a single direct search method: note that parameter ranges used in the wave
search method can be wider than those specified in parameter range.input. However,
it is simpler to formulate a mixed search method based only on the results in Figure 2.12.
An appropriate choice is:

Wave search method and Hopf bifurcation search range
c<=1

direct # "direct" / "indirect" : control param / "file"
-1.2 # start control param / start speed / soln control param
2.2 # end control param / end speed / soln speed

c>1
indirect : 0.0 # "direct" / "indirect" : control param / "file"
0.0 # start control param / start speed / soln control param
0.9 # end control param / end speed / soln speed

Note that in the indirect case there is nothing special about the choice of 0.0 as the fixed
value of δ for the Hopf bifurcation search, nor is there anything special about the range
[0.0, 0.9] for c: all that is required is that there is a Hopf bifurcation for c in this range
when δ = 0.

2.3.6 Stage 6 (Run): Test Runs of the ptw Command

Having set up the wave search method, it is necessary to test the ptw command at a num-
ber of control parameter and wave speed values. The objective is to check whether the
computational constants set in constants.input (and potentially also in defaults.input)
are suitable for this problem. As examples, the commands

ptw workedex 1.5 2.5

ptw workedex 2.0 1.2

ptw workedex 0.5 4.0

ptw workedex -1.0 0.7

ptw workedex -2.0 0.2

all successfully find periodic travelling waves. In the third case a warning is reported
about a small number of continuation steps. This is because δ = 0.5 is rather close to

54

the value fixed for the Hopf bifurcation search (δ = 0), and the warning is not a cause for
concern. However, the command

ptw workedex -1.5 0.1

unexpectedly fails to find a travelling wave, due to a convergence problem during the
periodic travelling wave continuation. As explained in the screen output, this type of error
commonly occurs because the wave solution branch is approaching a homoclinic solution.
(An example of this is provided by the problem demo discussed in §2.1). However the
warning message that only two continuation steps were taken strongly suggests that a
real convergence error has occurred. Users with previous experience with auto may find
it valuable to look at the info.txt file associated with the run in a situation such as this;
info.txt contains the full output from auto (see §2.5 for details).

2.3.7 Stage 7 (Input): Alter the File constants.input

The command “set worked example inputs 7” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

There are two likely remedies for a convergence error such as that encountered in
Stage 6: either an increase in the values of nmesh1 and nmesh2, or a decrease in the
values of ds and dsmin. Experimentation shows that increasing nmesh1 and nmesh2

(keeping them equal for convenience) does not eliminate the error, but reducing ds and
dsmin does. Therefore line 7 of constants.input should be altered, with appropriate
new settings being

0.01 0.01 0.5 # ds(>0),dsmin,dsmax for continuation of ptws

2.3.8 Stage 8 (Run): Further Test Runs of ptw, and a Run of ptw loop

Further test runs of ptw with the amended version of constants.input are now necessary.
These successfully find periodic travelling waves at all points above the Hopf bifurcation
locus in the control parameter – wave speed plane. Therefore one can move on to a
systematic loop across the plane, checking for wave existence. The number of grid points
to consider was set (in parameter range.input) in Stage 1. Thus one can proceed
immediately, via the command

ptw loop workedex

which completes the loop without any errors; there are a number of warnings about small
numbers of continuation steps, but none of these is significant. Before plotting, it is
helpful to recreate the Hopf bifurcation locus shown in Figure 2.12 for this new pcode
value, using the command

hopf locus workedex 102 1 0 1 6

(alternatively the copy hopf loci command could be used, although this would also copy
across the unsuccessful attempt at δ = −1). After this the plotter can be started by typing

55

Figure 2.13: Results on the existence of periodic travelling wave solutions for the problem
workedex. A key illustrating the meaning of the various colours is shown in Figure 2.4 on
page 18. The run and plot commands used to generate this figure are given in the main
text, and are also listed in the Appendix.

plot workedex 102

and the results of the ptw loop calculation can be shown by typing

@pplane

at the plotter prompt, selecting the default plot type. To superimpose the Hopf bifurcation
locus, one types

@hopf locus 101

giving the plot illustrated in Figure 2.13. This shows that there are periodic travelling
waves at all points in the control parameter–wave speed plane above and to the left of
the Hopf bifurcation locus. Although it is not necessary, one might be interested to see
the form of one or more of these waves. For example, typing

@ptw 1037

gives a plot of the solution with rcode value 1037, which is shown in Figure 2.14. The
point in the δ–c plane to which this corresponds can be seen in Figure 2.13. One can now
exit the plotter by typing @exit or @quit.

56

Figure 2.14: An example of a periodic travelling wave solution for the problem workedex.
The run and plot commands used to generate this figure are given in the main text, and
are also listed in the Appendix. Note that different tickmark spacings appear on both the
horizontal and vertical axes if gnuplot is used as the plotter.

2.3.9 Stage 9 (Run): Choose nmesh2 for Stability Calculations

Having determined the part of the δ–c plane in which periodic travelling waves exist, one
can move on to a determination of their stability. The first step in this is to determine a
suitable value of nmesh2. This constant determines the discretisation used for the periodic
travelling wave solutions, and choosing a suitable value is often the most difficult part
of a wavetrain study. The results of previous stages show that the value nmesh2=50,
which was inherited from the template directory, is large enough for the calculation of
periodic travelling waves. But for studying wave stability, the discretisation using nmesh2

is used to formulate an approximate matrix eigenvalue problem for the eigenfunctions that
are periodic over one period of the wave (see §2.1.2). In many cases, it is necessary to
increase nmesh2 in order that these matrix eigenvalues and eigenvectors are a sufficiently
good approximation to the actual eigenvalues and eigenfunctions.

To investigate this, one uses the command eigenvalue convergence, which was dis-
cussed in §2.1.2. It is necessary to choose a few pairs of control parameter and wave
speed values at which to run this command; the four pairs (δ, c) = (1.5, 2.0), (−1.0, 2.0),
(−1.5, 0.1), (−1.5, 3.0) are sensible choices. A selection of values of nmesh2 must also be

57

chosen. For most problems suitable choices would be the three values 50, 100, 200 or the
four values 50, 100, 200, 400. Using the second of these for a more complete study, one
runs the four commands

eigenvalue convergence workedex 1.5 2.0 50 100 200 400

eigenvalue convergence workedex -1.0 2.0 50 100 200 400

eigenvalue convergence workedex -1.5 0.1 50 100 200 400

eigenvalue convergence workedex -1.5 3.0 50 100 200 400

each of which takes about 30 minutes on a typical desktop computer. The results of each
of these runs should be examined for each of the 8 eigenvalues under study; here 8 is
the value of nevalues, set in constants.input. Figure 2.15a shows the results for the
fourth eigenvalue, which are typical. Convergence is very rapid as nmesh2 is increased
for (δ, c) = (1.5, 2.0) and (−1.5, 0.1). For (δ, c) = (−1.0, 2.0) convergence is slower but
nmesh2=200 appears to give a good approximation to the eigenvalue. However for (δ, c) =
(−1.5, 3.0) there is no obvious convergence pattern. To investigate this further, one can
add the calculations for nmesh2=800, for this parameter pair only, via the command

eigenvalue convergence workedex -1.5 3.0 800

(run time about 2.5 hours on a typical desktop computer). The results for the fourth
eigenvalue, which are again typical, are shown in Figure 2.15b; they confirm that the
eigenvalues are indeed converging, but much more slowly than for the other control pa-
rameter – wave speed pairs considered.

2.3.10 Stage 10 (Input): Change order in constants.input

The command “set worked example inputs 10” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

The results discussed in Stage 9 suggest that the value nmesh2=400 would be suitable
for an investigation of wave stability, and one could proceed on this basis. However, such
a large value of nmesh2 will lead to rather long run times, and it is therefore worth-
while investigating whether a smaller nmesh2 is possible with a larger value of order.
This constant is set in constants.input, and determines the order of the finite differ-
ence approximation used when discretising derivatives in the partial differential equa-
tions. Wavetrain calculates these finite difference approximations using the algorithm
of Fornberg (1998). For (2.1), order = 1 results in a three-point approximation to the
second derivatives, while order = 2 results in a five-point approximation. Line 12 of
constants.input should now be changed to:

2 # order: accuracy order of approx of highest spatial derivative

2.3.11 Stage 11 (Run): Further Tests of Eigenvalue Convergence

Having reset order, it is necessary to repeat the runs of eigenvalue convergence for
the four selected pairs of control parameter and wave speed values:

58

(a)
δ = 1.5, c = 2.0

nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 -0.38794808E-01 0.36312786E+00 0.11995450E-12

100 -0.38928876E-01 0.36369116E+00 0.49653528E-12

200 -0.38962520E-01 0.36383359E+00 0.20041221E-11

400 -0.38971090E-01 0.36387089E+00 0.80468395E-11

δ = −1.0, c = 2.0
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.10404277E+00 0.18641958E+00 0.46635140E-09

100 -0.26550389E-02 0.14226996E+00 0.39632024E-08

200 -0.89938986E-02 0.21837055E+00 0.17400515E-07

400 -0.90764280E-02 0.21810084E+00 0.70767272E-07

δ = −1.5, c = 0.1
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.28543135E-01 0.70237573E-01 0.26369839E-12

100 0.28393371E-01 0.70401889E-01 0.10730430E-11

200 0.28356557E-01 0.70442488E-01 0.42990790E-11

400 0.28347372E-01 0.70452625E-01 0.17200412E-10

δ = −1.5, c = 3.0
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.29021216E+00 0.47746546E+00 0.23805573E-09

100 0.17510311E+00 0.18398707E+01 0.16541475E-09

200 0.31235899E-01 0.22950429E+01 0.89481154E-08

400 -0.78209654E-02 0.21269384E+00 0.19689624E-06

(b)
δ = −1.5, c = 3.0

nmesh Re of evalue 4 Im of evalue 4 Error bound 4

800 -0.78641212E-02 0.21268068E+00 0.79270306E-06

Figure 2.15: The change in the eigenvalues of the discretised eigenfunction equations as
the constant nmesh2 is varied, with the constant order = 1. These two constants are
defined in constants.input. For (a), the run commands for the four tables are listed in
§2.3.9. Assuming that these are the first runs of the eigenvalue convergence command
for workedex, they will be allocated ecode values of 101–104. The tables shown can then be
generated via the commands convergence table workedex 101 4, convergence table

workedex 102 4, convergence table workedex 103 4, convergence table workedex

104 4. For (b), the run command is eigenvalue convergence workedex -1.5 3.0

800. Assuming that the runs for (a) have been done previously, this run will be allo-
cated an ecode value of 105. The table shown can then be generated via the command
convergence table workedex 105 4.

59

eigenvalue convergence workedex 1.5 2.0 50 100 200 400

eigenvalue convergence workedex -1.0 2.0 50 100 200 400

eigenvalue convergence workedex -1.5 0.1 50 100 200 400

eigenvalue convergence workedex -1.5 3.0 50 100 200 400

each of which again takes about 30 minutes on a typical desktop computer. Figure 2.16
shows the results for the fourth eigenvalue, and again the other eigenvalues show a similar
convergence pattern. Comparing these results with those in Figure 2.15a shows that the
convergence is significantly enhanced by the increase in order, enabling a smaller value
of nmesh2 to be used and hence reducing run times.

2.3.12 Stage 12 (Input): Change nmesh1 and nmesh2 in constants.input

The command “set worked example inputs 12” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

On the basis of the results described in §2.3.11, the value of nmesh2 can now be set to
200, and nmesh1 must also be increased to the same value. Both of these constants are
set in constants.input.

2.3.13 Stage 13 (Run): Test Runs of the stability Command

Having chosen a value of nmesh2, one can move on to do some test studies of wave stability.
For this, it is convenient to use the same four test pairs of δ and c as in Stages 9 and 11.
Therefore one begins by running the four commands

stability workedex 1.5 2.0

stability workedex -1.0 2.0

stability workedex -1.5 0.1

stability workedex -1.5 3.0

which take only a few minutes each to run on a typical desktop computer. The first and
third of these commands run successfully. However the second and fourth have numerical
convergence failures, which are associated with the transition from the matrix eigenval-
ues and eigenvectors to the functional eigenvalues and eigenfunctions. Such convergence
failures are often caused by the value of nmesh2 being too small. However in this case
the results obtained in Stage 11 give a reasonable level of confidence in the suitability of
nmesh2, and thus the likely cause is that the value of nmesh3 is too small.

2.3.14 Stage 14 (Input): Change nmesh3 in constants.input

The command “set worked example inputs 14” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

The value of nmesh3 must now be increased. This constant is set in constants.input.
Its current value of 50 is inherited from the template input subdirectory, and 100 seems
a sensible choice as a larger value.

60

δ = 1.5, c = 2.0
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 -0.38973463E-01 0.36388020E+00 0.15821478E-12

100 -0.38973949E-01 0.36388320E+00 0.65850704E-12

200 -0.38973974E-01 0.36388341E+00 0.26704991E-11

400 -0.38973975E-01 0.36388342E+00 0.10726299E-10

δ = −1.0, c = 2.0
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.83815416E-02 0.77199559E-01 0.11050375E-07

100 -0.91745449E-02 0.21793877E+00 0.52491508E-08

200 -0.91192530E-02 0.21801502E+00 0.23119089E-07

400 -0.91154355E-02 0.21801977E+00 0.94279284E-07

δ = −1.5, c = 0.1
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.28345145E-01 0.70455251E-01 0.34973635E-12

100 0.28344364E-01 0.70455958E-01 0.14289575E-11

200 0.28344317E-01 0.70456000E-01 0.57298591E-11

400 0.28344314E-01 0.70456003E-01 0.22932161E-10

δ = −1.5, c = 3.0
nmesh Re of evalue 4 Im of evalue 4 Error bound 4

50 0.14335253E+00 0.54681288E+00 0.40620272E-07

100 0.79166525E-02 0.10178125E+01 0.12918993E-05

200 -0.78877344E-02 0.21267231E+00 0.66805176E-07

400 -0.78808884E-02 0.21267797E+00 0.26276368E-06

Figure 2.16: The change in the eigenvalues of the discretised eigenfunction equations
as the constant nmesh2 is varied, with the constant order = 2. These two constants
are defined in constants.input. The run commands for the four tables are listed in
§2.3.11. Assuming that the runs for Figure 2.15 have been done previously, these new
runs will be allocated ecode values of 106–109. The tables shown can then be generated
via the commands convergence table workedex 106 4, convergence table workedex

107 4, convergence table workedex 108 4, convergence table workedex 109 4.

61

2.3.15 Stage 15 (Run): Further Test Runs of stability, and a Run of stability loop

The test runs of the stability command done in Stage 13 should now be repeated with
the larger value of nmesh3; they all run successfully. It may be of interest to visually
inspect the spectra for a number of test cases: one does this by typing

plot workedex

and then running the plot command @spectrum for an appropriate set of rcode values.
One can now move on to a loop over the δ–c plane, investigating wave stability. One

does this via the command

stability loop workedex

(run time: about 4 hours on a typical desktop computer) which loops over all 64 values
in the parameter grid that is specified in parameter range.input. This command runs
more or less successfully, but reports 6 possible errors arising from the iposim being set
to 1 rather than 0, and also 3 convergence failures. (Also 9 warnings are issued, about
small numbers of continuation steps; these are not a cause for concern.)

A detailed discussion of the parameter iposim and the potential causes of the “pos-
sible error” messages is given in 3.1.8. Briefly, when iposim=1 wavetrain only uses
matrix eigenvalues with positive imaginary part as starting points for continuation of
the spectrum, and this can in some cases lead to erroneous conclusions about stability.
To investigate the 6 cases for which wavetrain thinks that the value of iposim might
be a problem, one plots the spectra for the rcode values concerned. In all 6 cases this
shows that wavetrain’s conclusion about stability is correct. If there had been any
doubt about this then the remedy would have been very simple: change iposim to 0 in
constants.input and run the stability command for the δ–c pairs concerned.

As explained in the screen output, details of the convergence failures are given in the
file combined failures.list in the directory output files/workedex/pcode103/. Ex-
amination of this file shows that all 3 convergence failures occurred for δ = −2, c = 3,
which has an rcode value of 1008: evidently this corner of the parameter plane is a partic-
ularly difficult case. The file output files/workedex/pcode103/rcode1008/info.txt

contains more detailed information, and shows that for these parameter values wave-

train has been unable to make the transition from the matrix eigenvalues and eigen-
vectors to the functional eigenvalues and eigenfunctions, for the first, fifth and seventh
eigenvalues (ordered by the size of their real part).

Valuable insight into these convergence failures can be obtained by plotting the eigen-
value spectrum that has been calculated by wavetrain in this case. One starts the
plotter by typing

plot workedex 103

(103 is the pcode value for the run of stability loop) and then types

@spectrum 1008

62

(a)

(b) (c)

Figure 2.17: Plots of the calculated eigenvalue spectrum for δ = −2, c = 3. (a) The
plot given by the @spectrum command with default axes limits. The open squares denote
matrix eigenvalues that gave numerical convergence failure when used as a starting point
for calculating the spectrum; the closed circles denote matrix eigenvalues from which
spectrum continuation was successful. The value of nmesh2 was 200 in this case. (b) The
same results as (a), but with manually input axes limits. (c) The calculated spectrum
with nmesh2=400. There are no numerical convergence failures in this case, and default
axes limits were used in the plot. The run and plot commands used to generate these
figures are given in the main text, and are also listed in the Appendix. Note that if
plotting is done using gnuplot then ticmarks will be absent from the horizontal axis in
these plots; this applies if spectrumcolour is set to rainbow or greyscale or grayscale,
but not if a single colour is used.

63

at the plotting prompt. Selecting the default axes limits (and the default rescaling if
gnuplot is used as the plotter) gives the plot shown in Figure 2.17a. Note the open
squares, which indicate the matrix eigenvalues for which there has been a convergence
failure. One can focus in on the computed spectrum by rerunning

@spectrum 1008

and entering

-0.036 0.002 -0.05 0.4

as the axes limits, giving the plot shown in Figure 2.17b. (If gnuplot is used as the plotter,
the default rescaling is appropriate.) There is no obvious problem with the computed
spectrum, and these figures suggest that the 3 matrix eigenvalues giving convergence
failures are artefacts of the discretisation. The plotter can now be exited by typing @exit

or @quit.

2.3.16 Stage 16 (Input): Change nmesh1 and nmesh2 in constants.input

The command “set worked example inputs 16” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

To confirm that the convergence failures for δ = −2, c = 3 arise from eigenvalues
that are artefacts of the discretisation, one must redo the stability calculation, for these
parameters only, with a larger value of nmesh2. A sensible choice is to double nmesh2, to
400; nmesh1 must be increased also since it is constrained to be ≥ nmesh2.

2.3.17 Stage 17 (Run): Run of stability for δ = −2, c = 3

With the larger value of nmesh2, one should now run the command

stability workedex -2.0 3.0

(run time: about 30 minutes on a typical desktop computer). The number of previous
runs of either ptw or stability will depend on the number of tests that have been run
in previous stages, and this will affect the rcode value allocated to this new run, but 1022
would be a typical rcode value. The run is successful, with no convergence failures. To
view the computed spectrum, one starts the plotter via

plot workedex

and then enters the command

@spectrum 1022

(or a different rcode value if appropriate), selecting the default axis limits, and the default
rescaling if gnuplot is used as the plotter. The resulting plot is shown in Figure 2.17c.
It has the same appearance as the spectrum calculated with nmesh2=200 and shown
in Figure 2.17b, except that it extends to more negative values of the real part of the

64

eigenvalue; this is because three additional “genuine” eigenvalues have replaced those
that were artefacts of the discretisation. The plotter can now be exited by typing @exit

or @quit.
When some of the matrix eigenvalues give convergence failures, wavetrain assesses

the wave as stable or unstable based on the part of the eigenvalue spectrum that was
calculated using the other matrix eigenvalues. Thus when wavetrain studied the case
δ = −2, c = 3 as part of the parameter loop in Stage 15, it assessed the wave as being
stable. The calculations in this section confirm that this assessment was correct.

2.3.18 Stage 18 (Input): Reset nmesh1 and nmesh2 in constants.input

The command “set worked example inputs 18” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

Before proceeding, it is necessary to reset nmesh1 and nmesh2 to 200.

2.3.19 Stage 19 (Run): Plot the Results of the stability loop Run

Having clarified the situation for δ = −2, c = 3, one can proceed with plotting the results
of the stability loop run done in Stage 15. One starts the plotter by typing

plot workedex 103

(103 is the relevant pcode value) and then types

@pplane

at the plotting prompt. Selecting the default plot type (rcode numbers) gives the plot
shown in Figure 2.18. There are two separate parameter regions giving stable waves,
separated by a region in which waves are unstable. The plotter can now be exited by
typing @exit or @quit.

2.3.20 Stage 20 (Run): Run of stability boundary

The next stage of the study is to trace the boundaries in the δ–c plane between the regions
of stable and unstable periodic travelling waves. It is clear from Figure 2.18 that there are
two such boundaries. The starting point for calculating them are pairs of points in the
δ–c plane lying on either side. For the right hand boundary, suitable points correspond
to rcodes 1019 and 1020, which correspond to c = 2.171 with δ = 0.857 and δ = 0.285
respectively. Therefore one types

stability boundary workedex 103 0.857 2.171 0.285 2.171

(run time: about 15 minutes on a typical desktop computer). For the left hand boundary,
rcode values 1022 and 1023 lie either side; these have c = 2.171 with δ = −0.857 and
δ = −1.428 respectively. Therefore one types

stability boundary workedex 103 -0.857 2.171 -1.428 2.171

65

Figure 2.18: Results on the stability of periodic travelling wave solutions for the problem
workedex. A key illustrating the meaning of the various colours is shown in Figure 2.4
on page 18. The run and plot commands used to generate these figures are given in the
main text, and are also listed in the Appendix.

(run time: about 15 minutes on a typical desktop computer).
To visualise these stability boundaries, one must first restart the plotter via

plot workedex 103

and replot the parameter plane via

@pplane

entering symbol as the plot type for variety. One then adds the stability boundaries via
the command

@stability boundary all

giving the plot shown in Figure 2.19. Although the commands have run successfully, both
stability boundary curves in Figure 2.19 are rather jagged in appearance. This indicates
that the continuation step sizes are somewhat too large.

66

Figure 2.19: Results on the existence of periodic travelling wave solutions, including the
boundaries between parameter regions giving stable and unstable waves, for the problem
workedex. The stability boundaries are visibly jagged, due to the continuation step sizes
being too large. A key illustrating the meaning of the various colours is shown in Figure 2.4
on page 18. The run and plot commands used to generate this figure are given in the
main text, and are also listed in the Appendix.

2.3.21 Stage 21 (Input): Reduce the Step Sizes for stability boundary

The command “set worked example inputs 21” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

A factor of 10 should be ample as a reduction in the step size settings for stability
boundary calculations. Therefore line 9 of constants.input should be changed to:

0.01 0.005 0.05 # ds(>0),dsmin,dsmax for stability boundary calcs

2.3.22 Stage 22 (Run): Rerun of stability boundary

The two commands

stability boundary workedex 103 0.857 2.171 0.285 2.171

stability boundary workedex 103 -0.857 2.171 -1.428 2.171

should now be rerun. The run time for each is about 30 minutes on a typical desktop
computer. Plotting these new stability boundaries (see Figure 2.21 below) confirms that

67

Figure 2.20: Results on the stability of periodic travelling wave solutions for the problem
workedex, with results displayed using the period of the waves. A key illustrating the
meaning of the various colours is shown in Figure 2.4 on page 18. The run and plot
commands used to generate this figure are given in the main text, and are also listed in
the Appendix.

they have a smooth appearance.

2.3.23 Stage 23 (Run): Calculate Contours of Constant Period

There is no need to calculate contours of constant period, but it can be helpful in under-
standing the periodic travelling wave family. To determine suitable contour levels, it is
helpful to replot the δ–c plane, showing wave periods rather than rcode values or symbols.
To do this one types

@pplane

at the plotter prompt, entering period for the plot type. The resulting plot is now shown
in Figure 2.20. This shows that 50, 100, 150 and 200 are suitable contour levels. In each
case, the period contour command requires two points in the δ–c plane lying either side
of the contour, and these can easily be read off Figure 2.20. Having exited the plotter via
@exit or @quit, one can then run the commands to calculate the period contours, with
suitable commands being

68

period contour workedex 103 period=50 -1.0 0.9 -0.2 0.9

period contour workedex 103 period=100 0.85 1.6 0.85 2.2

period contour workedex 103 period=150 0.9 2.2 0.2 2.2

period contour workedex 103 period=200 1.0 2.6 -0.4 2.6

which calculate the various contours.

2.3.24 Stage 24 (Input): Copy PDE Simulation Data File

The command “set worked example inputs 24” performs the steps described in the pre-
vious input stages of the study, and then performs the steps described in this stage.

Before plotting the results of the period contour calculations, it is instructive to add
one further ingredient to the plot. Smith & Sherratt (2007) present results from numerical
simulations of the partial differential equations (2.1) on a large domain with zero Dirichlet
boundary conditions, for a range of values of δ, with k = 0.2, s = 0.15 and µ = 0.05 as
in this worked example. In each case periodic travelling waves develop. Their results
are reproduced in the files documentation/worked example/stage24/pde stable.data

and documentation/worked example/stage24/pde unstable.data. These files contain
two columns, which are the δ values and the measured values of the wave speed, with
the two files corresponding to values of δ for which there was not or was visible evidence
of instability in the waves. The data in these files can be incorporated into wavetrain

plots via the plot command @pointsfile (see page 129), and the files should now be
copied into the workedex input subdirectory.

2.3.25 Stage 25 (Run): Final Plots

The various results can now be gathered together in a final plot. Firstly, in order to
include the locus of Hopf bifurcation points in this plot it is necessary to recalculate it
for pcode 103, via the command

hopf locus workedex 103 1 0 1 6

(alternatively one could use the copy hopf loci command, although wavetrain would
issue queries because of the differences in the input files between pcode 103 and pcodes 101/
102). One then starts the plotter via

plot workedex 103

and enters the plotter command

@pplane

entering symbol as the plot type, which is most suitable for a final plot. One then enters
the commands

@hopf locus 101

@stability boundary 103

@stability boundary 104

69

to add the locus of Hopf bifurcation points and the stability boundaries. Note that 103
and 104 are the scode values for the runs of stability boundary done in Stage 22, with
reduced step sizes. To add the period contours, one enters

@period contour all

at the plotter prompt. The user is then prompted about the location of contour labels.
By default these are placed at the edges of the plot, but in this case a clearer plot is given
by entering

delta=-1.8 delta=1.55

as the label location. Finally the data from the partial differential equation simulations
is added to the plot via the two commands

@pointsfile "pde stable.data" 9

@pointsfile "pde unstable.data" 8

where the second arguments (9 and 8) specify that closed and open triangles are to be used
for the two data sets; a full list of wavetrain symbol codes is given on page 146. The
resulting plot is shown in Figure 2.21. Note that one of the data points from the partial
differential equation simulations lies in the unstable region of the parameter plane, but has
been recorded as stable. This is entirely expected: the space and time scales over which
the instabilities develop is too long for them to be manifested visibly in the simulations.
The plotter should now be exited via @exit or @quit.

The plot shown in Figure 2.21 gives a full account of the results, but visually it is rather
busy. The user may prefer a picture without the coloured dots and squares indicating the
(δ, c) points used in the stability loop run. To generate this it is necessary to create a
blank parameter plane using the command

new pcode workedex

which assigns pcode value 104 to the new parameter plane. One then copies the various
results across via the commands

copy hopf loci workedex 103 104

copy period contours workedex 103 104

copy stability boundaries workedex 103 104

and types

plot workedex 104

to restart the plotter. One then simply repeats the series of plotter commands used to
generate Figure 2.21; the only difference is that the @pplane command does not prompt
the user for the plot type, since no (δ, c) points are being plotted. The resulting plot is
shown in Figure 2.22.

70

Figure 2.21: A final plot of the control parameter–wave speed plane for the problem
workedex. A key illustrating the meaning of the various colours and symbols is shown in
Figure 2.4 on page 18, except for the black triangles, which indicate results from numerical
simulations of the partial differential equations. Open/closed triangles indicate solutions
with/without visible evidence of instability (see main text for details). The run and plot
commands used to generate this figure are given in the main text, and are also listed in
the Appendix.

2.3.26 Stage 26 (Run): Delete Unwanted Output Files

Wavetrain generates significant amounts of numerical data. To avoid this accummulat-
ing, it is good practice to remove unwanted output files at the end of a study. A series
of commands are provided for this purpose, and they are described in detail in §3.1.11.
For this worked example, all runs associated with pcode values 101 and 102 are now
redundant, and the corresponding output files can be deleted via the commands

rmpcode workedex 101

rmpcode workedex 102

which prompt the user for confirmation. In addition, the data files associated with the
large number of runs of ptw, stability and eigenvalue convergence are all no longer
needed. All wavetrain runs such as these, which are not associated with a parameter
plane plot, have their output data stored under the notional pcode value 100 (see §3.1.11
and §4.4 for further details). Therefore the output data can be deleted via the command

71

Figure 2.22: An alternative version of the final plot of the control parameter–wave speed
plane for the problem workedex. This figure is the same as Figure 2.21 except that the
symbols indicating the (δ,c) points used in the run of stability loop are omitted. A
key illustrating the meaning of the various colours and symbols is shown in Figure 2.4 on
page 18, except for the black triangles, which indicate results from numerical simulations
of the partial differential equations. Open/closed triangles indicate solutions with/without
visible evidence of instability (see main text for details). The run and plot commands
used to generate this figure are given in the main text, and are also listed in the Appendix.

rmpcode workedex 100

which issues three separate prompts for confirmation, since this command has the poten-
tial to delete a large amount of output data.

2.4 Documentation and Help Facilities

In the main wavetrain directory there is a subdirectory documentation containing a
pdf copy of this user guide.

A basic help facility is provided in wavetrain via the command wt help; like all
commands, the user must be in the main wavetrain directory to use it. Typing

wt help <command>

72

provides a brief summary of the usage of the specified command, which can be either a
run or plot command. If no argument is given, wt help lists the wavetrain run and
plot commands. By default the output from wt help is scrolled on the screen, but this
can be changed to a listing of the appropriate help file by editing defaults.input.

Help for plotter commands is also available from within the plotter. Typing @help

followed by a command name gives a summary of the command’s syntax and usage.
Typing @help alone gives a listing of the plot commands. By default the plot command
@help scrolls through the corresponding help file, but this can be changed to a listing by
changing helpdisplay in plot defaults.input.

For the benefit of users wishing to understand the workings of wavetrain, each
subdirectory contains a README file that summarises the role played by each program
within it. There is also a README file in the main wavetrain directory, which contains
the version name/number.

2.5 Troubleshooting

It is anticipated that most users will run wavetrain commands interactively, with the
constant info set to 3 (in constants.input). This results in limited screen output,
charting the overall progress of the run. If a problem occurs, then this screen output may
be sufficient to resolve it. Otherwise, or if info is set to 1 or 2, users can see much more
detailed information on the run in a file called info.txt. This file will be located in a
subdirectory of output files. Full details of the subdirectory structure of output files

are given in §4.4.1, and the following list simply gives the location of info.txt files
associated with the various wavetrain commands.

bifurcation diagram This command has not yet been discussed: see §3.1.6. Detailed
information on a run of this command is contained in
output files/pcode100/bcode<code number>/info.txt

eigenvalue convergence Detailed information on a run of this command is contained
in output files/pcode100/ecode<code number>/info.txt

hopf locus Detailed information on a run of this command is contained in
output files/pcode<code number>/ccode<code number>/info.txt

period contour Detailed information on a run of this command is contained in
output files/pcode<code number>/ccode<code number>/info.txt

ptw and stability Detailed information on a run of these commands is contained in
output files/pcode100/rcode<code number>/info.txt

ptw loop and stability loop Detailed information on a run of these commands is di-
vided between a number of different info.txt files. Details of overall progress
through the loop over the grid of control parameter and wave speed values is con-
tained in output files/pcode<code number>/info.txt and specific information
about the run for a given pair of control parameter and wave speed values is con-
tained in output files/pcode<code number>/rcode<code number>/info.txt

73

stability boundary Detailed information on a run of this command is contained in
output files/pcode<code number>/scode<code number>/info.txt

One component of these info.txt files is a list of any errors and warnings that have
occurred during the run. For convenience, this list is reproduced in a file errors.txt in
the same subdirectory. (If no errors or warnings have occurred, this file will be present
but empty).

During runs of its various commands, wavetrain generates a large number of tem-
porary files (see §4.3.1 for details). By default, these files are deleted at the end of a run,
but they can be retained by setting the constant iclean to 2 in constants.input. In
some cases, this can also be useful in attempting to understand the cause of a problem.
Once the files have been examined, they can be deleted by the command cleanup.

74

Part 3

Advanced Features of WAVETRAIN

3.1 Further Details of Run Commands

3.1.1 The Format of Numerical Inputs, and Precision

Numerical inputs to wavetrain are required in the various input files, and also as com-
mand arguments. They can be supplied in either decimal or scientific notation. Thus
123.4, 1.234E2 and 1.234E+2 are all acceptable. Entries that happen to be integer-
valued can also be entered without a decimal point: for example the control parameter
value 3.0 can also be entered as 3. However there is one important case in which an
integer value and its decimal equivalent are treated differently, namely in powers that
appear in equations.input. A term such as “x**3” in equations.input is evaluated
as one would expect, by multiplying x by itself three times; however “x**3.0” is evalu-
ated using the logarithm and exponential functions, which is less accurate. Therefore to
preserve accuracy, integer powers should always be entered as integers. Of course, integer
variables such as the numbers of grid points in parameter range.input must be given
as integers.

Wavetrain does its computations using Fortran77 programs, which are written by
the package on the basis of the input files. It uses 8-byte (“double”) precision throughout,
meaning that there are 16 significant decimal digits. Users who are familiar with Fortran77
will know that this level of precision requires that numerical values are specified explicitly
as being double precision. For example 1.0/3.0 gives only eight 3’s after the decimal
point, with the remaining digits being random; in Fortran77 one must instead write
1.0D0/3.0D0. Wavetrain takes account of this when converting the input files into
Fortran77 code, changing E’s to D’s in scientific notation and adding “D0” to decimals and
“.0D0” to integers in order to retain double precision accuracy throughout. An important
exception to this is integer powers, which are left as integers (see the discussion in the
previous paragraph).

A final point about numerical format concerns upper and lower case. According to the
international standard for Fortran77 (see http://gcc.gnu.org/wiki/GFortranStandards
and http://rsusu1.rnd.runnet.ru/develop/fortran/prof77/index.html), programs
must be written entirely in upper case, and this is true for all code used in wavetrain.
However, in principle, this should also apply to numerical inputs. Thus a numerical in-
put such as 1.234e2 is not compatible with the international standard for Fortran77: it

75

should be 1.234E2. In reality, all modern Fortran77 compilers will accept both lower and
upper case, but it is conceivable that a user might have a Fortran77 compiler that gives an
error because of entries with a lower case “e”. In this highly unlikely event, the remedy is
simple: change to upper case “E” in any numerical values entered using scientific notation.

3.1.2 Optional Arguments of the stability boundary Command

The command stability boundary has six compulsory arguments; the first two are the
subdirectory name and pcode value, and arguments 3–6 are the coordinates of two points
in the control parameter–wave speed plane lying on either side of the stability boundary. It
is also permissible to give additional argument(s). These have one of two possible forms:
either <control parameter name>=<value> or <wave speed name>=<value>. Here
the labels “<control parameter name>” and “<wave speed name>” denote the names
of the control parameter and the wave speed, as given in variables.input. There is
no upper limit on the number of such additional arguments, and they cause detection of
points at which the stability boundary crosses the specified values; if there are multiple
crossings, they are all recorded. These crossings are written to the output file info.txt,
and also to the screen if the constant info (defined in constants.input) is 3 or 4. They
can be retrieved subsequently via the command list crossings. Thus for the example
problem demo discussed in the previous section, the command

stability boundary demo 102 1.75 0.3 1.75 0.7 A=0.7 c=0.55 A=1.1 A=2.5 c=0.65

causes the stability boundary to be calculated as described in §2.1, but with the additional
recording of the points at which the stability boundary crosses A = 0.7, 1.1, 2.5 and
c = 0.55, 0.65. If no subsequent runs have been done other than those listed in §2.1 then
this run will be allocated the scode value 102, and the command

list crossings demo 102 102

will give a list of the crossing points. (Here the first 102 is the pcode value and the second
is the scode value). Note that periodic travelling wave solutions corresponding to the
crossing points are not recorded: this is in contrast to the period contour command (see
§3.1.3). The crossing information is not used in plotting.

3.1.3 Optional Arguments of the period contour Command

The command period contour has either four or seven compulsory arguments. The first
two are the subdirectory name and pcode value. If the period is specified in the third
argument, then arguments 4–7 are the coordinates of two points in the control parameter–
wave speed plane lying on either side of the period contour; otherwise arguments 3 and 4
are the coordinates of the point through which the period contour is to be drawn. It is
also permissible to give additional argument(s). These have one of two possible forms:
either <control parameter name>=<value> or <wave speed name>=<value>. Here
the labels “<control parameter name>” and “<wave speed name>” denote the names
of the control parameter and the wave speed, as given in variables.input. There is

76

no upper limit on the number of such additional arguments, and they cause detection
of points at which the period contour crosses the specified values; if there are multiple
crossings, they are all recorded (up to a maximum number of 99). The periodic trav-
elling wave solutions corresponding to the crossing points are also recorded. (Note that
this is not the case when optional arguments are used for the stability boundary com-
mand: see §3.1.2.) The crossings are listed in the file pcsolution.list in the relevant
output subdirectory, and this list contains a two-digit code number for each crossing.
The number of crossings is limited to 99 and in the unlikely event that the number of
crossings exceeds this maximum, only the first 99 to be detected will be recorded. The
order of the crossings is simply the order in which they were detected during numerical
continuation: therefore if more than one optional argument is given, the code numbers
are not grouped according to the corresponding optional argument. For each crossing,
the output subdirectory also contains the file pcsolution<code>.soln which gives the
corresponding periodic travelling wave solution. The first column of the file contains val-
ues of the periodic travelling wave coordinate, and the remaining columns contain the
corresponding values of the travelling wave variables, in the order in which they are listed
in variables.input. The solution will span exactly one period, and the travelling wave
variables in the first and last rows will be the same. The output subdirectory also contains
a one-line file pcsolution<code>.params which gives the control parameter and wave
speed values corresponding to the solution. The list of crossings can be viewed via the
command list crossings. The crossing information is not used in plotting.

3.1.4 The Commands set homoclinic and unset homoclinic

Wavetrain does not have the capability to track the loci of actual homoclinic solutions of
the travelling wave equations. Rather, these must be approximated by the loci of solutions
of large period, as discussed in §2.1. For the purposes of plotting, it is often convenient
to represent such a locus differently from that of other contours of constant wave period.
Typing set homoclinic demo 102 101 (for example) designates the contour with ccode
101 for the parameter plane with pcode 102 to be an (approximation to) a locus of homo-
clinic solutions. This is simply a relabelling: no new computation is done. Its effect is that
the plotter command @period contour plots that contour in a different colour, and omits
the label(s) showing the value of the period. The designation can be reversed by typing
unset homoclinic demo 102 101. Note that if set homoclinic/unset homoclinic are
applied to a contour that is currently designated as being/not being homoclinic, it simply
has no effect. (No error is reported.)

As an example of the use of these commands, consider the plot shown in Figure 2.5
on page 21. This plot was for a run with pcode 101, and shows a control parameter–wave
speed plane with two contours of constant wave period, with periods 3000 (ccode 101)
and 80 (ccode 102). Typing

set homoclinic demo 101 101

designates the first of these to be a locus of homoclinic solutions. Replotting via S

plot demo 101

77

Figure 3.1: An illustration of the use of the run command set homoclinic. The figure
shows the Hopf bifurcation locus and two contours of constant wave period for the problem
demo, one of which has been designated to be a locus of homoclinic solutions. These curves
are superimposed on a plot showing periodic travelling wave existence in the control
parameter–wave speed plane. A key showing the meaning of the various symbols and
colours (including that used for the homoclinic locus) is shown in Figure 2.4 on page 18.
The run and plot commands used to generate this figure are given in the main text, and
are also listed in the Appendix.

followed by the plot command

@pplane

(selecting symbol as the plot type) and then

@hopf locus 101

and

@period contour all

(selecting the default label location) gives the plot illustrated in Figure 3.1. The contour
of period 3000 is shown in a different colour and weight, and without labels showing the
period.

78

3.1.5 The Command new pcode

Having calculated the parameter plane for demo, as described in §2.1, one may wish to
obtain the corresponding plot for a slightly different value of one of the other parameters,
for instance B = 0.4 rather than B = 0.45. (Recall that these parameters are given in the
file other parameters.input). One might naturally assume that the basic structure of
the plot would be the same, making a scan across the parameter plane unnecessary: one
would just need to recompute the locus of Hopf bifurcation points, the “homoclinic” locus,
and the stability boundary. To do this one requires a pcode value, which has previously
been generated via a run of ptw loop or stability loop. The command new pcode is
provided for this situation; it was introduced previously in §2.3. After editing the file
other parameters.input, one types

new pcode demo

and the new pcode value is reported. The commands hopf locus, period contour

and stability boundary can then be used to generate all the data for the parameter
plane plot. Note that if the plot command @pplane is used for a pcode value cre-
ated via new pcode, it causes axes, labels and titles to be drawn around a blank plot;
this is necessary before using the plot commands @hopf locus, @period contour or
@stability boundary.

3.1.6 The Command bifurcation diagram

An important capability of wavetrain that was not discussed in section 2.1 is the gen-
eration of bifurcation diagrams. The basic command has a form such as

bifurcation diagram demo c=0.8

which generates a bifurcation diagram as the control parameter is varied, for wave speed
c= 0.8. (The wave speed name c is set in the file variables.input). The limits on the
control parameter for the bifurcation diagram are taken from parameter range.input.
The run is allocated a three digit “bcode” number (101-999); since this is the first bifur-
cation diagram run, the bcode will be 101. The diagram can be plotted by starting the
plotter via

plot demo

(no pcode value is needed) and then running the plotter command

@bifurcation diagram 101

(101 is the bcode value). The user is asked to specify whether the vertical axis of the
plot should show the L2-norm of the travelling wave solution and/or the L2-norm of the
steady state, or the wave period. There is also the opportunity to manually override
the default axes limits; this is often necessary for the vertical axis when using the wave
period if the plotting region includes a homoclinic solution. Finally the user is asked
whether a mixture of two different line types is required; this option is discussed in detail

79

(a)

(b)

Figure 3.2: Bifurcation diagrams for the problem demo. The control parameter and wave
speed as used as the bifurcation parameter in (a) and (b) respectively. The L2-norm of
the solution is plotted on the vertical axis in (a), and the period is used in (b). The run
and plot commands used to generate these figures are given in the main text, and are also
listed in the Appendix.

80

on page 84. Selecting “norm” for the vertical axis, default axes limits, and a single line
type (the default) gives the plot shown in Figure 3.2a. In bifurcation diagram plots, a
filled square denotes a Hopf bifurcation point, an open circle denotes the end of a solution
branch, and if there are folds in the solution branch then these are indicated by filled
circles (see for example Figure 3.7). The labels beside these symbols, and if desired also
the symbols themselves, can be suppressed by changing the plotter setting showbdlabels,
which is defined in plot defaults.input.

As an alternative to specifying a wave speed value and using the control parameter as
the bifurcation parameter, the roles can be reversed. For example the command

bifurcation diagram demo A=2.6

will generate a bifurcation diagram with the wave speed as the bifurcation parameter;
this is illustrated in Figure 3.2b. (The control parameter name A is set in the file
variables.input).

The bifurcation diagram command also has optional additional arguments. One of
these is the name of one of the travelling wave variables (as specified in variables.input).
If this is included then the same computations are performed but with different output
data. Rather than recording the L2-norm of the whole travelling wave solution, the
maximum, minimum, mean, L2-norm and steady state value of the specified variable are
recorded. One can select which of these are plotted when one runs the plot command
@bifurcation diagram. An example run command would be

bifurcation diagram demo variable=W c=0.6

which will be allocated a bcode value of 103 since it is the third bifurcation diagram to
be calculated. Here the order of the second and third arguments does not matter, so that

bifurcation diagram demo c=0.6 variable=W

is equivalent. To plot the resulting bifurcation diagram, one starts the plotter by typing

plot demo

and then gives the plot command

@bifurcation diagram 103

(103 is the bcode value). The user will then be prompted to choose from a variety of
different options for what is shown on the vertical axis. For example, selecting “norm max

min” gives the plot shown in Figure 3.3a, while “max mean stst” gives the plot shown
in Figure 3.3b. In both cases, the plots shown use the default axes limits. Note that the
legend boxes are included automatically when there is more than one solution property
in the plot.

The other type of optional argument for the bifurcation diagram command is the
specification of one or more files as starting points for solution branches. The first stage
of the bifurcation diagram command is always to scan the range of either control pa-
rameter or wave speed values given in parameter range.input, looking for Hopf bifurca-
tions. The second stage is then to calculate the solution branch emanating from each of

81

(a)

(b)

Figure 3.3: Bifurcation diagrams for the problem demo, with W specified as the study
variable in the command line. Parts (a) and (b) are for the same run, but with dif-
ferent options selected for the vertical axis. Note that the same line colour is used for
the maximum and minimum; this can be changed by altering bdlinecolourmax and/or
bdlinecolourmin in the plotter style file (see §3.4.2). The run and plot commands used
to generate these figures are given in the main text, and are also listed in the Appendix.

82

these Hopf bifurcation points. If one or more optional arguments file=<filename>
is given then there is a third stage, in which solution branches are calculated using
the periodic travelling wave solution <filename>.soln as a starting point. The file
<filename>.soln must be in the appropriate subdirectory of input files, and the
required format is:

column 1: travelling wave (or space) coordinate

remaining columns: the travelling wave variables, in the order in which they are listed in
variables.input.

There are no particular constraints on the discretisation used for the solution in the
file. It must be given over one period of the periodic travelling wave, and the travelling
wave variable values given in the last line must be exactly the same as those given in
the first line. The corresponding space/travelling wave coordinate will therefore be one
period greater than that in the first line. A second file <filename>.params is also
required, again in the input files subdirectory; this is a one-line file containing the
control parameter and wave speed values in the first and second columns respectively.

The main motivation for the file= optional argument is that it enables the command
bifurcation diagram to calculate periodic travelling wave solution branches that begin
and end at homoclinic solutions, and are not connected to a Hopf bifurcation point.
However its use can be illustrated using the demo example. The command

bifurcation diagram demo A=2.0

would return an error message saying that no Hopf bifurcation was found as the wave
speed c varied between 0.3 and 1.1 (specified in parameter range.input) for A = 2.0.
In fact there is a periodic travelling wave solution for all wave speeds in this range, but
wavetrain cannot calculate the solution branch without a Hopf bifurcation as a starting
point. One obvious remedy would be to widen the range of wave speeds being considered.
But an alternative is to calculate a periodic travelling wave solution as a starting point.
For example, one could use the command

ptw demo 2.0 0.8

to calculate a suitable starting solution. Following a successful run of either ptw or
stability, the output subdirectory contains files with the correct format for a starting
point for bifurcation diagram. These files are named using the control parameter and
wave speed, in this case ptw 2.0 0.8.soln and ptw 2.0 0.8.params. After copying these
files into the demo subdirectory of input files, one can run the command

bifurcation diagram demo A=2.0 file=ptw 2.0 0.8

to calculate the required solution branch.
Any number of file=<filename> arguments is permitted; wavetrain will use each

file in turn as a starting point. The order of the files does not matter. The options file=
and variable= can be used together, and the order of all arguments beyond the first (the
subdirectory name) does not matter.

83

The bifurcation diagram command does not and cannot calculate the stability of
the periodic travelling wave solutions. However when preparing final versions of figures for
presentation or publication, it can be useful to show stability information on bifurcation
diagram plots, with this information having being deduced from control parameter – wave
speed plots. Wavetrain enables the inclusion of stability information in bifurcation
diagram plots provided that the plot is of one solution measure only. In such a case,
the plotter prompts the user about using a mixed line type in the plot. Hitting return

(enter) gives a single line type, using the default line type setting that is specified in
plot defaults.input. Alternatively the user can enter a condition specifying the part of
the curve to be plotted as a solid line, with the remainder being plotted as a broken line.
The format required for the condition is one or more inequalities separated by spaces – a
solid curve will be drawn when any one of these inequalities is satisfied. Each inequality is
expressed in terms of the two axes variables, and multiple inequalities can be included by
using &, with no spaces on either side. Thus if the bifurcation diagram shows the period
as a function of the control parameter K, then the condition

K>2&period>10 K<=1 period<5

will lead to a solid curve when K > 2 and the period exceeds 10, or when K ≤ 1, or when
the period is below 5. If the bifurcation diagram plots the L2-norm of the travelling wave
solution, then “L2norm” should be used in inequalities involving the norm, while if it plots
any measure of one of the travelling wave variables, then the name of that variable should
be used in inequalities. Thus for example if the bifurcation diagram plots the maximum
of the travelling wave variable W as a function of the wave speed c, then the condition

W<=1&c>2 W>3

will lead to a solid curve when the maximum of W is ≤ 1 and the speed c > 2, or when
the maximum of W is > 3.

As an example of the use of a mixed line type in a bifurcation diagram plot, consider the
bifurcation diagram shown in Figure 3.2b. This plot illustrates the existence of periodic
travelling wave solutions as the wave speed c is varied for control parameter A = 2.6. One
can determine where the stability boundary curve crosses the line A = 2.6 via an optional
argument to stability boundary (see §3.1.2), for instance

stability boundary demo 102 1.75 0.3 1.75 0.7 A=2.6

where 102 is an appropriate pcode value. This run reports that there is a change in wave
stability at A = 2.6, c = 0.66. One can then replot the bifurcation diagram, entering
c>0.66 when prompted about a mixed line type. This gives the plot show in Figure 3.4,
in which stable and unstable periodic travelling waves are indicated by solid and broken
lines respectively.

As a final comment, it is important to emphasise that a mixed line type can only
be used in bifurcation diagram plots showing a single curve. If more than one curve is
requested, then the prompt asking about the use of a mixed line type does not appear.

84

Figure 3.4: An illustration of the use of a mixed line type in a bifurcation diagram plot.
The solid and broken lines indicate stable and unstable periodic travelling waves, respec-
tively. Note that this stability information is not calculated by the bifurcation diagram

command, and the parts of the curve that are solid and dashed are specified manually
by the user. The run and plot commands used to generate this figure are given in the
Appendix.

3.1.7 Keeping Track of WAVETRAIN Runs

If one is doing a large number of different wavetrain runs for the same problem, it can
be a challenge to keep track of which run is which. A useful aid in this situation is the
file command.txt, which is present in each output subdirectory corresponding directly to
a wavetrain command. For example, in §2.1.1, the command

hopf locus demo 101 2.0 0.8 3.5 0.8

was used to calculate a Hopf bifurcation locus, and was allocated the hcode value 101.
Then the file command.txt in the directory output files/demo/pcode101/hcode101/

contains a single line, in which the command is repeated. Further details of command.txt
and of other wavetrain output files are given in §4.4.1.

Runs of ptw loop and stability loop create a command.txt file in the pcode output
directory, but not in the individual rcode subdirectories. To help keep track of the runs
in this situation, wavetrain has the command list rcodes. This has one argument, a

85

pcode value, and it lists the control parameter and wave speed associated with each rcode
value for that pcode, plus the overall outcome of the calculation, and the period of the
wave if one was found. If the argument is either omitted or is equal to 100, then the list
corresponds to waves calculated individually, via either the ptw or stability commands.

3.1.8 The Parameter iposim

The spectrum of a periodic travelling wave is symmetric about the real axis. Therefore
in order to investigate stability it is unnecessary to calculate the whole of the spectrum:
the part in the upper half of the complex plane is sufficient. With this in mind, wave-
train provides the constant iposim, which is set in constants.input. When wave-

train calculates eigenvalues corresponding to periodic eigenfunctions, it records either
all eigenvalues or only those with imaginary part ≥ 0, according to whether iposim=0 or
1. The total number of recorded eigenvalues is specified by nevals, which is also set in
constants.input, and the recorded eigenvalues are used as starting points for numerical
continuation of the spectrum. In most cases, setting iposim=1 will give all of the spec-
trum in the upper half plane, and possibly also the parts of some loops which extend into
the lower half plane. This part of the spectrum will correctly determine the stability of the
periodic travelling wave. The great advantage of restricting the eigenvalues corresponding
to periodic eigenfunctions to those with imaginary part ≥ 0 is that typically it almost
halves the computational time taken to determine periodic travelling wave stability.

However for some spectra it is necessary to set iposim=0 in order to calculate in full
the part of the spectrum in the upper half plane. Schematic illustrations of two such cases
are given in Figure 3.5. In these sketches the black dots indicate eigenvalues corresponding
to periodic eigenfunctions. Consider first the case shown in part (a) of the figure. The
spectrum consists of two loops, one of which crosses the imaginary axis, implying that
the periodic travelling wave is unstable. However for iposim=1 only the eigenvalues with
imaginary part ≥ 0 corresponding to periodic eigenfunctions are used as starting points
for continuation of the spectrum. Consequently only half of the larger loop is calculated,
and the part that crosses into the right hand half plane is missing. Similarly for the case
shown in part (b) of the figure, the part of the spectrum crossing into the right hand half
plane is not calculated when iposim=1.

If iposim=1, wavetrain runs two tests in an attempt to determine whether part
of the spectrum in the upper half plane has been omitted from the calculations. These
tests are not fool-proof, and a brief summary of them may be helpful to users who are
wondering why wavetrain suggests that they change iposim from 1 to 0. For each
calculated segment of the spectrum, wavetrain records the start and end points, which
correspond to γ = 0 and γ = 2π respectively. Here, as previously, γ is the phase difference
in the eigenfunction across one period of the periodic travelling wave: this is the principle
continuation parameter along the spectrum. Note that the start point will be close to
a matrix eigenvalue corresponding to a periodic eigenfunction, but the match will not
be exact because of errors introduced by the discretisation used to form the matrix (see
§3.1.13).

If the imaginary part of the eigenvalue at γ = 2π is negative, then the subsequent

86

Figure 3.5: A schematic illustration of two spectra for which the setting iposim=1 leads
to an incorrect conclusion about periodic travelling wave stability. The black dots indicate
eigenvalues corresponding to periodic eigenfunctions. In both (a) and (b) the part of the
spectrum illustrated consists of two branches, one of which crosses the imaginary axis,
implying that the periodic travelling wave is unstable. However for iposim=1 only the
eigenvalues corresponding to periodic eigenfunctions and with imaginary part≥ 0 are used
as starting points for continuation of the spectrum. Consequently in both (a) and (b) the
part of the spectrum that crosses into the right hand half plane is not calculated when
iposim=1. The colours along the spectra indicate the phase difference in the eigenfunction
over one period of the periodic travelling wave.

87

part of the spectrum (in the sense of increasing γ) will not be calculated when iposim=1,
and will cross into the upper half plane. This case is illustrated in Figure 3.5a, and
wavetrain outputs an error message in such a case. To avoid problems arising from
numerical accuracy, the actual criterion used by wavetrain for an error message is that
the imaginary part of the eigenvalue at γ = 2π is less than −10 evzero. Here the factor
of 10 is included to reduce the likelihood of inappropriate error messages. The constant
evzero is set in defaults.input.

To describe the second test performed by wavetrain, consider a calculated portion
S of the spectrum, with start point Sγ=0 and end point Sγ=2π. Wavetrain determines
whether Sγ=0 corresponds to the end point of another calculated portion of the spectrum.
There are four possible reasons why this would not be the case.

(i) ImSγ=0 = 0. Then Sγ=0 = 0 might be the end point of a part of the spectrum in the
lower half plane, which is not calculated when iposim=1.

(ii) Sγ=0 is the end point of a part of the spectrum that was not calculated by wave-

train because of a convergence error. Most often this arises because the matrix
eigenvalues are a poor approximation to the actual eigenvalues corresponding to
periodic eigenfunctions (see §3.1.13).

(iii) Wavetrain only calculates the part of the spectrum corresponding to the nevals

eigenvalues with largest real part and (for iposim=1) zero or positive imaginary
part. Sγ=0 might be the end point of a portion of the spectrum that has not been
calculated for this reason.

(iv) Sγ=0 = 0 might be the end point of a portion of the spectrum that originates in the
lower half plane. This case is illustrated in parts (a) and (b) of Figure 3.5.

It is only in case (iv) that a part of the spectrum in the upper half plane is not calcu-
lated because of the setting iposim=0. Unfortunately it is not possible to systematically
distinguish between cases (iii) and (iv). Therefore wavetrain attempts an approximate
distinction: it generates an error message about the value of iposim if Sγ=0 is not the
end point of any of the calculated parts of the spectrum, and also if ImSγ=0 > 0, if there
are no convergence errors, and if ReSγ=0 > ReSγ=2π. To avoid problems arising from
numerical accuracy, wavetrain designates the start point of one part of the spectrum
and the end point of another to be the same if their difference has modulus less than
evzero. Also in an attempt to avoid numerical artifacts, wavetrain uses the inequality
ImSγ=0 > 10 evzero rather than ImSγ=0 > 0; the factor of 10 is included to reduce the
likelihood of inappropriate error messages.

These tests detect most cases in which the setting iposim = 1 might cause an incorrect
conclusion about wave stability, but they are not fool-proof. They may lead to error
messages when there is not a missing part of the spectrum, and they may also fail to
detect a case in which there is a missing part. Therefore it is advisable to visually inspect
spectra when using the setting iposim = 1, at least for some representative parameter
sets.

If the tests detect a possible problem then wavetrain will display a “possible error”
message. The user then has two options. One is to investigate, by plotting the spec-
trum. The other option is to simply rerun with iposim=0, which will definitely avoid

88

the problem if there is one. In order to calculate the same part of the spectrum it will
be necessary to increase nevals to 2 nevalsold−n0, where n0 is the number of real eigen-
values corresponding to periodic eigenfunctions. Note that n0 ≥ 1 since zero is always
an eigenvalue, corresponding to the neutral stability of the periodic travelling wave to
translation. Therefore it is often easiest to simply increase nevals to 2 nevalsold − 1.
The downside of this change is that the run time will approximately double.

3.1.9 The Parameter iwave

A major potential complication for calculations using wavetrain is that there may be
folds in the branch of periodic travelling wave solutions, implying that there is more than
one wave solution for some pairs of control parameter and wave speed values. An exam-
ple of this is provided by the files in the demo1 input subdirectory. This problem has the
same equations and the same values of the “other parameters” as for demo, but considers
different ranges for the control parameter A and the wave speed c, and uses different
settings in constants.input. Thus the input files in demo and demo1 are identical ex-
cept for parameter range.input and constants.input. Looping through the control
parameter–wave speed plane in the usual way using the ptw loop command shows that
periodic travelling wave solutions exist in a thin diagonal strip in this parameter plane.
The results of the ptw loop command for the parameter range.input file provided at
installation are illustrated in Figure 3.6a. Note that during this run and several of the
subsequent runs for the problem demo1, a warning message about a small number of con-
tinuation steps will appear. This can be ignored: it is a consequence of the rather large
step sizes that are set for the illustrative problems demo and demo1. Hopf bifurcation and
homoclinic solution loci can be calculated in the usual way, via the commands

hopf locus demo1 101 1.065 21.0 1.08 21.0

and

period contour demo1 101 period=3000 1.085 20.0 1.08 20.0

followed by

set homoclinic demo1 101 101

The results are illustrated in Figure 3.6b, showing that these loci intersect one another.
This indicates a somewhat complicated solution structure, which is best investigated using
the bifurcation diagram command. Figure 3.7 illustrates a typical result from such a
study, generated by the command

bifurcation diagram demo1 c=20.2

which shows that there is a fold in the periodic travelling wave solution branch, with two
different periodic travelling wave solutions for some values of A.

When there are such multiple solutions, wavetrain is able to study all of them via the
parameter iwave. In all previous examples iwave has been set to 1, which causes wave-
train to study the first wave solution along the solution branch for a given pair of A and c

89

(a)

(b)

Figure 3.6: (a) Results on the existence of periodic travelling wave solutions for the
problem demo1. (b) The same plot as in (a) but with the addition of the Hopf bifurcation
locus and (an approximation to) the locus of homoclinic solutions. A key illustrating the
meaning of the various colours and symbols is shown in Figure 2.4 on page 18. The run
and plot commands used to generate these figures are given in the main text, and are also
listed in the Appendix.

90

Figure 3.7: A typical bifurcation diagram for the problem demo1. The run and plot
commands used to generate this figure are given in the main text, and are also listed in
the Appendix.

values. Here the counting of wave solutions is done as the control parameter varies, start-
ing from the solution located by the wave search method specified in equations.input.
Setting iwave=2 causes wavetrain to study instead the second wave solution for the
given parameters.

To illustrate this, Figure 3.8a shows the results of a run of ptw loop for demo1 for
a finer grid of control parameter and wave speed values than used in Figure 3.6a, but
again with iwave=1. To perform this run, parameter range.input has been editted,
with the grid reset to 50 × 15, but all other constants have been left as they were at
installation. Note that these grid dimensions mean that ptw loop attempts to calculate
periodic travelling wave solutions for 750 pairs of control parameter and wave speed values,
and consequently the run time for this command is relatively long (about an hour on a
typical desktop computer). In addition, the command plot demo1 102 takes some time
to perform its initial setups (about 5 minutes on a typical desktop computer) because
of the large volume of data that is being processed. Figure 3.8a shows that there is a
strip of the parameter plane in which there are periodic travelling wave solutions; the
left hand boundary of this strip is composed partly of the Hopf bifurcation locus, partly
of the homoclinic solution locus, and partly of the fold in the bifurcation diagram. The
command fold locus for tracing the locus of such a fold is described in §3.1.10.

91

(a)

(b)

Figure 3.8: Results on the existence of periodic travelling wave solutions for the prob-
lem demo1, using a fine grid of control parameter–wave speed values. (a) iwave=1; (b)
iwave=2. A key illustrating the meaning of the various colours and symbols is shown in
Figure 2.4 on page 18. The run and plot commands used to generate these figures are
given in the main text, and are also listed in the Appendix.

92

If one edits the file constants.input and changes iwave to 2, and then reruns
ptw loop, one finds a thinner strip of the parameter plane in which there are periodic
travelling waves (illustrated in Figure 3.8b). This strip is bounded by the locus of folds
(on the left) and the homoclinic locus (on the right). This thin strip is the region of the
parameter plane in which there are two different periodic travelling waves. If one were to
proceed to calculate wave stability with iwave still set to 2, it is the stability of this second
wave that would be calculated. Similarly, calculations done using the period contour

and stability boundary commands would refer to the second wave along the solution
branch. Setting iwave > 2 for demo1 would simply show that there is no part of the
parameter plane in which there are more than two periodic travelling waves.

Before leaving the use of wavetrain with iwave > 1, it is important to mention a
significant complication. When numerical continuation along a solution branch reaches
an end point, it sometimes reverses and continues back along the same branch. This is
particularly common when a branch of periodic travelling wave solutions connects two
different Hopf bifurcation points: the continuation will often run repeatedly backwards
and forwards between the two points. Consequently, the solution branch will contain
a sequence of periodic travelling waves for any given pair of control parameter–wave
speed values along it, although each of these waves will be the same. It is necessary for
wavetrain to distinguish such “false positive” occurrences of multiple wave solutions
from genuine cases such as those described above for demo1. This is achieved using the
parameter wavefrac, which is set in constants.input, although it is an optional entry,
with wavefrac = 0.001 being used if it is omitted. When wavetrain detects a second or
subsequent wave along the solution branch for the specified parameter value, it compares
the L2-norm and period with those of the previous wave solution. If the difference divided
by the mean is less than wavefrac for both the L2-norm and the period, then wavetrain

deems the two solutions to be the same and terminates the continuation.
The parameter iwave can also be set to zero. To illustrate the meaning of this special

setting, consider the example problem demo discussed in §2.1. The selected region of
the control parameter–wave speed plane has a significant region to the right of the Hopf
bifurcation locus in which there are no periodic travelling wave solutions. If iwave=1,
searching for a wave for control parameter and wave speed values in this region would
proceed as follows. First, wavetrain would vary the control parameter across the search
region for Hopf bifurcations (specified in equations.input). If a Hopf bifurcation is
detected, wavetrain would then vary the control parameter along the periodic travelling
wave solution branch, searching for the required value of the control parameter. However,
since there is no periodic travelling wave solution, this search only ends when the numerical
continuation ends because of a convergence failure close to the homoclinic solution locus.
If one knew, or assumed, that the Hopf bifurcation was supercritical then one could
eliminate this entire computation, since one would know a priori that there are no periodic
travelling wave solutions to the right of the Hopf bifurcation locus. This assumption can
be implemented by setting iwave=0. The file equations.input contains the start and
end values of the range of control parameter values over which to search for a Hopf
bifurcation in the travelling wave equations (see §2.2.2). The specific consequence of
setting iwave=0 is that the end value is not used: it is replaced by the value of the control
parameter at which a periodic travelling wave is sought. For the problem demo, if one edits

93

Figure 3.9: An illustration of the effect of setting the constant iwave to 0. This figure
should be compared with Figure 3.1 on page 78, which shows the corresponding results
for iwave=1. A key illustrating the meaning of the various colours and symbols is shown
in Figure 2.4 on page 18. The run and plot commands used to generate this figure are
given in the main text, and are also listed in the Appendix.

equations.input changing iwave from 1 to 0 and then reruns the ptw loop command
(followed by calculation of Hopf bifurcation loci and period contours as in §2.1), the result
is as shown in Figure 3.9; this should be compared with Figure 3.1 on page 78. The overall
structure of the parameter plane is the same, but different outcome symbols are now used
on the right and left hand sides of the region of periodic travelling waves. The blue-green
triangles on the left hand side indicate that the search for a periodic travelling wave ended
with a convergence failure in the numerical continuation. Typically this corresponds to
the branch of periodic travelling wave solutions approaching a homoclinic solution, though
of course it might indicate a real error. The new symbol (a purple square) indicates that
the search for a periodic travelling wave ended without a convergence failure. This occurs
most often when iwave has been set to 0 and no Hopf bifurcation is found, and this is the
case for Figure 3.9. However, it could occur for other reasons, for example if the values of
ds, dsmin and dsmax are too small, so that continuation ends prematurely (but without
a convergence error). In all cases, more detailed information on the outcome of the run
is available in the file outcome.data in the relevant output subdirectory (see §4.4); this
indicates which of the different possibilities has occurred. Note that if the user wishes to

94

include a key in material for presentation or publication, then they will probably prefer to
use a single entry for cases where there is no periodic travelling wave, and correspondingly
to have a single entry in the key. This can be achieved by changing the plotter setting
pplanekeytype (see §3.3.1).

The key advantage of setting iwave to 0 is that the run time for the loop is lower.
However, care must be exercised when using this setting, because it would give misleading
results if the Hopf bifurcation was subcritical or had a fold.

Further details of the problem studied using demo1 are given in Sherratt (2011).

3.1.10 Tracing the Loci of Folds

When there is a fold in the branch of periodic travelling wave solutions, the locus of
this fold often forms part of the boundary of region of the control parameter–wave speed
plane in which periodic travelling waves exist. Wavetrain can calculate such a locus
using the command fold locus. This is illustrated by returning to the demo1 example
discussed in §3.1.9. Recall that periodic travelling waves exist in a thin strip in the A–c
plane (illustrated in Figure 3.8a); this strip is bounded by segment of the locus of Hopf
bifurcation points, the locus of homoclinic solutions, and the locus of folds. To calculate
the last of these, one enters

fold locus demo1 102 1.07 21 1.05 21

where either the two control parameter values (third and fifth arguments) or the two
wave speeds (fourth and sixth arguments) must be the same, as for hopf locus and
stability boundary. In executing this command, wavetrain first calculates the peri-
odic travelling wave at A = 1.07 and c = 21. It then performs a numerical continuation
along the periodic travelling wave solution branch with c = 21 fixed, and with A changing
in the direction of the fifth argument 1.05: so A is decreased. Wavetrain monitors the
solution branch for a fold, and once this has been located, its locus is tracked in the A–c
plane. The run is given a 3 digit “fcode” value (101-999).

When plotting the fold locus, it is convenient to plot also the Hopf bifurcation and
homoclinic solution loci, but these were calculated for a different pcode value. Therefore
one must copy them across, via the commands

copy hopf loci demo 101 102

and

copy period contours demo 101 102

after which the wavetrain plotter can be started by typing plot demo1 102. One
recreates Figure 3.8 via the command @pplane. Hopf bifurcation and homoclinic loci are
added to the plot by typing

@hopf locus 101

and

@period contour 101

95

Figure 3.10: Results on the existence of periodic travelling wave solutions for the problem
demo1. The plot is the same as that in Figure 3.8a but with the addition of the Hopf
bifurcation locus, (an approximation to) the locus of homoclinic solutions, and the loci
of folds in the periodic travelling wave solution branch. A key illustrating the meaning
of the various colours and symbols is shown in Figure 2.4 on page 18. The run and plot
commands used to generate these figures are given in the main text, and are also listed
in the Appendix.

and finally the fold locus is added by the command

@fold locus 101

where 101 is the fcode value. The resulting plot is shown in Figure 3.10.
Users should be aware of the following points when using the fold locus command.

• Since the initial step in the calculation of a fold locus is a calculation of the periodic
travelling wave at the control parameter and wave speed values given in the third
and fourth arguments, these arguments must be chosen so that there is a periodic
travelling wave.

• The value of iwave (see §3.1.9) is significant for fold locus, since it affects the
periodic travelling wave for the third and fourth arguments, which is the initial

96

step in the calculation. For example if iwave is set to 3, then fold locus will first
calculate the third periodic travelling wave along the solution branch with control
parameter and wave speed given by the third and fourth arguments. It then locates
the fold adjacent to this point on the solution branch, in the direction determined
by the fifth and sixth arguments. It is the locus of this fold that is calculated by
fold locus.

• Wavetrain has a command copy fold loci to copy fold loci from one pcode to
another. It is directly analogous to the commands copy stability boundaries,
copy hopf loci and copy period contours.

3.1.11 Commands for Deleting Data Files

Wavetrain generates a large number of data files, in a large number of output subdi-
rectories. Manual deletion of unwanted files and directories would be very laborious, and
thus wavetrain provides a series of commands for systematic deletion. The command

rmrcode demo 1002

deletes all of the data files associated with the run of ptw or stability that was allocated
the rcode value 1002. For runs associated with loops through the control parameter–wave
speed plane (via the ptw loop or stability loop commands), the pcode value must also
be specified; thus

rmrcode demo 101 1002

deletes the run with rcode 1002 for pcode 101. Note that in all wavetrain commands,
if a pcode value is needed as an argument, it is always given as the second argument,
following the subdirectory name. One final point concerning the command rmrcode is
that for the purposes of file classification (see §4.4.1), all runs of ptw and spectrum are
allocated to the dummy pcode value of 100. Thus the commands

rmrcode demo 102

and

rmrcode demo 100 102

are equivalent.
Sometimes one may wish to delete files associated with all rcode values, for a particular

pcode. To achieve this, one replaces the rcode number by all in the above commands.
(All or ALL are also allowed).

The commands rmccode, rmhcode, rmfcode and rmscode are directly analogous except
that a pcode value (≥ 101) is required, since period contours, Hopf bifurcation loci, fold
loci and stability boundaries are necessarily associated with parameter plane runs. Thus

rmhcode demo 107 102

deletes all files associated with the Hopf bifurcation locus with hcode 102 for pcode 107,
while

97

rmscode 112 all

deletes all files associated with all stability boundaries, for pcode 112. The commands
rmbcode and rmecode work in a similar way, but in this case a pcode value is never given
since bifurcation diagram and eigenvalue convergence calculations are not associated with
control parameter–wave speed planes. Thus

rmbcode demo 108

deletes all files associated with the bifurcation diagram with bcode 108, while

rmecode demo all

deletes all files associated with all eigenvalue convergence calculations.
To delete all files associated with a particular pcode, one can use the command

rmpcode, for example

rmpcode demo 103

or

rmpcode demo 100

(the second of these will delete all files associated with any runs of ptw, stability,
bifurcation diagram and eigenvalue convergence). The usage

rmpcode demo all

is also allowed; this will delete all output associated with the input subdirectory demo,
and confirmation is requested to prevent unwanted deletion of a large amount of output.

A related command is rmps, which is used to delete files in the postscript files

directory. For example, the command

rmps demo demoplot

will delete the file demoplot.eps in the demo subdirectory of postscript files, plus the
associated plotting record if there is one. (Plotting records are described in §3.3.7). The
usage

rmps demo all

is also allowed. It is possible that a file named all.eps has been created in the demo

subdirectory of postscript files. If so, this will be deleted, together with any associ-
ated plotting record. If there is no such file, then all of the files in this postscript files
subdirectory will be deleted, plus any associated plotting records.

98

3.1.12 Setting the Wave Search Method and Hopf Bifurcation Search Range
in Complicated Cases

As well as listing various equations, the file equations.input specifies the method used
by wavetrain to locate a periodic travelling wave for given control parameter and wave
speed values. In many cases (such as for the problem demo discussed in §2.1) there is ex-
actly one Hopf bifurcation in the travelling wave equations for any given value of the wave
speed. Then a “direct” method can be used, meaning thatwavetrain searches for a Hopf
bifurcation at the wave speed required for the periodic travelling wave, and then proceeds
“directly”, via a single numerical continuation, to the required wave solution. The control
parameter range used in the Hopf bifurcation search is specified in the two lines following
the word “direct” in equations.input. For demo a suitable search range has a starting
value of 2.001B, since the steady state undergoing the Hopf bifurcation only exists for
A ≥ 2B†. Here A is the name assigned to the control parameter in variables.input,
and B is one of the parameters specified in other parameters.input. The end value of
the search range is 3.8, which is the upper limit on A in parameter range.input; note
however that the Hopf bifurcation search range is not restricted to the range specified in
parameter range.input.

The real importance of the Hopf bifurcation search range is for more complex situa-
tions in which there is more than one Hopf bifurcation as the control parameter is varied
with a fixed wave speed. In the absence of an example problem that provides an adequate
illustration of the various possibilities, this discussion is illustrated using a sketch (Fig-
ure 3.11). Suppose that for a particular problem, periodic travelling waves exist within
the region of the control parameter–wave speed plane that is spotted in Figure 3.11a. For
simplicity, assume that there is exactly one periodic travelling wave solution throughout
this region, and that wavetrain is being run with iwave=1 (see §3.1.9 for information
on iwave). One might at first specify a direct wave search method with the Hopf bifur-
cation search range having a start value of 2.0 and an end value of 1.0. Running ptw or
spectrum would then cause wavetrain to stop at the first Hopf bifurcation it encoun-
tered as the control parameter decreased from 2.0 to 1.0, and to then continue travelling
wave solutions from that point. This would lead to the detection of periodic travelling
waves in the parameter region that is spotted in Figure 3.11b. Note that the order of
the Hopf bifurcation search end points in equations.input is important. If instead one
specified a search range with a start value of 1.0 and an end value of 2.0, the parameter
region in which periodic travelling waves were detected would be the spotted region in
Figure 3.11c.

Plotting the results from a study with either of these Hopf bifurcation search ranges
would immediately suggest that an investigation using the bifurcation diagram com-
mand would be helpful. Crucially, this command does not use the wave search method

†The actual condition for steady state existence is A ≥ 2B. However, there is a saddle-node bifurcation
at A = 2B, with two steady states for A > 2B, only one of which is of interest in the problem demo.
To avoid wavetrain following the wrong steady state branch when searching for a Hopf bifurcation,
the problem demo has been formulated following the advice in the comments in equations.input, with
the condition for steady state existence being set slightly away from the bifurcation point, specifically
A ≥ 2.001B. Correspondingly, the end point for the Hopf bifurcation search range is set to A = 2.001B
rather than A = 2B.

99

Figure 3.11: An illustration of the effects of changing the Hopf bifurcation search range,
which is set in equations.input. This figure is a sketch. (a) The spotted region is the
parameter region in which there are periodic travelling waves. For simplicity it is assumed
that there is exactly one periodic travelling wave solution throughout this region, and
that wavetrain is being run with iwave=1 (see §3.1.9). (b–d) The spotted region is
the parameter region in which periodic travelling waves are accessible to wavetrain for
three different Hopf bifurcation search ranges, using a “direct” wave search method in
all three cases: (b) 1.95–1.0; (c) 1.0–1.95; (d) 1.25–1.5 or 1.5–1.25. The orange curves
represent loci of Hopf bifurcations in the travelling wave equations, and the pink curves
indicate loci of homoclinic solutions, as in the key in Figure 2.4.

100

and Hopf bifurcation search range specified in equations.input. Rather, it scans the pa-
rameter range specified in parameter range.input and continues the branch of periodic
travelling wave solutions emanating from each Hopf bifurcation that is detected. Running
bifurcation diagram for a series of different values of the wave speed would reveal the
true structure of the parameter plane, which could be clarified further by calculating the
loci of Hopf bifurcation points and homoclinic solutions. This would show that there
are regions of the control parameter–wave speed plane in which periodic travelling waves
exist, but which are inaccessible to wavetrain with a direct search method and a Hopf
bifurcation search range with start and end values of 2.0 and 1.0. To calculate wave forms
and stability in these regions, one would use a different Hopf bifurcation search range.
For example, search range start and end values of 1.25 and 1.5 (in either order, and again
with the direct wave search method) would enable wavetrain to access periodic travel-
ling wave solutions in the part of the control parameter–wave speed plane that is spotted
in Figure 3.11d.

The term “direct” is used for the wave search methods discussed above because, once
the Hopf bifurcation point has been found, wavetrain locates the periodic travelling
wave in a single numerical continuation, simply varying the control parameter along the
periodic travelling wave solution branch until the required value is reached. However,
there are some situations in which this simple approach cannot be used, and an example
is illustrated in the sketch in Figure 3.12. Again periodic travelling waves exist within
the region of the control parameter–wave speed plane that is spotted. For values of the
wave speed less than 1, the periodic travelling waves can easily be located using a “direct”
search method, as discussed above. However for wave speeds greater than 1, there is no
Hopf bifurcation for any value of the control parameter, and thus this method cannot
be used. Wavetrain offers the “indirect” search method for this situation. Here the
Hopf bifurcation search occurs by varying the wave speed within a specified range, at a
specified value of the control parameter. For instance, suppose that one wished to study
a periodic travelling wave for control parameter 1.8 and wave speed 1.2, illustrated by the
large red dot in Figure 3.12. The user might specify a Hopf bifurcation search between
wave speeds 0.5 and 0.8, at control parameter value 1.65. Wavetrain would then find
the Hopf bifurcation point indicated by the large orange dot in Figure 3.12. It would
then perform two separate numerical continuations to locate the required wave. Firstly
the periodic travelling wave solution branch would be followed, varying the wave speed
with the control parameter fixed, until the required value is reached. Then the control
parameter would be varied, with fixed wave speed, until the required pair of values is
reached.

It is possible that there is not a Hopf bifurcation for any pair of control parameter
and wave speed values in the parameter plane being considered; then neither the direct
nor indirect wave search methods will work. To accommodate this situation, wavetrain
provides a third wave search method, termed the “file” method. In this case, the user
must supply a periodic travelling wave solution for one pair of control parameter and
wave speed values; typically this would come from numerical simulations of the partial
differential equations. The control parameter and wave speed values for this solution
are given in equations.input. The solution itself is specified in an additional input
file, with a name of the form ptwsoln*.input, which must be placed in the relevant

101

Figure 3.12: An illustration of an example requiring an “indirect” wave search method.
This figure is a sketch. The spotted region is the parameter region in which there are
periodic travelling waves. The orange curve represents a locus of Hopf bifurcations in
the travelling wave equations, as in the key in Figure 2.4. The red lines indicate the
wave search method, which starts from a Hopf bifurcation at the point indicated by the
large orange dot, and proceeds first with a constant control parameter value and then
with a constant wave speed, reaching the required values (indicated by the large red dot)
“indirectly”.

input subdirectory. The required format for such files is described in §2.2.2. Using this
solution as a starting point, wavetrain first follows the periodic travelling wave solution
branch with the control parameter fixed, varying the wave speed until the required value
is reached. Then the control parameter is varied, with fixed wave speed, until the required
pair of values is reached (Figure 3.13a). If this procedure fails, then wavetrain tries the
steps in the opposite order, first varying the control parameter with fixed wave speed, and
then varying the wave speed with a fixed value of the control parameter (Figure 3.13b).

Two points should be noted in connection with the “file” wave search method. Firstly,
if iwave> 1, it is always the control parameter that is varied to look for the second
and subsequent waves at the specified pair of control parameter and wave speed values,
irrespective of the order in which the control parameter and wave speed have been varied
to locate the first wave. Secondly, if the boundary of the parameter region giving periodic

102

Figure 3.13: An illustration of the “file” wave search method. This figure is a sketch. The
spotted region is the parameter region in which there are periodic travelling waves. The
pink curve represents a locus of homoclinic solutions of the travelling wave equations,
as in the key in Figure 2.4. The black dot indicates the control parameter and wave
speed values for which a periodic travelling wave solution has been provided by the user,
in a file with a name of the form ptwsoln*.input. The red dot indicates the control
parameter and wave speed values for which a periodic travelling wave is required. In (a),
Wavetrain first varies the wave speed until the required value is reached, with control
parameter fixed, and then varies the control parameter with fixed wave speed, to reach
the required pair of values (indicated by the red lines and arrows). However in (b) this
approach fails because the homoclinic locus is reached before the required value of the
wave speed (indicated by the dashed red lines and arrows). Wavetrain then attempts
the steps in the opposite order, first varying the control parameter with fixed wave speed,
and then varying the wave speed with fixed control parameter; this second approach is
successful (indicated by the solid red lines and arrows).

travelling waves is complicated then different parts of that region may be accessed by
different starting points. This is illustrated by the sketch in Figure 3.14. The spotted
region in Figure 3.14a is that in which periodic travelling waves exist; as for Figure 3.11,
it is assumed that that there is exactly one periodic travelling wave solution throughout
this region, and that wavetrain is being run with iwave=1 (see §3.1.9 for information
on iwave). In figures 3.14b and 3.14c, the spotted regions are those in which the periodic
travelling waves can be accessed, for a “file” wave search method with starting points
indicated by the large black dots. Note in particular that in Figure 3.14c there is a
small region in the lower left hand part of the parameter plane in which waves exist, but
which cannot be accessed from the given starting point. As a useful rule of thumb, if
the commands ptw loop or stability loop are run using the “file” wave search method,
and if the detected region of periodic travelling waves has a boundary parallel to one of
the axes, then this probably results from a limitation imposed by the selected starting

103

Figure 3.14: An illustration of the effects of different starting points for the “file” wave
search method. This figure is a sketch. (a) The spotted region is the parameter region
in which there are periodic travelling waves. For simplicity it is assumed that there is
exactly one periodic travelling wave solution throughout this region, and that wavetrain
is being run with iwave=1 (see §3.1.9). (b, c) The spotted regions are those in which
periodic travelling waves are accessible to wavetrain for two different starting points,
using the “file” wave search method. The orange curves represent loci of Hopf bifurcations
in the travelling wave equations, and the pink curves indicate loci of homoclinic solutions,
as in the key in Figure 2.4.

point, rather than being the actual boundary of the region of periodic travelling waves.
An important warning must be given concerning the value of the initial step size

ds (specified in constants.input) when using the indirect or file methods. In these
cases, calculation of the required periodic travelling wave usually involves two separate
continuation stages, one varying the wave speed with a constant control parameter value,
and the other varying the control parameter with a constant wave speed value. However, if
the control parameter wave speed value for the required wave is the same as that specified
in equations.input for the Hopf bifurcation search (indirect method) or for the solution
in the file ptwsoln*.input (file method), then wavetrain omits the continuation stage
in which the control parameter /wave speed is varied. In fact, it is omitted even if the two
control parameter /wave speed values differ, but only slightly; the threshold difference for
doing the continuation is determined by the constants controlatol and controlrtol /
speedatol and speedrtol; these are set in defaults.input. Note that if the difference
between the two control parameter /wave speed values is small but exceeds the threshold,
then wavetrain may fail to find the required periodic travelling wave because the first
continuation step is too large, causing the numerical continuation to “jump over” the

104

required point. The remedy for this is to reduce the initial continuation step size, ds,
and also the minimum step size dsmin if this is necessary in order that ds≥dsmin. The
constants ds and dsmin are set in constants.input, and the relevant values are those
in the second line of step size settings. It is recommended that relatively small values of
these two constants are used in conjunction with the indirect or file wave search methods.

A single wave search method can be used for all control parameter and wave speed
values, but the method and/or the Hopf bifurcation search range can also be parameter-
dependent. Thus in order to cover the whole of the part of the control parameter – wave
speed plane illustrated in Figure 3.12, the relevant part of equations.input could be:

Wave search method and Hopf bifurcation search range
c<1 & P>1.5

direct
1.5
1.8

c<1 & P<1.5
direct
1.5
1.2

c>=1
indirect : P=1.65
0.5
0.8

where P and c are the names for the control parameter and wave speed respectively, which
would be set in variables.input. In this example all of the start and end values, and all
of the inequality limits, are constant. However they can depend on the control parameter
and wave speed, and also on the parameters defined in other parameters.input. Note
that a mixed search method such as this can use the “file” method with different solution
files (all with names of the form ptwsoln*.input) in different parameter regions.

An example illustrating the different search methods is provided in the problem demo2.
This is identical to demo except for two changes. Firstly, the single wave search method
specified in equations.input for demo has been replaced by a more complicated mixed
method, in which direct, indirect and file methods are used in different parts of the control
parameter–wave speed plane. Secondly, the values of ds and dsmin for the continuation
of periodic travelling waves have been reduced, as recommended on page 105 for the
indirect and file methods. For the “file” case, a suitable wave solution has been provided
in the demo2 subdirectory of input files. This solution was actually constructed from a
wavetrain output file, although in a real problem, output from a numerical simulation
of the partial differential equations would normally be used. Entering the command

ptw loop demo2

performs a loop across the parameter plane for this problem. One can plot the results in
the usual way, by typing

plot demo2 101

(the number 101 is the pcode value) and then

@pplane

105

at the plotter prompt. If the default plot type is selected by entering return (enter)
when prompted, Figure 2.3 is reproduced. The plotter can then be exited in the usual
way (@exit or @quit).

Finally, it is important to comment on the use of the parameter iwave with the
different search methods. The setting iwave=0 can only be used in the direct case.
Settings of iwave> 1 are unaffected by the choice of direct, indirect or file search method,
with one exception. If a periodic travelling wave is required at a value of the control
parameter that is the same as that specified for the Hopf bifurcation search in the indirect
case, or for the control parameter value corresponding to the solution in ptwsoln*.input

in the file case, then the wave is calculated in a single continuation step, varying the
wave speed: the continuation that would usually be done in the control parameter is not
required. Therefore the calculation does not provide wavetrain with a direction of travel
along the periodic travelling wave solution branch for fixed wave speed. Hence settings of
iwave> 1 are not possible, and will cause wavetrain to terminate the run with an error
message.

3.1.13 Details of the Matrix Eigenvalue Calculation

The first step in determining periodic travelling wave stability is to calculate the eigen-
values corresponding to periodic eigenfunctions, which form starting points for numerical
continuation of the eigenvalue spectrum. Wavetrain does this by replacing the deriva-
tives (with respect to the travelling wave variable) in the eigenvalue equation by finite
difference approximations, with periodic boundary conditions on a domain of length equal
to one period of the wave. The order of these approximations is determined by the constant
order, set in constants.input (see §2.2.1). The resulting matrix eigenvalue problem is
solved using routines from version 3.1.1 of lapack (Anderson et al., 1999), and the asso-
ciated routines from blas (Lawson et al., 1979; Dongarra et al., 1988a,b; Dongarra et al.,
1990a,b). Further details of these packages are available from www.netlib.org/lapack

and www.netlib.org/blas respectively. If the equations being studied are of the form
(1.1a), meaning that each of equation contains a time derivative, then the eigenvalue
problem if of standard type, and is solved using the lapack routine dgeevx. However if
the equations are of the form (1.1b,c), meaning that there is no time derivative in one or
more of the equations, then the eigenvalue problem is of generalised type, and is solved
using the lapack routine dggevx. In fact, in this latter case it is possible to convert
the eigenvalue problem into one of standard type (Sherratt, 2012), and future versions
of wavetrain may adopt this approach. However the coding changes required to use
dggevx rather than dgeevx are very slight, and on these grounds wavetrain currently
adopts this less efficient approach.

Lapack makes extensive use of the Basic Linear Algebra Subprograms (blas). To
maximise computational speed when using lapack, one should use a blas library that
is optimised for the particular computer being used. However, in the absence of such a li-
brary, there is a Fortran77 reference implementation of the blas, and this is supplied with
wavetrain. Users of wavetrain are recommended to use this reference implementation
unless they already have an optimised blas library, since lapack computations usually

106

constitute only a small part of the run times for wavetrain. However if users are inter-
ested in installing an optimised blas library, they should consult www.netlib.org/blas
or the Wikipedia entry on blas. Once a user has their own blas library, it is incorporated
into wavetrain via the blas entry in defaults.input (see §3.2 for details).

Provision of a specific blas library by the user raises one small technical difficulty.
There is a Fortran77 function LSAME that is used by both lapack and blas. The user’s
blas library may or may not include this function. If it does, then wavetrain’s version
of LSAME must be excluded from the relevant Fortran77 compilations, and this is done via
the lsame entry in defaults.input (see §3.2 for details).

Another issue of a similar type concerns the lapack function DLAMCH. This returns
the value of “machine epsilon”, which gives a bound on the roundoff in individual floating-
point operations. A version of this function is distributed with lapack (version 3.1.1),
and this is supplied with wavetrain. This function will work on the vast majority of
computers, but not all. In the latter case, the user will have to provide their own version
of DLAMCH; see the lapack documentation for information about this. A user-supplied
version of DLAMCH can be incorporated into wavetrain via provision of the file name
(including full path) in the dlamch entry in defaults.input (see §3.2 for details).

The computed eigenvalues will differ from the true eigenvalues corresponding to pe-
riodic eigenfunctions for two separate reasons: error in the calculation of the matrix
eigenvalues, and differences between the discretised and actual eigenfunction equations.
The first of these is monitored by wavetrain, which determines estimated error bounds
for each of the calculated eigenvalues. It is important to clarify that these bounds refer to
errors in the calculation of the matrix eigenvalues, rather than the errors of the calculated
values as solutions of the actual eigenfunction equation. The estimated error bounds de-
pend on whether the equations being studied are of the form (1.1a) or (1.1b,c). In the
former case, the bound is simply the quantity EERRBD that is calculated by the relevant
code fragment in the lapack user’s guide (Anderson et al., 1999), and is an approximate
bound on the absolute value of the difference between the actual and computed matrix
eigenvalues. However the latter case, in which a generalised eigenvalue problem is solved,
is somewhat more complicated. The corresponding code fragment in the lapack user
guide provides a bound on the “chordal distance” between the actual eigenvalue (λ, say)
and the computed eigenvalue (λ̂, say),

χ
(
λ, λ̂

)
=

∣∣∣λ− λ̂
∣∣∣

(
1 + |λ|2

)1/2
(
1 +

∣∣∣λ̂
∣∣∣
2
)1/2

.

For the purposes of wavetrain, it is most useful to calculate instead a quantity that is an
approximate bound on the error in the eigenvalue itself, and thus wavetrain calculates

(
1 +

∣∣∣λ̂
∣∣∣
2
)
χ
(
λ, λ̂

)
.

This will be a crude approximation to an error bound on the eigenvalue provided that the
relative error is not too large, but users should be aware of its limitations. Of course, the

107

user can back-calculate the chordal distance bound if desired, using wavetrain’s crude
estimate and the real and imaginary parts of the eigenvalue.

The error bounds for the matrix eigenvalues are written to the screen as part of
the output from the convergence table command, which is a vehicle for displaying the
results of calculations done by the eigenvalue convergence command (see §2.1.2). They
are also written to the info.txt file for calculations of wave stability (see §2.5 and §4.4.2),
and are listed in the file evalues.data in corresponding rcode output subdirectory (see
§4.4.8).

One further important point concerning errors in the matrix eigenvalues is that the
estimated error bounds are provided simply for information. Future versions of wave-
train may provide alternative methods for calculating the matrix eigenvalues that could
be used if the errors are too large, but this facility is not currently available.

The differences between the discretised and actual eigenfunction equations can usu-
ally be reduced simply by increasing the number of points in the discretisation, which
is achieved by increasing nmesh2, which is set in the file constants.input. The com-
mand eigenvalue convergence (see §2.1.2) facilitates the selection of a suitable value of
nmesh2. Typically, as nmesh2 increases the matrix eigenvalues converge to the functional
eigenvalues. This is guaranteed by analytical convergence results in many cases (Atkin-
son, 1964; Kreiss, 1972; de Boor & Swartz, 1980; Chatelin, 1981), but for some equations
more complicated behaviour can occur. An example of this can be obtained by editing
the file constants.input for the problem demo as follows:

• change nmesh1 to 160

• change nevalues to 20 (leaving iposim=1).

Having made these changes, one can enter the command

eigenvalue convergence demo 2.2 0.7 50 100 150 200 250 300 350 400 450 500

(run time: about 2 hours on a typical desktop computer). Investigation of the results using
the convergence table command shows that the first four matrix eigenvalues converge
in a straightforward manner to the corresponding functional eigenvalues. However for the
fifth functional eigenvalue the situation is more complicated. There is a sequence of matrix
eigenvalues that converges to this functional eigenvalue, as illustrated in Figure 3.15.
However the appropriate matrix eigenvalue is only number 5 for relatively small nmesh2
values. As nmesh2 is increased above 100, additional matrix eigenvalues appear with real
parts in between those of the fourth and fifth functional eigenvalues, and with very large
imaginary parts (∼ 104). These eigenvalues appear to be an artifact of the discretisation.
In a case such as this it is convenient to exclude matrix eigenvalues with very large
imaginary parts from those used as starting points for numerical continuation of the
spectrum. This can be achieved using the constant evibound, set in defaults.input

(see §3.2).
Even when the matrix eigenvalues converge in a simple manner to the functional eigen-

values, it is typical that the numerical error bounds on their calculated values increases.
This is because the condition number of the matrix increases as one of its eigenvalues
approaches zero, which is always a functional eigenvalue.

108

Figure 3.15: An example of a complicated pattern of convergence to a functional eigen-
value of the eigenvalues of the matrix given by discretising the eigenfunction equation in
the travelling wave coordinate. This figure was not itself generated by wavetrain, but
the data that is plotted was generated by the eigenvalue convergence command for
an amended version of the problem demo, as described in the main text. After the run
of this command, the command convergence table was run for each of the eigenvalues
numbered 5-18 (individually). In each case the table was examined for eigenvalues close
to −2.3603 + i ∗ 0.9935 (real and imaginary parts both within 0.1 would be a suitable
criterion). Any such eigenvalues are plotted against the corresponding nmesh2 value in
the upper panel, and the corresponding eigenvalue number(s) are plotted against nmesh2
in the lower panel. The results show that as the discretisation becomes finer, new matrix
eigenvalues with real parts between those of the fourth and fifth functional eigenvalues
appear; these eigenvalues all have very large imaginary parts (∼ 104) and appear to be
an artifact of the discretisation.

109

An appropriate choice of nmesh2 will be a compromise between these various trends,
with the smallest viable choice being optimal to reduce run times. Moreover in difficult
cases, setting the constant order to a value greater than one may enable a smaller value
of nmesh2 to be used; examples of this are given in §2.3 and at the end of §3.1.14.

Finally it is important to note that differences between the matrix and functional
eigenvalues, whatever their cause, do not translate at all into errors in the calculated
eigenvalue spectrum. All that is required is that the calculated matrix eigenvalues are
sufficiently close to the functional eigenvalues that they provide a starting point from
which numerical continuation can proceed. In reality the numerical continuation is typi-
cally very tolerant of poor starting approximations.

3.1.14 An Outline of How the stability boundary Command Works

Although its syntax is not particularly complicated, the internal workings of the com-
mand stability boundary are much more complex than those of the other wavetrain
commands. Of course the user does not need to be concerned with this, but it is helpful
to understand the basic way in which the command operates, in order to make sense
of the messages that are written to the screen and/or the info.txt file during a run.
The description in this section will be deliberately brief: full details of the computational
algorithms are given in Rademacher et al (2007) and Sherratt (2013b).

A brief summary of the mathematical background will be helpful to many users. Stabil-
ity changes of periodic travelling waves can be of either Eckhaus or Hopf type (Rademacher
& Scheel, 2007). Recall that the eigenvalue spectrum of a periodic travelling wave always
passes through the origin, corresponding to neutral stability to translations. Also, the
spectrum will always be symmetric about the real axis. A change of stability of Eckhaus
type occurs when the curvature of the spectrum at the origin changes sign (illustrated
schematically in Figure 3.16a). This was the type of stability change that occurred in
the problem demo, discussed in §2.1. The alternative possibility is that the spectrum
passes through the imaginary axis away from the origin (illustrated schematically in Fig-
ure 3.16b). This type of stability change is referred to as being of Hopf type.

Recall that the stability boundary command has six compulsory arguments, which
are the input subdirectory name and the pcode value, followed by two pairs of control
parameter and wave speed values; these may be followed by optional arguments (see
§3.1.2). The command operates via the following stages.

Stage 1: Calculation of the periodic travelling wave for the control parameter and wave
speed given in arguments 3 and 4. The value of iwave is used to determine which
wave solution is being considered, in the case of multiple solutions (see §3.1.9).

Stage 2: Calculation of the eigenfunction corresponding to the zero eigenvalue, again for
control parameter and wave speed given in arguments 3 and 4. Wavetrain does
this by calculating the eigenvalues corresponding to periodic eigenfunctions via dis-
cretisation (see §3.1.13). The matrix eigenvalue with smallest modulus is interpreted
as an approximation to the zero functional eigenvalue. Using this approximation
as a starting point, wavetrain performs a numerical continuation in a dummy
parameter, which generates a numerical solution of the eigenfunction equation.

110

Figure 3.16: An illustration of the two different ways in which the stability of a periodic
travelling wave can change. (a) and (b) show typical forms of the eigenvalue spectra on
the stable (left) and unstable (right) side of a change in stability of (a) Eckhaus type and
(b) Hopf type. The dashed lines denote the zero axes of the real and imaginary parts of
the eigenvalue.

Stage 3: Calculation of the first and second derivatives of the eigenvalue and eigenfunction
with respect to γ for the zero eigenvalue, again for control parameter and wave speed
given in arguments 3 and 4. Here, as previously, γ is the phase difference in the
eigenfunction across one period of the periodic travelling wave.

Stage 4: Numerical continuation of the periodic travelling wave, the eigenfunction for the
zero eigenvalue, and the first and second derivatives of this eigenvalue and eigenfunc-
tion with respect to γ, as the control parameter/wave speed is varied between the
value in arguments 3/4 and the value in arguments 5/6, with the wave speed/control
parameter fixed at the common value of arguments 4 and 6 / 3 and 5. (Recall that
either arguments 3 and 5 or arguments 4 and 6 must be the same.) During this
continuation, wavetrain monitors the value of the real part of the second deriva-
tive of the eigenvalue with respect to γ, looking for a zero, which would correspond
to a change of stability of Eckhaus type. If such a stability change is detected, the

111

command progresses to Stage 5A; if not, the next step is Stage 5B.

Stage 5A: If a zero of the real part of the second derivative of the zero eigenvalue with
respect to γ is detected during Stage 4, then this zero point is continued numeri-
cally in the control parameter – wave speed plane, thereby tracing out the stability
boundary. Since the initial zero point is in the interior of the region of the con-
trol parameter – wave speed plane under consideration, this continuation must be
performed twice, with opposite initial directions. The command then ends.

Stage 5B: If a zero of the second derivative of the zero eigenvalue with respect to γ is not
detected during Stage 4, wavetrain concludes that the change of stability is of Hopf
rather than Eckhaus type. Wavetrain then calculates the eigenvalue spectrum of
the periodic travelling wave with control parameter and wave speed values given in
arguments 3 and 4. Note that the eigenvalues with γ = 0, which form the starting
point of this calculation, have been calculated previously in Stage 2.

Stage 6: Provided that the control parameter and wave speed values are sufficiently close
to a stability change of Hopf type, the eigenvalue spectrum will contain at least one
point with strictly positive imaginary part at which there is a fold, meaning that
the slope of the spectrum is infinite (see Figure 3.16b). Wavetrain estimates the
approximate location of the fold with positive imaginary part and largest real part
via interpolation along the calculated spectrum. It then refines this estimate via
numerical continuation of the equations for the periodic travelling wave, the eigen-
function, and the first derivative of the eigenvalue and eigenfunction with respect
to γ. This relatively time-consuming continuation is performed over a small region
of the spectrum containing the estimated fold location, and the size of this small
region is determined by the constant gatol, set in defaults.input.

Stage 7: The fold located in Stage 6 is tracked numerically as the control parameter/wave
speed is varied between the values in arguments 3/4 and 5/6, with the wave speed/
control parameter fixed at the common value of arguments 4 and 6 / 3 and 5. (Recall
that either arguments 3 and 5 or arguments 4 and 6 must be the same.) During
this continuation, wavetrain monitors the real part of the eigenvalue, looking for a
point at which it is zero; this corresponds to a stability change of Hopf type, and will
occur provided the initial control parameter and wave speed values are sufficiently
close to the stability change.

Stage 8: The zero of the real part of the eigenvalue is continued numerically in the control
parameter – wave speed plane, with its derivative with respect to γ also fixed at zero.
This traces out the stability boundary. Since the initial zero point is in the interior
of the region of the control parameter – wave speed plane under consideration, this
continuation must be performed twice, with opposite initial directions.

At the end of Stage 8 the command ends. However, if a problem occurs during any of
Stages 5B–8, wavetrain calculates the periodic travelling wave and eigenvalue spectrum
for the control parameter and wave speed values given in arguments 5 and 6, and then
repeats Stages 6–8. This repetition is useful in case the algorithm works for the point

112

given by arguments 5 and 6, but fails for the point given by arguments 3 and 4 because
it is too far from the stability boundary. For example, there may not be a fold in the
spectrum, other than zero, if one is sufficiently far from the stability boundary on the
stable side.

A simple example of a change in stability of Hopf type is discussed by Bordiougov &
Engel (2006); their equations are

∂u/∂t = ∂2u/∂x2 + (1/ǫ)
[
u− u2 − (fv + φ) (u− q)/(u+ q)

]

∂v/∂t = u− v .

The demo3 input subdirectory contains files that enable these equations to be studied using
wavetrain. The parameter φ is used as control parameter, and its numerical value is
quite small (about 10−4) compared to the wave speed and the solution components. A
size difference of this type is not recommended (see page 40), and it would be sensible to

reformulate the equations using the parameter φ̂ = 104φ. However, for the runs performed
in this demonstration the size difference does not cause problems, and I deliberately do
not rescale φ in order to illustrate the input of parameter values in scientific notation.

One important difference between demo3 and the previous problems demo, demo1 and
demo2 is that there is no algebraic formula for the homogeneous steady state from which
periodic travelling waves arise. Therefore the input files must be augmented by a file
steadystate.input, which lists the steady state values of the travelling wave variables
at a series of values of the control parameter. This file must be generated by some external
software, and for demo3 this was done by the Fortran77 program create stst file.f;
for the user’s information, this program is provided in the input files/demo3 directory,
but there is no need to run it since the steadystate.input file is also provided. In the
part of the equations.input file corresponding to the steady states, one simply puts the
word file (or File or FILE), and wavetrain will then use steadystate.input. The
command

stability loop demo3

(run time: about six hours on a typical desktop computer) scans a region of the control
parameter – wave speed plane. During the run, a warning about the value of controlatol
appears for each pair of control parameter and wave speed values considered. This is
because of the small numerical values of the control parameter in demo3. These warnings
could be avoided either by rescaling φ as discussed above, or by decreasing controlatol

(set in defaults.input). However the current settings do not cause any problems in
practice and for demonstration purposes it is more convenient to retain them. Since this
is the first run for demo3, it will be allocated the pcode value 101, and one can plot the
results by typing

plot demo3 101

followed by the plotter command @pplane, selecting the default (rcode) option for the
plot style. The result is illustrated in Figure 3.17a and reveals both stable and unstable
periodic travelling waves. For example, the periodic travelling wave for φ = 8.21× 10−4,
c = 9.75 is stable, while that for φ = 8.22 × 10−4, c = 9.75 is unstable, and these points

113

(a)

(b)

Figure 3.17: Results on the stability of periodic travelling wave solutions for the problem
demo3. (a) The results of a loop over a grid of points in the control parameter – wave
speed plane. (b) The same results with the boundary between stable and unstable waves
superimposed. The colour of this boundary shows that the stability change is of Hopf
type (see Figure 2.4). The run and plot commands used to generate these figures are
given in the main text, and are also listed in the Appendix. The quantities eps, f and q
referred to in the second line of the title are parameters which appear in the equations
but which are not being used as the control parameter; their values are specified in the
file other parameters.input (see §2.2.3).

114

provide good starting points for tracing the stability boundary. To do this, one exits the
plotter by typing @exit or @quit. One then runs the command

stability boundary demo3 101 8.21E-4 9.75 8.22E-4 9.75

which moves progressively through each of the 8 stages described above (run time: about
90 minutes on a typical desktop computer). Various messages appear on the screen during
the run to update the user on the progress of the calculation. Included amongst these
is a warning about a small number of continuation steps, which results from the point
φ = 8.21× 10−4, c = 9.75 being very close to the stability boundary. The warning about
the value of controlatol also appears. Both of these warnings can be ignored.

To plot the result of this calculation, one re-enters the plotter by typing

plot demo3 101

and then regenerates the results of the stability loop run via the plotter command
@pplane, in this case selecting the “symbol” plot style for variety. The stability boundary
can then be superimposed on this plot by typing

@stability boundary 101

giving the result illustrated in Figure 3.17b. The colour of the stability boundary shows
that it is of Hopf rather than Eckhaus type (see Figure 2.4). To see the change in
the eigenvalue spectrum as the boundary is crossed, one can type @spectrum 1003 and
then @spectrum 1002, giving the eigenvalue spectra illustrated in Figures 3.18a,b. This
demonstrates clearly that the change in stability arises from the spectrum crossing the
imaginary axis away from the origin. The plotter can be exited by typing @exit or @quit.
Another example of a stability boundary of Hopf type is given in Sherratt (2013a): the
equations considered there are a model for pattern formation in mussel beds.

One important warning about the stability boundary must be given, concerning
step size in the case of a change in stability of Hopf type. Any numerical continuation
calculation requires that the step size be sufficiently small in order for the calculation
to be successful. There is no a priori means of knowing how small will be “sufficiently
small” in a particular case. Numerical continuation of a stability boundary of Hopf type
is defined by the conditions that the real part of the eigenvalue, and the real part of its
derivative with respect to γ, are both zero. As well as holding (away from the origin) at a
change in stability of Hopf type, these conditions both hold at the origin for the spectrum
of any periodic travelling wave. Therefore if too large a step size is used, the continuation
step can erroneously locate the origin, or a point close to it. Once the continuation
has veered of in this way, the boundary-tracking algorithm will trace out a more or less
random path in the parameter plane. In view of this it is important to check that the
stability boundary remains on track throughout the calculation. This can be done either
via a run of stability loop, or by using stability to calculate the spectrum at a series
of points along the stability boundary. In the latter case, appropriate pairs of control
parameter and wave speed values can be obtained either via the optional arguments
to the stability boundary command (see §3.1.2) or by inspection of the output file
stabilityboundary.boundarydata in the relevant scode output directory (see §4.4.9).

115

(a)

(b)

Figure 3.18: Eigenvalue spectra of periodic travelling wave solutions for the problem
demo3. The control parameter values in (a) and (b) are such that the wave is stable and
unstable, respectively. These figures illustrate that the onset of instability is associated
with the spectrum crossing the imaginary axis away from the origin, i.e. it is of Hopf
type. The dots indicate the (rather poor) approximations to eigenvalues corresponding
to periodic eigenfunctions, calculated by discretising the eigenfunction equation, and the
colours along the curves indicate the phase difference in the eigenfunction over one period
of the periodic travelling wave. The run and plot commands used to generate these figures
are given in the main text, and are also listed in the Appendix. The quantities eps, f and
q referred to in the second line of the title are parameters which appear in the equations
but which are not being used as the control parameter; their values are specified in the
file other parameters.input (see §2.2.3).

116

If the calculation has veered off, the remedy is to reduce the step sizes ds, dsmin and
dsmax (set on line 9 of constants.input) and rerun the stability boundary command.

To conclude this section, I comment on a difference between demo3 and demo, demo1
and the previous problems demo2, namely that the constant order (set in constants.input)
is set to 2 rather than 1. This constant specifies the order of the finite difference ap-
proximation used for the highest derivative when discretising the eigenfunction equation.
Thus setting order = 1 causes wavetrain to use a three-point approximation for the
second derivative, while order = 2 gives a five-point approximation. In simple cases
one would certainly use order = 1, but the higher level of accuracy resulting from
order > 1 can be useful when convergence of the eigenvalues is slow as the number
of mesh points (determined by nmesh2) is increased. The problem demo3 provides an
example of this. Figure 3.19 shows output from the convergence table command after
running eigenvalue convergence with a range of nmesh2 values, for typical values of the
control parameter and wave speed. The upper two convergence tables show the results
obtained with order= 1 for eigenvalues 9 and 2, while the lower two tables show the
corresponding results for order= 2. It is typical that as nmesh2 is increased, the error
bounds on the eigenvalues increases, and there is a corresponding increase when order is
increased for fixed nmesh2. Both of these trends are clear in Figure 3.19, for both of the
eigenvalues. These trends occur because for the matrix arising from discretising the eigen-
function equation, the condition number increases as the discretisation becomes a better
approximation to the eigenfunction equation, which has a zero eigenvalue. Considering
first eigenvalue 9 for order= 1, the results in Figure 3.19 strongly suggest convergence
to an eigenvalue of about −0.067 + 8.8i as nmesh2 is increased. For order= 2, the eigen-
value approaches this value more rapidly as nmesh2 is increased, but then moves away as
it becomes dominated by numerical error. For eigenvalue 2, the pattern is the same, but
the error bounds are much more significant relative to the real part of the eigenvalue.

When choosing values for nmesh2 and order, it must be remembered that any inac-
curacies in the eigenvalue approximations do not lead to inaccuracies in the computed
spectrum – all that is required is that the approximations are sufficiently good that they
converge to the points with γ = 0 on the computed spectrum. In the constants.input

file for demo3, the settings nmesh2=400 and order = 2 are used as a compromise between
accuracy and run time, and all of the 12 eigenvalues considered do converge to the points
with γ = 0 on the computed spectrum, for all of the parameter sets considered. Here the
number 12 is the value of nevalues, set in constants.input. Note that for publication
or presentation purposes it would clearly be best to omit the dots showing the eigenval-
ues corresponding to periodic eigenfunctions in Figure 3.18, and this can be achieved by
changing the plotter setting showperiodiceigenvalues to no in plot defaults.input

(see §3.4.1).

3.1.15 Multiple Simultaneous Runs of WAVETRAIN

The wavetrain commands create and delete a number of temporary files during exe-
cution. Consequently it is not possible to run more than one command simultaneously,
since these files might get deleted or overwritten in an inappropriate way. Such simulta-

117

(a) order=1

nmesh Re of evalue 9 Im of evalue 9 Error bound 9

100 -0.42201304E-01 0.24051920E+01 0.55334430E-04

200 -0.71010858E-01 0.86053281E+01 0.34546716E-05

400 -0.65037266E-01 0.87937590E+01 0.11489065E-04

800 -0.66672646E-01 0.88431720E+01 0.39065761E-04

1200 -0.67058826E-01 0.88524301E+01 0.11296455E-03

nmesh Re of evalue 2 Im of evalue 2 Error bound 2

100 0.10474546E+00 0.49714409E+01 0.44593174E-04

200 0.24245619E-01 0.59628161E+01 0.12892151E-04

400 -0.81155430E-02 0.60342199E+01 0.83242802E-04

800 -0.12355648E-01 0.88670188E+00 0.18454233E-01

1200 -0.11838610E-01 0.88681645E+00 0.41529717E-01

(b) order=2

nmesh Re of evalue 9 Im of evalue 9 Error bound 9

100 -0.85883103E-01 0.87211437E+01 0.22435235E-01

200 -0.68847449E-01 0.88493459E+01 0.25447809E-02

400 -0.67493922E-01 0.88591701E+01 0.22255001E-02

800 -0.67363382E-01 0.88598102E+01 0.16993811E-01

1200 -0.73503679E-01 0.17237650E+01 0.20880794E+02

nmesh Re of evalue 2 Im of evalue 2 Error bound 2

100 -0.41847151E-02 0.00000000E+00 0.12590945E+00

200 -0.12490974E-01 0.88671728E+00 0.59945934E+00

400 -0.15447779E-01 0.88308056E+00 0.25714288E+01

800 -0.11372513E-01 0.88860381E+00 0.10258903E+02

1200 -0.22987593E-01 0.60612471E+01 0.10648373E+01

Figure 3.19: The change in the eigenvalues of the discretised eigenfunction equations as the
constant nmesh2 (defined in constants.input) is varied. In (a) the parameter order (also
defined in constants.input) has been changed to 1; in (b) it has been reset to 2. The run
command for these tables is eigenvalue convergence demo3 8.21E-4 9.75 100 200

400 800 1200 (the same for both (a) and (b); the only difference is the value of order).
These commands are very time-consuming because of the large values of nmesh2: run times
are about 15 hours for (a) and 20 hours for (b) on a typical desktop computer. Assuming
that these are the first two runs of the eigenvalue convergence command for demo3, they
will be allocated ecode values of 101 and 102. The tables shown can then be generated via
the commands convergence table demo3 101 9 and convergence table demo3 101 2

for (a), and convergence table demo3 102 9 and convergence table demo3 102 2 for
(b).

118

neous runs are prevented by the creation of the file lockfile at the start of a command,
which is deleted when the command finishes. Specifically, the following wavetrain com-
mands are protected via the creation of lockfile: add points list, add points loop,
bifurcation diagram, cleanup, eigenvalue convergence, hopf locus, new pcode,
period contour, ptw, ptw loop, stability, stability boundary, stability loop.
Any other command can be used while one of these protected commands is being run.
If a user wishes to run two of the protected wavetrain commands in parallel, this is
possible by installing two copies of wavetrain in different parent directories. The two
copies will be entirely decoupled, and plotting will then also have to be done separately
in the two main directories.

In the same way, two simultaneous runs of the plot command are not possible because
shell scripts are run in preparation for plotting that create various temporary files. Such
simultaneous runs are prevented by the creation of the file plot lockfile when the plot
command is run; this file is deleted by the @quit or @exit commands.

However wavetrain plotting can be done at the same time as new runs: there is no
conflict regarding temporary files. Note that although the wavetrain plotter does of
course use the plot defaults and .style input files, it does not require any of the run
input files, which can therefore be changed as desired between runs. Moreover, note that
the output subdirectory for a wavetrain run contains a copy of all of the run input files
as they were when the command was run, providing a full record of the run (see §4.4 for
details).

3.2 Details of defaults.input

This file is located in the main input files directory, and contains the values of compu-
tational constants that the user will only rarely want to change. This file complements
the constants.input files in subdirectories of input files, which contain the constants
that are expected to vary between problems. Apart from comment lines, the version of
the file provided at installation is as follows.
0.00001 0.001 # controlatol controlrtol
0.00001 0.001 # speedatol speedrtol
0.1 0.05 # periodatol periodrtol
9999 9999 500 9999 9999 10 # nmx: hb, ptw, bd, spectrum, sb, dummy
0.0 100.0 # a0 a1
1.0E-6 1.0E-6 1.0E-4 # epsl epsu epss for Hopf bifn & ptw continuation
1.0E-5 1.0E-5 1.0E-3 # epsl epsu epss for spectrum & stability bdy
0.0001 -1 # evzero evibound
0.1 # gextra: overlap between plotted segments of the spectrum
1 # help display (1/2=scroll/list)
1.0E-8 # tolss: rel error tol on ptw variables for num soln of st st
200 300 # nwarn1 nwarn2: thresholds for warnings about number of steps
0.5 # grange: phase diff interval over which to search for fold
0.001 # gatol: abs tol for phase diff, used only for Hopf stab bdy
f77 # fortran77 compiler, can include option flags

blas: blank, or name of user version (incl full path)
y # lsame: y/n = use/do not use the wavetrain version

dlamch: blank, or name of user version (incl full path)

119

The meaning of the various constants is as follows.

controlatol, controlrtol

After the continuation of the periodic travelling wave solutions finishes, the tol-
erances controlatol and controlrtol are used to assess whether the required
value of the control parameter has been reached. The criterion is that the abso-
lute value of (control parameter soln−control parameter target) be less than
abs(controlatol)+abs(controlrtol∗control parameter target). These toler-
ances are needed because in auto a successful solution output at the specified
value of the control parameter will not (necessarily) be exactly at the target value:
auto has its own tolerance, which is determined by epss. However it is not feasi-
ble for wavetrain to use the same tolerance criterion as auto because the auto

criterion is based on continuation arc length. If the target value of the control pa-
rameter is assessed as not having been reached when in reality auto has reached it
successfully, then either controlatol and/or controlrtol should be made smaller,
or epss (for ptw continuation) should be made larger.

speedatol, speedrtol

The tolerances speedatol and speedrtol are analogous to controlatol and cont-

rolrtol, but for the wave speed. When calculating Hopf bifurcation loci, fold
loci and period contours, continuation is sometimes done using the wave speed as
the main continuation parameter. In such cases, the tolerances speedatol and
speedrtol are used to assess whether the end points of the continuation range
have been reached, via the criterion that abs(speed−speed end) must be less than
the critical value abs(speedatol)+abs(speedrtol∗speed end) in order for the end
value speed end to be assessed as having been reached. These tolerances are needed
because in auto a successful solution output at the specified value of the wave speed
will not (necessarily) be exactly at the target value: auto has its own tolerance,
which is determined by epss. However it is not feasible for wavetrain to use the
same tolerance criterion as auto because the auto criterion is based on continua-
tion arc length. If the target value of the wave speed is assessed as not having been
reached when in reality auto has reached it successfully, then either speedatol

and/or speedrtol should be made smaller, or epss (for ptw continuation) should
be made larger.

periodatol, periodrtol

One of the methods of calculating period contours involves specifying the required
period. In this case, the tolerances periodatol and periodrtol are used to assess
whether the required period has been reached. The criterion is that the absolute
value of (period−period target) be less than abs(periodatol)+abs(periodrtol∗
period target). These tolerances are needed because in auto a successful solu-
tion output at the specified value of period will not (necessarily) be exactly at
period target: auto has its own tolerance, which is determined by epss. How-
ever it is not feasible for wavetrain to use the same tolerance criterion as auto
because the auto criterion is based on continuation arc length. If wavetrain as-
sesses that the target value of period has not been reached when in reality auto

120

has reached it successfully, then either periodatol and/or periodrtol should be
made smaller, or epss (for ptw continuation) should be made larger.

nmx

The nmx values specify the maximum number of continuation steps used in the
various numerical continuation calculations.

nmx hb is used when locating the Hopf bifurcation in the periodic travelling wave
equations.

nmx ptw is used for continuation of branches of periodic travelling wave solutions,
except in bifurcation diagram calculations. It is used in the calculation of con-
tours of constant period. It is also used for tracing the loci of Hopf bifurcation
points and folds in the control parameter–wave speed plane (though in the
former case the starting point on the locus is found using nmx hb).

nmx bd is used for the continuation of branches of periodic travelling wave solutions
in bifurcation diagrams.

nmx spectrum is used for continuation along the eigenvalue spectrum.

nmx sb is used for locating and continuing stability boundaries of both Eckhaus and
Hopf type.

nmx dummy is used for all continuations in dummy parameters. Such continuations
occur as an initial step in the calculation of the eigenvalue spectrum and of
stability boundaries and in order to determine a starting solution for derivatives
of the eigenfunction. In the calculations of stability boundaries and of periodic
travelling waves when using an indirect search method, there are some short
continuations used to test the continuation direction, and nmx dummy is also
used for these.

For dummy parameter continuations, the nmx value will determine the end point
of the continuation and a small value is recommended; however nmx dummy should
not be too small because of its use in the assessment of continuation directions;
the recommended value is 10. For nmx hb, nmx ptw and nmx spectrum, the setting
should be large enough that computations do not end because the number of steps
reaches nmx, except perhaps in the case of an error in the values of ds, dsmin or
dsmax (given in constants.input). The recommended settings are 9999, simply
because auto output (which appears in the info.txt file, and on the screen if the
constant info is set to 4) can be confusing when step numbers have more than four
digits: the values can be increased above 9999 should this prove necessary.

The constant nmx bd should typically not be set to such a large number. Bifurca-
tion diagram continuations stop because either limits on the continuation parameter
(which is either the control parameter or the wave speed) or on the solution ampli-
tude are exceeded, or because the maximum number of continuation steps is reached,
or because of a convergence error (which often indicates that a homoclinic solution
is being approached). This contrasts with other continuations done in wavetrain,
for which there is one or more target values of the continuation parameter at which

121

the continuation ends. The appropriate value should be large enough to allow the
solution branch to approach the homoclinic solution when this is the end point, but
small enough that the run time is not excessive if there is some other end point (for
example the solution branch might ping-pong between two different Hopf bifurca-
tions, in which case auto will typically compute backwards and forwards repeatedly
along the same solution branch).

a0, a1

The constants a0 and a1 are the lower and upper limits on the solution amplitude:
continuation will stop if this is exceeded. The same values are used in all auto runs.
Suitably small and large values respectively are recommended: it is not expected
that continuation will ever stop because these limits are reached, during normal
execution. Note that the L2-norm is used for the solution amplitude in all auto
runs (this corresponds to setting the auto parameter iplt to 0).

epsl, epsu, epss

The constants epsl, epsu and epss are tolerance parameters for convergence criteria
during auto runs. The constants are exactly as used in auto: epsl and epsu

determine the relative convergence criteria for equation parameters and solution
components respectively, in the Newton/Chord method used by auto, while epss

determines the relative convergence criterion for the detection of special solutions.
The recommended ranges are 10−6 to 10−7 for epsl and epsu, and 10−4 to 10−5 for
epss. (In particular, epss should be 100 to 1000 times larger than epsl and epsu).
The first trio of values is used for locating Hopf bifurcations, for continuing branches
of periodic solutions, and for calculating contours of constant period, bifurcation
diagrams, and Hopf bifurcation loci. The second trio of values is used for spectrum
continuations and for the calculation of stability boundaries of both Eckhaus and
Hopf type. To speed up execution it is recommended that the second trio is larger
than the first.

evzero

The constant evzero is used by the commands stability and stability loop.
These commands calculate the spectrum, and then loop round the points in the
calculated spectrum, looking for folds. The periodic travelling wave is assessed as
being unstable/stable according to whether there is/is not a fold away from the
origin in the right hand half of the complex plane. The constant evzero is used to
assess whether a fold is “away from the origin”: the criterion is that the amplitude
of the fold location is greater than evzero. If iposim=1 then the constant evzero
is also used in a different way by the commands stability and stability loop,
in tests of whether or not the setting iposim=1 is appropriate for the spectrum
being calculated (see §3.1.8 for details). The constant evzero is also used by the
stability boundary command, which locates the fold away from the origin with
largest real part as a precursor to detecting changes in stability of Hopf type.

evibound

The first stage in the calculation of the spectrum involves discretising the eigen-

122

function equation in the travelling wave coordinate, with periodic boundary condi-
tions, and solving the resulting matrix eigenvalue problem. The matrix eigenvalues
are ordered by the size of their real part, and a number nevals of them are used
as starting points for continuation of the spectrum, with the constant iposim de-
termining whether or not to include eigenvalues whose imaginary part is strictly
negative; nevals and iposim are specified in constants.input. In some cases it is
convenient to exclude from consideration matrix eigenvalues whose imaginary part
exceeds a particular threshold in absolute value, and the constant evibound specifies
this threshold. If evibound is negative, then no threshold is applied.

gextra

Let γ denote the phase difference in the eigenfunction across one period of the
periodic travelling wave. Then the constant gextra determines the range of values of
γ for which each spectrum segment is calculated: the range is 0 < γ < 2π+gextra.
This entire range is plotted by the plotter command @spectrum. There is no problem
with setting gextra to zero, but a small non-zero value of gextramay help the visual
appearance of the spectra, by preventing gaps between successive segments. Also,
it might occasionally be useful to set gextra to a much larger value as a diagnostic
tool. To ensure that γ = 2π and γ = 2π + gextra can be resolved as separate
output points during continuation, gextra is interpreted as zero if it is less than
10∗dsmin.

help display

Output from the wt help command can be displayed by either scrolling or list-
ing the help file. The code number determines which of these display formats is
used. Scrolling is accomplished via the man facility on the user’s system. Note
that the help display format for the plotter’s @help command is set separately, in
plot defaults.input.

tolss

In general, there will not be an exact formula for the steady state, and therefore
this will have to be found numerically, using the user-supplied formulae/values as
an initial guess. This numerical solution is done using the minpack routine hybrd1
(Moré et al, 1984), which uses a modification of the Powell hybrid method, and
which is freely available from www.netlib.org. This routine gives a solution for
which the estimated relative error in the solution is at most tolss.

nwarn1, nwarn2

Very large or very small numbers of continuation steps are not desirable at any
stage of the calculation. A large number of steps typically means long run times,
possibly unnecessarily. A small number of steps means that bifurcation points might
be jumped over without detection. Wavetrain gives a warning message if the
number of steps in any stage of the calculation is either very small or very large.
The constants nwarn1 and nwarn2 (nwarn1 < nwarn2) are the thresholds for these
warning messages to be given.

123

grange

When the change in periodic travelling wave stability is of Hopf (rather than Eck-
haus) type, the first step in locating and tracking the stability boundary is to locate
the point in the spectrum, away from the origin, at which there is a fold with the
largest real part. This is calculated approximately when calculating the spectrum,
in order to assess wave stability, but in order to calculate the stability boundary
precisely a more accurate calculation must be done, via continuation of the equa-
tions for the first derivative of the eigenfunction (with respect to iγ) as well as the
eigenfunction; here, as above, γ denotes the phase difference in the eigenfunction
across one period of the periodic travelling wave. This can be a time-consuming
calculation and therefore it is helpful to reduce the range of iγ values over which it
must be done. The constant grange specifies this range: if γmax is the estimated
fold location based on the spectrum calculation, then the range of γ values used to
search for the exact location of the fold is γmax−grange/2 < γ < γmax+grange/2.

gatol

With γ, grange and gmax as described above, a preliminary stage in the calculation
of a stability boundary of Hopf type is to continue the spectrum up to the point
with γ = gmax+ grange/2. The tolerance gatol is used to assess whether this end
value of γ has been reached. Since it is known that γ takes values between roughly
0 and 2π, a single (absolute) tolerance is sufficient, and a relative tolerance is not
required. Note that it is essential that gatol is significantly smaller than grange. If
wavetrain assesses that the target value of γ (which is gmax+grange/2) has not
been reached when in reality auto has reached it successfully, then either gatol

should be made smaller, or epss (for spectrum continuation) should be made larger.

fortran77 compiler

This is the name of the Fortran77 compiler to be used, e.g. f77 or g77. It can be
followed by one or more option flags. One reason for including a user-specified flag
would be if by default the compiler outputs a list of subroutines during compilation.
While this would not cause any errors for wavetrain, it does interfere significantly
with screen output and therefore should be suppressed. The appropriate flag for
this is compiler dependent, but -silent or -fsilent are likely possibilities. Note
that the “-” symbol does need to be specified (e.g. f77 -fsilent).

blas

Blas (Basic Linear Algebra Subprograms) are used extensively by lapack; in
wavetrain, lapack is used to calculate approximations to the eigenvalues and
eigenfunctions for the case when the eigenfunctions are periodic over one period of
the periodic travelling wave. Wavetrain is supplied with the Fortran77 reference
implementation of the blas (specifically the blas files that are distributed with ver-
sion 3.1.1 of lapack), and this will usually be adequate. However calculations done
by lapack are significantly faster if one uses a machine-specific optimised blas

library. Such libraries are freely available for many computer architectures: see
www.netlib.org/blas for details. This entry in defaults.input provides the user
with the opportunity to use such a machine-specific library, by giving the file name

124

including full path. The file name can be either an uncompiled fortran (.f) file, or a
compiled (.o) file, or a library (.a). In the third case, the entry must also include the
library path, e.g. -L/usr/lib -lmyblas (for the library /usr/lib/libmyblas.a).
Note that whatever the user enters on this line of defaults.input is used directly
in the Fortran77 compilation command for the eigenvalue calculation program. Al-
ternatively the entry can be blank, in which case wavetrain will use the Fortran77
reference implementation of the blas. Typically the calculations done by lapack

constitute only a relatively small part of the run times in wavetrain and therefore
it is recommended that the Fortran77 reference implementation of the blas be used
unless the user already has a machine-specific optimised blas library.

lsame

The Fortran77 function LSAME is used by both blas and lapack. If the user is
providing their own version of blas (see above) then this may or may not include the
function LSAME. If it does then the version of LSAME supplied withwavetrain should
be excluded from compilation of the eigenvalue calculation program, by entering n

in this line of defaults.input. If the user-supplied blas does not include LSAME, or if
the Fortran77 reference implementation of the blas is being used, then y should be
entered on this line, to indicate that the version of LSAME supplied with wavetrain

should be included in the compilation.

dlamch

The Fortran77 function DLAMCH is used by lapack, and returns the value of “ma-
chine epsilon”, which gives a bound on the roundoff in individual floating-point
operations. A version of this function is distributed with lapack (version 3.1.1),
and this is supplied with wavetrain. This function will work on the vast ma-
jority of computers, but not all. In the latter case, the user can enter on this
line of defaults.input the name (including full path) of a file containing an alter-
native version of DLAMCH. The file can be either an uncompiled (.f), or compiled
(.o) file, or a library (.a) containing the function. In the third case, the entry
must also include the library path, e.g. -L/usr/lib -lmylibrary (for the library
/usr/lib/libmylibrary.a). Note that whatever the user enters on this line of
defaults.input is used directly in the Fortran77 compilation command for the eigen-
value calculation program. If the entry is blank, then the version of DLAMCH supplied
with wavetrain will be used.

3.3 Further Details of Plot Commands

3.3.1 Changing Plotter Styles

One of the objectives of wavetrain is to produce graphical output suitable for publica-
tion. In many cases, users will wish to produce greyscale plots for this purpose, although
during the research process they may find it more convenient to use colours to distin-
guish the different line and point types. To switch to greyscale mode, one enters the plot
command

125

@set style greyscale

and one can type

@set style colour

to return to colour output. Note that the @set style command creates a new postscript
file of the parameter plane key, such as that illustrated in Figure 2.4 on page 18. Therefore
if a postscript file is being written then it is ended by the @set style command, with
plotting returned to the screen after the command finishes.

Users may also wish to create their own plotter styles. To do this, one goes into the
input files directory and copies either colour.style or greyscale.style to a new file
such as my settings.style. The various settings in this file are discussed in §3.4; they
cover the colour, thickness and style of all lines, plus point colours and types. The explana-
tory information in §3.4.2 is repeated in comments in the versions of colour.style and
greyscale.style provided at installation; these comments describe in detail the meaning
of each setting. The available line styles are explained in these comments. For colours, a
total of 186 colours are available in wavetrain, consisting of the 133 standard Crayola
crayon colours, colours of the rainbow, primary and secondary colours (which are not all
standard Crayola crayon colours), and 50 shades of grey, named grey1 (almost black) up
to grey50 (almost white). A list of these colour names is provided as colour list.eps

in the postscript files directory; this list is reproduced in Figure 3.20. Note that
colour list.eps is recreated each time the plotter is started. For details of Crayola
crayon colours, see http://en.wikipedia.org/wiki/List of Crayola crayon colors.

3.3.2 Changing Other Plotter Settings

A variety of other plotter settings are contained in the file plot defaults.input in
the input files directory. This includes the choice of plotter (sm or gnuplot), the
specification of font sizes for text, the line and column spacings in the keys, the default
choice of plotter style file, and the default choice between code numbers, symbols and
wave period in parameter plane plots. These and other settings can all be changed by
the user if desired, by editing plot defaults.input, which contains detailed comments
explaining the meaning of each setting. The settings are also explained in detail in §3.4.
After editing plot defaults.input, the plotter must be restarted in order for the changes
to take effect.

3.3.3 Labelling of Contours of Constant Period

If showperiodcontourlabels is set to yes in plot defaults.input, then the plot com-
mand @period contour draws the specified contour(s) and annotates it/them with labels
showing the value of the period. The exception to this is contours that have been des-
ignated as homoclinic (see §3.1.4), which are not labelled. By default, labels are placed
where (and if) a contour crosses the edge of the plotting region. This is appropriate
in some cases, but in others it does not give clear labels. Therefore the plot command

126

Figure 3.20: A list of the colours available in the wavetrain plotter. This figure is a
reproduction of the file colour list.eps in the postscript files directory. The US
spelling “gray” may be used as an alternative to the UK spelling in any colour name:
thus “gray23” and “bluegray” are permitted. Note that the Crayola crayon colour names
“gray” and “tan” have been replaced by “crayolagray” (or “crayolagrey”) and “crayola-
tan” respectively. In the first case this avoids any confusion with the grey scale colour
names; in the second case it avoids confusion with the mathematical function tan.

127

period contour provides the opportunity to override this default. When prompted, the
user can enter one or more expressions of the form <control parameter name>=<value>
or <wave speed name>= <value>. This causes the default labels to be omitted, and in-
stead labels are placed wherever (and if) a contour crosses the specified values.

As an example, consider the plot shown in Figure 2.5 on page 21, which used default
labelling for the two period contours. Instead, for the plot command

@period contour 101

one could enter

c=0.8 c=0.5

when prompted about label locations. Similarly, for the plot command

@period contour 102

one could enter

c=0.7 A=0.5 A=0.8 c=0.4

when prompted about label locations. (Note that pcodes 101 and 102 refer to the contours
with periods 3000 and 80 respectively). The resulting plot is shown in Figure 3.21. Note
that the label specification “A=0.8” for pcode 102 has no effect, since the contour does
not cross this value.

3.3.4 Adding Additional Lines, Points and Text to Plots

The plot command

@line x1 y1 x2 y2

superimposes a line between (x1,y1) and (x2,y2) in the current plot. Similarly,

@point x y

draws a point (symbol) at (x,y); the symbol type is specified in the .style file. For text
labels, the command

@text x y "my text"

writes “my text” centred at the point (x,y). For all three commands, coordinates can
be enclosed in double quotes. In sm this is optional, but in gnuplot it is essential if the
coordinates are negative. Thus @point -1.0 2.0 is invalid in gnuplot and gives an error;
instead one must use @point "-1.0" 2.0 or equivalently @point "-1.0" "2.0".

As an example of the use of these commands, consider the bifurcation diagram plot
in Figure 3.2b on page 80. This plot gives a detailed account of the existence of periodic
travelling wave solutions as the wave speed c is varied for control parameter A = 2.6.
However, it contains no information about stability, and indeed wavetrain does not have
the facility to compute stability in a bifurcation diagram. However, one can determine
where the stability boundary curve crosses the line A = 2.6 via an optional argument to
stability boundary, for instance

128

Figure 3.21: An illustration of manual specification of the label locations for contours of
constant wave period. This figure is the same as Figure 2.5 except that in this case the
default label locations for the contours have been overridden. The run and plot commands
used to generate this figure are given in the main text, and are also listed in the Appendix.

stability boundary demo 102 1.75 0.3 1.75 0.7 A=2.6

where 102 is an appropriate pcode value. This run reports that there is a change in wave
stability at A = 2.6, c = 0.66. One can then add this information to the bifurcation
diagram plot by typing

@line 0.66 10.0 0.66 20.5

at the plotter prompt, after drawing the bifurcation diagram. One might also wish to add
labels indicating which part of the solution branch is stable via

@text 0.5 13.5 "Unstable"

and the command @text 0.9 13.5 "Stable" might be used in a similar way. The result-
ing plot is illustrated in Figure 3.22. Note that an alternative way of illustrating stability
information on this bifurcation diagram plot is shown in Figure 3.4 on page 85.

There are two other related plot commands: @linesfile and @pointsfile. These
both plot data supplied by the user and contained in a file in the relevant input subdirec-
tory; the file name is entered as a command argument. If gnuplot is being used as the

129

Figure 3.22: An illustration of the use of the plot commands @line and @text. These
commands have been used to indicate the change in wave stability on a bifurcation diagram
for the problem demo. The run and plot commands used to generate this figure are given
in the main text, and are also listed in the Appendix.

plotter, the file name must be given in quotes (e.g. "myfile.dat"); in sm, this is optional.
The file must contain two columns of numerical data, which are a set of coordinates to
be plotted; other columns are allowed in the file and will be ignored. Thus

@linesfile "myfile.dat"

will draw lines connecting the various points whose coordinates are in the first two columns
of myfile.dat in the relevant input subdirectory. The command @pointsfile has a
second argument, specifying the point type to be used, according to the code numbers
listed on page 146. Thus

@pointsfile "myfile.dat" 9

will draw a filled triangle at each of the points whose coordinates are in the first two
columns of myfile.dat in the relevant input subdirectory. One potential use of the
commands @linesfile and @pointsfile is to superimpose ontowavetrain plots results
from numerical simulations of the partial differential equations; an example of this is given
in §2.3.25.

130

The various commands discussed in this subsection can all be used in plots of wave-
length or wavenumber against control parameter (see §3.3.5). In these cases the second
coordinate should be either the wavelength or wavenumber, and for @linesfile and
@pointsfile the second column in the data file should contain wavelength or wavenum-
ber values.

3.3.5 Plotting Parameter Planes Using Wavelength or Wavenumber

The standard use of the @pplane command is to generate plots of the control parameter–
wave speed parameter plane. But in some cases it can be useful to plot wavelength or
wavenumber (=2π/wavelength) against the control parameter. Plots of this type can be
generated in wavetrain by changing the plotter variable pplanetype to vswavelength

(or equivalently vsperiod) or vswavenumber; this variable is set in plot defaults.input.
For either of these settings, the @pplane command will require the user to manually input
the limits to be used on the vertical (wavelength or wavenumber) axis. Wavetrain will
then generate a blank plotting region: the results from ptw loop or stability loop are
not shown. The commands @hopf locus, @fold locus and @stability boundary can
then be used, showing wavelength or wavenumber as a function of control parameter.
The commands @line, @point, @text, @linesfile and @pointsfile can also be used
(see §3.3.4). However @period contour cannot be used in plots of this type: it would
simply generate a horizontal line. The natural counterpart of a period contour would
be a contour of constant speed, but wavetrain does not currently allow the calculation
of such a contour; this feature may be added in future versions. Finally, the @shade

command cannot be used for plots of wavelength or wavenumber as a function of control
parameter.

Figure 3.23 shows the results of replotting the Hopf bifurcation locus and (Eckhaus)
stability boundary from Figure 2.11 in wavelength–control parameter and wavenumber–
control parameter planes.

3.3.6 Shading Regions of the Control Parameter–Wave Speed Plane

When producing final plots for publication or presentation, it can be useful to shade parts
of the control parameter–wave speed plane, for example to show regions in which there
are multiple periodic travelling waves, or in which waves are stable or unstable. The plot
command @shade is provided for this purpose. Its syntax is significantly more complicated
than any of the other plot commands. There are either three or four arguments. The first
two arguments specify the colour and pattern to be used for the shading; any wavetrain

colour is allowed (see §3.3.1), and the pattern is indicated by an integer between 1 and 7
as follows:

131

(a)

(b)

Figure 3.23: Examples of plots showing (a) wavelength and (b) wavenumber as a function
of the control parameter. The results are for the problem demo, and the corresponding
plots of the Hopf bifurcation locus and stability boundary in the control parameter–wave
speed plane are shown in Figure 2.11. The interpretation of the line colours is as in the
key in Figure 2.4 on page 18. The run and plot commands used to generate this figure
are listed in the Appendix.

132

(If gnuplot is being used as the plotter, the relationship between the code number and
the pattern is terminal dependent; the above applies for the default terminal x11 and for
postscript plots).

The third argument specifies the boundary of the region to be shaded. This boundary
will be formed from parts of curves calculated by wavetrain: Hopf bifurcation loci,
period contours, fold loci or stability boundaries. Each of these parts is specified by a
triplet of values, and the third argument consists of a series of these triplets, enclosed in
double quotes ("). The first item in each triplet is a two letter code indicating the curve
type: hl, pc, fl, sb denote Hopf bifurcation locus, period contour, fold locus or stability
boundary respectively. The second item in the triplet is the hcode / ccode / fcode / scode
number. The third item is one or more inequalities involving the control parameter or
wave speed, to indicate which part of the curve is to be included. Multiple inequalities
are separated by & (without any spaces), while if the whole curve is required then the
inequality is replaced by all. Thus if the third argument to @shade is

"hl 102 k>2 pc 104 c<=4&k>1&c>1 sb 101 all"

then the shaded region will be that enclosed by the part of the Hopf bifurcation locus
with hcode 102 for which k > 2, the part of the period contour with ccode 104 for which
1 < c ≤ 4 and k > 1, and the whole of the stability boundary with scode 101. (Here k and
c are the control parameter and wave speed). The various curves forming the boundary
of the region to be shaded must be specified in order, which can be either clockwise or
anti-clockwise. If two consecutive curves do not have matching ends, then a straight line
joining the ends will be inserted into the boundary of the shaded region; one important
application of this is to regions bounded in part by the edge of the plot.

There is also an optional fourth command to @shade, which specifies an entry to be
inserted into a key. This must be given in double quotes ("), and may contain multiple
lines, with two back-slashes (\\) indicating a new line. The key is initialised by the
@pplane command. Then any subsequent run of @shade with a fourth argument adds an
entry to the key. The key itself is generated by the additional plot command @shade key.
Note that the key is created as a separate plot; once postscript files of the (shaded)
parameter plane and of the shading key have been generated, they can be combined
within a word processor to give a composite figure if required.

As an example of using @shade and @shade key, consider the plot shown in Figure 2.11.
After issuing the various plotting commands required for this plot, one can shade the
region corresponding to stable periodic travelling waves via the command

@shade red 1 "hl 101 c>0.91 pc 101 c>0.51 sb 101 all" "Stable

periodic\\travelling waves"

while the command

@shade blue 1 "hl 101 c<0.91 pc 101 c<0.51 sb 101 all" "Unstable

periodic\\travelling waves"

shades the region corresponding to unstable periodic travelling waves. (Note that these
commands must be entered on a single line: the linebreak is only a necessity of the
typesetting). The resulting plot is shown in Figure 3.24.

133

(a) (b)

Figure 3.24: (a) An illustration of the use of the @shade command to shade regions in
the control parameter–wave speed plane. This figure is the same as Figure 2.11 except
that shading has been added to indicate the parameter regions giving stable and unstable
periodic travelling waves. The run and plot commands used to generate this part of the
figure are given in the main text, and are also listed in the Appendix. (b) The key to the
shading used in part (a) of the figure. This key is generated by the @shade key command.

As a final comment about @shade, it should be emphasised that the command is
restricted to plots of the control parameter–wave speed plane, and it cannot be used for
plots of wavelength or wavenumber against the control parameter.

3.3.7 Record Keeping for Postscript Plots

When generating postscript plots for publication or presentation, users may wish to re-
tain a record that would enable them to recreate the plot at a later date. This can be
achieved by setting the plotter variable keeprecords to yes in plot defaults.input.
This setting causes the @postscript command to generate a plotting record as well as
the postscript file. For example, the command @postscript demoplot creates the direc-
tory demoplot record which contains two files. The first of these, demoplot.tar, is an
archive of all of the data used for demoplot.eps; the second file, demoplot.plt, is a list
of the various plot commands and option choices used to generate the plot, plus a listing

134

of the plotter input files (see §3.4). Together these provide a full record that would enable
the plot to be reproduced from scratch. This record-keeping facility should be used with
care, simply because the .tar record files can be rather large. For this reason, the default
setting of keeprecords is no.

3.3.8 The Bounding Box for Postscript Plots

The hard copies of plots produced by wavetrain are encapsulated postscript files. Such
files include the specification of a “bounding box”, that is, a rectangle completely sur-
rounding the image. When using gnuplot, the user can expect correct bounding boxes
in the (encapsulated) postscript files produced by wavetrain’s @postscript (or @ps)
command. However when using sm, the bounding box will usually be too big. This is
an inevitable feature of the way in which postscript file geometry is controlled within sm.
On many (but not all) unix-like operating systems, the tool ps2eps is available, and this
is a simple way to correct an inappropriate bounding box. Therefore when using sm, the
@postscript (or @ps) command asks users whether they would like to use ps2eps to
correct the bounding box. Wavetrain does not check in advance whether the ps2eps

tool is available on the user’s computer, and if it is not then an error will be reported
(and no change will be made to the postscript file).

There are a number of other ways to correct bounding box sizes: typing “correct
bounding box” into a search engine gives a number of helpful links. Moreover, postscript
files with bounding boxes that are too large can still be used effectively within docu-
ments. For example the latex command includegraphics permits the specification of a
bounding box that overrides that given in the postscript file; on many systems appropriate
bounding box coordinates can be found manually by viewing the file using ghostview and
then moving the mouse to appropriate locations for the corners of the bounding rectangle.

3.3.9 Abbreviations for Plot Commands

Typically, users will want to enter plot commands repeatedly in relatively rapid succes-
sion, making the full command names rather cumbersome. Therefore, the plotter also
recognises a number of two-letter shorthands:

@bd = @bifurcation diagram

@fl = @fold locus

@hl = @hopf locus

@pc = @period contour

@pp = @pplane

@ps = @postscript

@sb = @stability boundary

@sp = @spectrum.

135

3.4 Details of Plotter Input Files

3.4.1 Details of plot defaults.input

This file contains general default settings associated with plotting; the order of the various
entries in the file does not matter. Settings concerning colours, line thicknesses and line
styles are in the .style files, described in §3.4.2. The version of the file provided at
installation contains detailed comments explaining the meaning of each setting.

3.4.1.1 Text expansion in gnuplot

The file plot defaults.input contains a number of text expansion settings. If plotting
is being done using sm, then the implementation of these settings is straightforward. If
plotting is being done using gnuplot, then the text expansion settings will only take effect
if enhanced text mode is specified in the terminal setting. (The terminal is set in this
file, as part of the plotter setting “plotter”). In that case, the implementation of text
expansion settings is straightforward for postscript plots, but it is somewhat complicated
for screen plots. At installation, the terminal type specified for screen plots is x11, and
it is anticipated that this will rarely be changed by users. The x11 terminal type in
gnuplot does allow changes in text size, but only in discrete jumps, not via a continuous
expansion scale: allowable text sizes depend on the available font sizes for the selected
font family. Wavetrain chooses the font size that is closest to the specified expansion
factor. The run command show text expansions is provided as a tool to assist in the
setting of text expansion factors in plot defaults.input when plotting using gnuplot: it
lists the critical expansion factors at which text size changes. Note that these depend on
the set of fonts that are defined on the user’s computer. If a terminal type other than x11

is specified for screen plots, then wavetrain does not alter the text expansion settings
given in plot defaults.input, but users should be aware that if gnuplot cannot find a
suitable font then it may substitute its internal default font type and size.

3.4.1.2 General default settings

colourlistexpand (setting at installation: 0.8)

This determines the font size for the list of colours created (in a postscript file)
by the command @set colours. Users plotting using gnuplot should read §3.4.1.1
before changing this setting.

defaultstyle (setting at installation: colour)

This determines the default style file that will be set when the plotter is started.
The plotter style can be changed using the command @set style.

keeprecords (setting at installation: no)

If this is set to yes then when a a postscript file is generated, a record is created of all
of the run and plotter commands that were used to generated the plot. The record
consists of two files, which have the names file.tar and file.plt, where file.eps
is the name of the postscript file. These files are both placed in a subdirectory
file record of the directory containing file.eps (which is itself a subdirectory of
postscript files). One of these files, file.tar, is an archive of all of the output

136

data files for the subdirectory and pcode value given in the plot command. Note
that these output files contain a copy of all of the input data files used in the run
commands. The other record file, file.plt, is a list of the plot commands used to
create the plot, followed by a listing of plot defaults.input, as it was when the
plot command was given, followed by a listing of the style file (e.g. colour.style)
that applied when the postscript file was generated. Taken together, these two
record files contain all of the information that would be required to regenerate the
plot from scratch. Setting keeprecords to no disables this record-keeping feature.

labelsexpand (setting at installation: 1.5)

This determines the font size for axes labels. Users plotting using gnuplot should
read §3.4.1.1 before changing this setting.

plotter (setting at installation: gnuplot x11 0 enhanced font "Helvetica,14")

This is the name of the plotter to be used, in lower case: either sm or gnuplot. For
sm, the plotting device is taken from the user’s .sm file. For gnuplot, the terminal
type for screen plots must be specified after the word gnuplot, including options.
In order for text expansion settings later in plot defaults.input to take effect,
these gnuplot terminal options must include the word enhanced (which specifies
gnuplot’s enhanced text mode). Terminal options can also include the specification
of a font, via

font ","

The default font family is Helvetica and the default font size is 14. Other common
font families include Courier, Lucida, Lucidabright, Lucidatypewriter, New Century
Schoolbook, and Times. Note that the font family name can contain spaces and is
not case sensitive: it is converted to lower case before searching for available fonts.
Slant and weight options cannot be included; wavetrain only uses roman, medium
weight fonts. It should be emphasised that the font specification affects screen plots
only: the font used for postscript plots is specified separately, via the variable
psfont.

psfont (setting at installation: Helvetica,14)

This is only used for gnuplot (not sm): it is the font family name and base font size
(separated by a comma) to be used for postscript plots. Note that this is specified
independently from the font used for screen plots. Changing the base font size is the
only way to change the size of tic mark labels (in gnuplot). It is recommended to
use a font family name that is one of the 35 standard fonts defined on all postscript
devices: lists of these can be found by typing “standard postscript fonts” into a
search engine. Note that in contrast to the font specification for screen plots, the
font family name for postscript plots is case sensitive. The plotter variable psfont

was added in version 1.0 of wavetrain, and to preserve back-compatibility its
specification is optional, with the default being Helvetica,14.

screenwidthchars (setting at installation: 100)

This is only used for gnuplot (not sm), and then only when the terminal type setting

137

is not x11. (For an x11 terminal, the appropriate value is calculated automatically).
It gives the width of the entire plotting canvas, as a number of average (unscaled)
character widths. This will depend on both the gnuplot terminal type and the
(unscaled) font type and size, which are specified in this file, as part of the plotter
setting “plotter”. Note that the specified value can be either an integer or a
floating point number.

showtitles (setting at installation: yes)

This determines whether or not titles (with parameter values etc) are shown above
the plots.

spacebottom (setting at installation: 0.17)
spaceleft (setting at installation: 0.15)
spaceright (setting at installation: 0.02)
spacetopnotitles (setting at installation: 0.02)
spacetoptitles (setting at installation: 0.15)

These settings determine the amount of space around the graph(s), as a proportion
of the overall plotting “canvas”. Thus the graph(s) itself occupies a region whose
width is a fraction (1-spaceleft-spaceright) of the canvas width, and whose height
is a fraction (1-spacebottom-spacetoptitles) of the canvas height if showtitles
is set to yes, and a fraction (1-spacebottom-spacetopnotitles) if showtitles is
set to no. The space around the graph(s) contains tic mark labels, axes labels and
(if selected) title(s). The size of this space does not scale with the text size selected
for axes labels and titles, and therefore may need to be adjusted if these are altered
significantly from the defaults.

ticlabelsexpand (setting at installation: 1.3)

This is used for sm only, not gnuplot. It determines the font size for tic mark
labels. This is included because it is convenient in sm to be able to change all
text sizes relative to the default font, since the procedure for changing the default
font in sm lies outside wavetrain and would affect other uses of sm. Note that
changing ticlabelsexpand also changes the size of the tic marks. For gnuplot, tic
mark labels use the default font, which can be changed in the terminal specification,
given as part of the plotter setting plotter elsewhere in this file.

titlesexpand (setting at installation: 1.5)

This determines the font size for titles. Users plotting using gnuplot should read §3.4.1.1
before changing this setting.

helpdisplay (setting at installation: 1)

This determines whether the output from the plotter command @help is displayed
by scrolling (helpdisplay=1) or listing (helpdisplay=2) the help file.

3.4.1.3 Settings for plots of eigenvalue spectra

foldsymbolsizesp (setting at installation: 2.0)

This determines the size of the symbol used to indicate the location of the right-
most non-zero turning point in the eigenvalue complex plane (if showspectrumfold
is set to yes); this turning point is used to determine stability.

138

foldtextspexpand (setting at installation: 0.98)

This determines the size of the font used for the real part of the eigenvalue at
the right-most non-zero turning point in the eigenvalue complex plane (if show-
spectrumfold is set to yes); this turning point is used in the determination of
stability, and also as a starting point for the calculation of stability boundaries of
Hopf type. Users plotting using gnuplot should read §3.4.1.1 before changing this
setting.

periodiceigenvaluessize (setting at installation: 1.2)

This determines the size of the symbols used to denote periodic eigenvalues (if
showperiodiceigenvalues is set to yes) on spectrum plots.

restrictphasedifference (setting at installation: no)

This determines whether all or only parts of the spectrum is plotted, corresponding
to a particular range of values of the phase difference across one period of the wave.
Normally this should be set to no, but occasionally yes is useful for diagnostic
purposes. In that case, the plotter command spectrum asks for keyboard entry of
the desired range of phase difference values.

showperiodiceigenvalues (setting at installation: yes)

For plots of eigenvalue spectra, this determines whether or not to label the approx-
imations to the eigenvalues for periodic eigenfunctions, found via discretisation.

showspectrumfold (setting at installation: yes)

This determines whether or not there is a label showing the real part of the eigen-
value at the right-most non-zero turning point in the eigenvalue complex plane; this
turning point is used to determine stability.

spectrumkeyheight (setting at installation: 6)

If spectrumcolour is set to rainbow or greyscale or grayscale, a key is in-
cluded in spectrum plots showing the mapping from the colours to the phase dif-
ference across the periodic travelling wave. The height of this key is determined by
spectrumkeyheight. It is the key height as a percentage of the overall height of
the main plot, the key and the space between them. Any value less than or equal
to zero causes the key to be omitted.

spectrumkeyspacing (setting at installation: 3)

If spectrumcolour is set to rainbow or greyscale or grayscale, a key is in-
cluded in spectrum plots showing the mapping from the colours to the phase dif-
ference across the periodic travelling wave. In sm, spectrumkeyspacing specifies
the spacing between this key and the main plot, as a percentage of the overall
height of the main plot, the key and the space between them. In gnuplot, the
role of spectrumkeyspacing is the same, but it does not have such a precise mean-
ing: larger values give more space between the key and the main plot, but precise
automated control is not possible since the size of the main plot is somewhat unpre-
dictable. Note that in gnuplot, manual rescaling of the main plot may be needed to
achieve the required size; the user is prompted for keyboard input concerning this

139

rescaling. Note also that in gnuplot, a negative value of spectrumkeyspacing can
be used to reduce the gap between the key and the main plot: there may be a gap
even if spectrumkeyspacing is set to zero. A negative value is never appropriate
in sm.

spectrumkeytextexpand (setting at installation: 1.7)

This determines the font size used in the key. Users plotting using gnuplot should
read §3.4.1.1 before changing this setting.

3.4.1.4 Settings for control parameter – wave speed plots

periodcontourlabelsdps (setting at installation: 0)

This specifies the number of decimal places used when labelling period contours.
This applies whether periodcontourlabelsstyle is set to e or to f.

periodcontourlabelsexpand (setting at installation: 0.9)

This determines the font size for the labels indicating the value of the period along
contours of constant period for periodic travelling wave solutions. Note that if
this is changed, then xperiodcontourlabelbox and yperiodcontourlabelbox will
usually need to be changed also.

periodcontourlabelsstyle (setting at installation: f)

This takes the value e or f, meaning exponential or floating point respectively.
For example, with periodcontourlabelsdps set to 3, a period of 34.5621 will
appear as 34.562 if periodcontourlablesstyle is set to f, and as 0.346e+2 if
periodcontourlablesstyle is set to e.

pplanecodesexpand (setting at installation: 0.9)

This determines the font size of the text used to denote run outcomes if pplanetype
is set to rcodes (or equivalents), or to period (or periods), or if these settings are
selected manually.

pplanegap (setting at installation: 0.06)

The axes limits in control parameter – wave speed plots are set wider than the limits
in parameter range.input, to allow for the size of the rcodes/periods/symbols
used to indicate the solution outcomes. The amounts added to the axes ranges are
a fraction pplanegap of the ranges in plot range.data if this file is present in the
output subdirectory for the specified pcode value, and in parameter range.input

otherwise. (The file plot range.data will be present if either of the commands
add points list or add points loop have been run). Note however that if the
parameter plane was generated using the new pcode command, then the limits in
parameter range.input are used and pplanegap is not used.

pplanekeygaplength (setting at installation: 2)

This determines the length of the gaps between line segments and text in the key, as
a percentage of the overall width of the key. It also determines the spacing between
the shading sample and the text in shading keys generated by @shade key. The
value must be an integer.

140

pplanekeylinelength (setting at installation: 8)

This determines the length of the line segments in the key, as a percentage of the
overall width of the key. It also determines the size of the box used for shading
samples in shading keys generated by @shade key. The value must be an integer.

pplanekeylineseparation (setting at installation: 7)

This determines the spacing of the lines in the key, and in shading keys generated
by @shade key. Note that this spacing is not scaled by the font size selected for
the text in the key, which is determined by pplanekeytextexpand, which is also
defined in this file. Therefore if pplanekeytextexpand is changed, it may also be
necessary to change the value of pplanekeylineseparation, to avoid the text on
different lines overlapping.

pplanekeylist (setting at installation: "{ 1 5 2 3 4 11 12 13 14 15 16 }")
Note the inverted commas and curly brackets, which are both essential. This setting
specifies which dots and line segments are used in the key for the control parameter
- wave speed parameter plane plots. It also determines the order in which the
dots (corresponding to outcome codes) and line segments are placed in the key.
Numbers 1-5 indicate dots corresponding to the outcome codes, whose meaning is
as follows:

1: Periodic travelling wave found, stability not requested. This is the outcome code
when ptw loop is run and a periodic travelling wave is found.

2: Periodic travelling wave found, and the spectrum shows that it is stable.

3: Periodic travelling wave found, and the spectrum shows that it is unstable.

4: No periodic travelling wave was found, with continuation along the periodic trav-
elling wave solution branch ending for some reason other than a convergence
problem.

5: No periodic travelling wave was found, with continuation along the periodic trav-
elling wave solution branch ending due to a convergence problem.

Two digit numbers indicate line segments as follows:

11: Hopf bifurcation loci.

12: Period contour.

13: Homoclinic bifurcation loci.

14: Stability boundary (Eckhaus type).

15: Stability boundary (Hopf type).

16: Fold loci.

Note that if pplanekeytype is set to 2, then 4 and 5 would produce the same entry
in the key, and if the number 4 is included in the list, it is ignored.

pplanekeysymbolssize (setting at installation: 2.0)

This determines the size of dots in the key.

141

pplanekeytextexpand (setting at installation: 1.15)

This determines the font size used for text in the key, and in shading keys gener-
ated by @shade key. Note that the spacing of lines in the key is determined by
pplanekeylineseparation, which is also defined in this file. This is not scaled by
pplanekeytextexpand, and therefore if pplanekeytextexpand is changed, it may
also be necessary to change the value of pplanekeylineseparation, to avoid the
text on different lines overlapping.

pplanekeytype (setting at installation: 1)

This takes the value 1 or 2, and affects both the key for control parameter–wave
speed plots, and the plots themselves. If it is set to 1, then separate colours and
symbol types are used for the cases of no periodic travelling wave being found with
a convergence failure in the numerical continuation, and of no periodic travelling
wave being found with convergence throughout the continuation. Correspondingly,
separate entries (with explanatory text) appear in the key. If pplanekeytype is set
to 2, then the same colour and symbol type are used for the two cases (specifically,
the colour and symbol type allocated to the case of convergence failure). Corre-
spondingly, only one entry appears in the key. It is anticipated that most users
will set pplanekeytype to 1 during the research process, and to 2 when producing
figures for presentation or publication.

pplanesymbolssize (setting at installation: 2.0)

This determines the size of the symbols used to denote run outcomes if pplanetype
is set to symbol (or equivalents), or to period (or periods), or if these settings are
selected manually.

pplanetype (setting at installation: rcode)

Allowable settings are:
dot/dots/symbol/symbols

code/codes/number/numbers/rcode/rcodes

period/periods.
vswavelength/vsperiod.
vswavenumber.

(Note that the sm command dot is disabled via overload when plot is run). The
first three groups of settings give a plot of wave speed against control parameter,
with the setting determining whether the plotter uses dots, rcode numbers or the
period of the periodic travelling wave to denote the points in the parameter plane
at which waves have been calculated. This is a default setting, and the user is given
the opportunity to override it via keyboard input when the command @pplane is
run. Typically symbols would be used for final (presentation/publication) plots.
Using rcode numbers is helpful for subsequent plotting of wave forms or eigenvalue
spectra; however it can can make the plots very busy. Periods are helpful prior to
calculating period contours. When the setting is period/periods, a symbol is used
for parameter values for which there is no periodic travelling wave. Note also that
periods below 10−9 are shown as zero, while those above 1010 are shown as inf. The
settings vswavelength (or vsperiod) and vswavenumber give plots of wavelength

142

and wavenumber (=2π/wavelength), respectively, against the control parameter.

showperiodcontourlabels (setting at installation: yes)

This determines whether contours of constant period are labelled with the period
values.

xperiodcontourlabelbox (setting at installation: 0.04)
yperiodcontourlabelbox (setting at installation: 0.02)

When labels are used for a period contour, the contours are not plotted in a
rectangular region centred on the label location. The dimensions of this region
are 2×(control parameter range)×xperiodcontourlabelbox and 2×(wave speed
range)×yperiodcontourlabelbox. Note that these dimensions are unaffected by
periodcontourlabelsexpand and therefore they must usually be changed if period-
contourlabelsexpand is changed.

3.4.1.5 Settings for bifurcation diagram plots

bdkeygaplength (setting at installation: 2)

This determines the length of the gaps between line segments and text in the key,
as a percentage of the overall width of the key. The value must be an integer.

bdkeyheight (setting at installation: 6)

This determines the height of the key (if present). It is the key height per line of the
key, as a percentage of the overall height of the main plot, the key, and the space
between them. (Note that whether or not there is a key, and the number of lines in
the key if there is one, both depend on which plotting options are selected).

bdkeylinelength (setting at installation: 8)

This determines the length of the line, as a percentage of the overall width of the
key. The value must be an integer.

bdkeyspacing (setting at installation: 4)

This determines the spacing between the key and the main plot, as a percentage of
the overall height of the main plot, the key and the space between them.

bdkeytextexpand (setting at installation: 0.9)

This determines the font size used in the key.

foldsymbolsizebd (setting at installation: 2.0)

This determines the size of the symbols used to indicate the Hopf bifurcation point
and also, if showbdlabels is set to yes or symbols, folds and end points.

foldtextbdexpand (setting at installation: 0.98)

This determines the size of the font used to label the Hopf bifurcation point, folds
and endpoints, if showbdlabels is set to yes.

showbdlabels (setting at installation: yes)

Allowable settings are: yes/no/symbols. This determines whether folds and end
points are marked by symbols (if showbdlabels is set to yes or symbols), and

143

whether the value of the bifurcation parameter (either the control parameter or the
wave speed) is written on the plot at Hopf bifurcation points, folds and end points
(if showbdlabels is set to yes). The Hopf bifurcation point is always marked by a
symbol, even if showbdlabels is set to no.

3.4.1.6 Settings for the @line, @point and @text commands

extrapointsize (setting at installation: 2.0)

This determines the size of symbols generated by the @point command.

extratextexpand (setting at installation: 1.6)

This determines the font size for text generated by the @text command. Note that
this does not affect any other text (axes labels, titles etc).

3.4.2 Details of Plotter Style File

Plotter style files contain settings associated with the plot style (colours, line thicknesses
and line styles); the order of the various entries in the file does not matter. At installation,
two different style files are provided: colour.style and greyscale.style; both contain
detailed comments explaining the meaning of the various settings. The following list gives
the value of each setting in the installation version of colour.style, as an example of a
typical value.

3.4.2.1 Colour Settings

The available colours are listed in the file colour list.eps in the postscript files

directory. They are based on the standard list of Crayola crayon colours, supplemented
by cyan, and by 50 shades of grey (with grey01 being almost black and grey50 being almost
white). The US spelling “gray” may be used as an alternative to the UK spelling in any
colour name: thus “gray23” and “bluegray” are permitted. Note that the Crayola crayon
colour names “gray” and “tan” have been replaced by “crayolagray” (or “crayolagrey”)
and “crayolatan” respectively. In the first case this avoids any confusion with the grey
scale colour names; in the second case it avoids confusion with the mathematical function
tan.

3.4.2.1.1 Colour settings for drawing periodic travelling wave solutions

wavecolour (setting in colour.style: denim)

This specifies the colour used for drawing wave solutions, via @ptw.

3.4.2.1.2 Colour settings for plots of eigenvalue spectra

spectrumcolour (setting in colour.style: rainbow)

This specifies the colour used for drawing eigenvalue spectra. Any defined colour
is allowed, or rainbow, or greyscale or grayscale. These three settings cause
the spectrum to be coloured according to the phase difference in the eigenfunction
over one period of the periodic travelling wave, using either a rainbow or greyscale

144

colour map. An additional permitted setting is none, in which case the spectrum
is not drawn; this enables plotting of just the eigenvalues corresponding to periodic
eigenfunctions. Important note: in gnuplot, if variable colouring is requested via
spectrumcolour=”rainbow” or “greyscale” or “grayscale”, the size of the main
plot is somewhat unpredictable, and manual rescaling may be needed to achieve
the required size; the user is prompted for keyboard input concerning this rescaling.
Also, these settings cause ticmarks to be absent in gnuplot; ticmark labels are
present, however. If desired, ticmarks could be added manually using the @line

command.

3.4.2.1.3 Colour settings for control parameter – wave speed plots

colour1 (setting in colour.style: rawsienna)
colour2 (setting in colour.style: orangered)
colour3 (setting in colour.style: midnightblue)
colour4 (setting in colour.style: vividviolet)
colour5 (setting in colour.style: tropicalrainforest)

These settings define the colours used in plots of the control parameter – wave
speed plane, to indicate different outcomes. The same colour can be used for several
outcomes, if desired.

1: Periodic travelling wave found, stability not requested. This is the outcome code
when ptw loop is run and a periodic travelling wave is found.

2: Periodic travelling wave found, and the spectrum shows that it is stable.

3: Periodic travelling wave found, and the spectrum shows that it is unstable.

4: If pplanekeytype=1, then this indicates that no periodic travelling wave was
found, with continuation along the periodic travelling wave solution branch
ending for some reason other than a convergence problem. If pplanekeytype=2,
then this is not used.

5: If pplanekeytype=1, then this indicates that no periodic travelling wave was
found, with continuation along the periodic travelling wave solution branch
ending due to a convergence problem. If pplanekeytype=2, then this indicates
simply that no periodic travelling wave was found.

homocliniccolour (setting in colour.style: pinkflamingo)

This specifies the colour used for the loci of homoclinic solutions (which are actually
contours of waves of large period that have been designated as homoclinic).

hopflocuscolour (setting in colour.style: mangotango)

This specifies the colour used for the loci of Hopf bifurcations in the travelling wave
equations.

foldlocuscolour (setting in colour.style: eggplant)

This specifies the colour used for the loci of folds in the periodic travelling wave
solution branch.

145

periodcontourcolour (setting in colour.style: grey28)

This specifies the colour used for contours along which periodic travelling waves
have constant period.

sbdyeckhauscolour (setting in colour.style: green)

This specifies the colour used for curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Eckhaus type.

sbdyhopfcolour (setting in colour.style: violetblue)

This specifies the colour used for curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Hopf type.

3.4.2.1.4 Colour settings for bifurcation diagram plots

bdlabelscolour (setting in colour.style: scarlet)

This specifies the colour used for text and symbols labelling folds, end points and
the Hopf bifurcation point in bifurcation diagram plots.

bdlinecolourmax (setting in colour.style: denim)
bdlinecolourmean (setting in colour.style: cerise)
bdlinecolourmin (setting in colour.style: denim)
bdlinecolournorm (setting in colour.style: junglegreen)
bdlinecolourperiod (setting in colour.style: denim)
bdlinecolourstst (setting in colour.style: turquoiseblue)

These settings specify the colours used for drawing the various properties of the
periodic travelling wave solution branch.

3.4.2.1.5 Colour settings for the @line, @point and @text commands

extralinecolour (setting in colour.style: black)

This specifies the colour of lines generated by the @line command. Note that this
does not affect any other lines.

extrapointcolour (setting in colour.style: black)

This specifies the colour of points generated by the @point command. Note that
this does not affect any other symbols.

extratextcolour (setting in colour.style: black)

This specifies the colour of text generated by the @text command. Note that this
does not affect any other text (axes labels, titles etc).

3.4.2.2 Point Type Settings

The meaning of these settings is the same for sm and for gnuplot with x11, wxt or
postscript terminals, except where noted below. However the meaning within gnuplot is
terminal dependent, and if a different screen terminal is specified in plot defaults.input,
then the meanings may be different: this can be checked via gnuplot’s test command
(see gnuplot documentation for details).

146

1: horizontal-vertical cross (like a + sign)

2: diagonal cross (like a “times” sign)

3: a star (like an asterisk sign)

4: open square

5: filled square

6: open circle

7: filled circle

8: open triangle

9: filled triangle

10: open upside-down triangle (like a “nabla” sign)

11: filled upside-down triangle (like a “nabla” sign)

12: open diamond (gnuplot)/filled hexagon (sm)

13: filled diamond (gnuplot)/filled hexagon (sm).

3.4.2.2.1 Point type settings for control parameter – wave speed plots

pointtype1 (setting in colour.style: 7)
pointtype2 (setting in colour.style: 7)
pointtype3 (setting in colour.style: 7)
pointtype4 (setting in colour.style: 5)
pointtype5 (setting in colour.style: 9)

These five settings refer to the five possible run outcomes, as for the settings
colour1,...,colour5.

3.4.2.2.2 Point type settings for the @line, @point and @text commands

extrapointtype (setting in colour.style: 7)

This setting is for symbols drawn with the @point command.

3.4.2.3 Line Thickness Settings

In these settings, larger numbers mean thicker lines

3.4.2.3.1 General line thickness settings

linethickness (setting in colour.style: 3)

This determines the thickness of all lines in all plots, except for those given special
values below.

147

3.4.2.3.2 Line thickness settings for control parameter – wave speed plots

homocliniclinethickness (setting in colour.style: 5)

This determines the thickness of the loci of homoclinic solutions (which are actually
contours of waves of large period that have been designated as homoclinic).

hopflocuslinethickness (setting in colour.style: 5)

This determines the thickness of the loci of Hopf bifurcations in the travelling wave
equations.

foldlocuslinethickness (setting in colour.style: 5)

This determines the thickness of folds in the periodic travelling wave solution branch.

periodcontourlinethickness (setting in colour.style: 3)

This determines the thickness of contours of constant period.

sbdyeckhauslinethickness (setting in colour.style: 5)

This determines the thickness of curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Eckhaus type.

sbdyhopflinethickness (setting in colour.style: 5)

This determines the thickness of curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Hopf type.

3.4.2.3.3 Line thickness settings for bifurcation diagram plots

bdlinethicknessmax (setting in colour.style: 3)
bdlinethicknessmean (setting in colour.style: 3)
bdlinethicknessmin (setting in colour.style: 3)
bdlinethicknessnorm (setting in colour.style: 3)
bdlinethicknessperiod (setting in colour.style: 3)
bdlinethicknessstst (setting in colour.style: 3)

These settings determine the thickness of the curves showing the various properties
of the periodic travelling wave solution branch.

3.4.2.3.4 Line thickness settings for the @line, @point and @text commands

extralinethickness (setting in colour.style: 1.5)

This specifies the thickness of lines generated by the @line command. Note that
this does not affect any other lines.

3.4.2.4 Line Type Settings

These are specified by a code number, whose interpretation depends on whether the plotter
being used is sm or gnuplot. For gnuplot, the number specifies the gnuplot line style
of that number. This is terminal dependent: see gnuplot documentation for details. In
particular the same number may give different line styles on the screen and in a postscript
plot. This is clearly unsatisfactory but is an intrinsic feature of gnuplot. However two
different line style are guaranteed to be the same for all terminal types including postscript

148

files: −1 = solid and 0 = dotted. In fact these are the only line styles available for the x11
terminal, which is the screen terminal set at installation. Therefore it is recommended
that if gnuplot is being used as the plotter then only solid and dotted lines are used,
with different line types further distinguished by colour or by different greyscale shades.
Note that the gnuplot line style with a particular number also carries with it a colour,
but this is ignored by wavetrain, being overwritten by the appropriate colour setting
(specified above). For sm: −1 = solid, 0 = dotted, 1 = short dashed, 2 = long dash,
3 = dot & short dash, 4 = dot & long dash, 5 = short dash & long dash. Curves/lines
for which no setting is listed below are always solid.

3.4.2.4.1 Line type settings for control parameter – wave speed plots

homocliniclinetype (setting in colour.style: -1)

This determines the line type of the loci of homoclinic solutions (which are actually
contours of waves of large period that have been designated as homoclinic).

hopflocuslinetype (setting in colour.style: -1)

This determines the line type of the loci of Hopf bifurcations in the travelling wave
equations.

foldlocuslinetype (setting in colour.style: -1)

This determines the line type of folds in the periodic travelling wave solution branch.

periodcontourlinetype (setting in colour.style: -1)

This determines the line type of contours of constant period.

sbdyeckhauslinetype (setting in colour.style: -1)

This determines the line type of curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Eckhaus type.

sbdyhopflinetype (setting in colour.style: -1)

This determines the line type of curve(s) indicating the boundary between stable
and unstable waves, when the change of stability is of Hopf type.

3.4.2.4.2 Line type settings for bifurcation diagram plots

bdlinetypemax (setting in colour.style: -1)
bdlinetypemean (setting in colour.style: -1)
bdlinetypemin (setting in colour.style: -1)
bdlinetypenorm (setting in colour.style: -1)
bdlinetypeperiod (setting in colour.style: -1)
bdlinetypestst (setting in colour.style: -1)

These settings determine the line types of curves showing the various properties of
the periodic travelling wave solution branch.

3.4.2.4.3 Line type settings for the @line, @point and @text commands

extralinetype (setting in colour.style: 0)

This specifies the line type of lines generated by the @line command. Note that
this does not affect any other lines.

149

Part 4

Reference Guide to WAVETRAIN

4.1 Alphabetical List of Run Commands

add points list <subdirectory> <pcode>
This command calculates the periodic travelling wave solutions and, if appropriate,
their stability, for additional points in the control parameter–wave speed plane, fol-
lowing a previous run of ptw loop or stability loop. Stability will be calculated if
the original run was of stability loop, but not if the original run was of ptw loop.
The additional points are a list of control parameter and wave speed values, speci-
fied in the file parameter list.input in the specified subdirectory of input files.
All other input files are copied from the record of those used in the original run of
ptw loop or stability loop: the current files in the input files subdirectory are
not used, except for parameter list.input, which must contain a list of the new
points in the parameter plane. The required format is pairs of control parameter
and wave speed values, separated by one or more spaces, with each pair on a sep-
arate line. Note that this command cannot be used for a pcode value generated
using the new pcode command. Note also that the additional points can lie out-
side the limits specified in parameter range.input at the time of the initial run of
ptw loop or stability loop; in that case the the axes limits in subsequent control
parameter–wave speed plots will be expanded to include the additional points.

add points loop <subdirectory> <pcode>
This command calculates the periodic travelling wave solutions and, if appropri-
ate, their stability, for additional points in the control parameter–wave speed plane,
following a previous run of ptw loop or stability loop. Stability will be calcu-
lated if the original run was of stability loop, but not if the original run was of
ptw loop. The additional points are a grid of control parameter and wave speed
values, as specified in the file parameter range.input in the specified subdirec-
tory of input files. All other input files are copied from the record of those
used in the original run of ptw loop or stability loop: the current files in the
input files directory are not used, except for parameter range.input. Note
that this command cannot be used for a pcode value generated using the new pcode

command. Note also that the additional points can lie outside the limits spec-
ified in parameter range.input at the time of the initial run of ptw loop or

150

stability loop; in that case the the axes limits in subsequent control parameter–
wave speed plots will be expanded to include the additional points.

auto97test

This command runs a test of the auto97 package, which is used extensively by
wavetrain. Typically, the command results in various compilation warnings.
These warnings are compiler-dependent but typically do not cause any problems.
However it is possible that the auto97 code will fail to compile even if the fortrantest
command ran successfully, since auto97 departs somewhat from the Fortran77
standard. Wavetrain requires the user to have a Fortran77 compiler that can
compile auto97. If compilation is successful, a test run will be performed, and the
output from this will be compared with reference output.

bifurcation diagram <subdirectory> <pname>=<pvalue>
bifurcation diagram <subdirectory> <speedname>=<speedvalue>
with optional additional arguments variable=<name>
and (repeated any number of times) file=<filename>

This command calculates the bifurcation diagram of the periodic travelling wave so-
lutions as either the physical parameter or the wave speed are varied, with the other
fixed at the value specified in the command line. The range of control parameter or
wave speed values considered is that given in the file parameter range.input. The
first stage of the calculation is to look for Hopf bifurcations in the periodic travel-
ling wave equations within this parameter range, and the command then calculates
the solution branches emanating from each of these Hopf bifurcation points. Note
in particular that the Hopf bifurcation limits given in equations.input are not
used by this command. If one or more files are given in optional argument(s), then
these are also used as starting points for calculating periodic travelling wave solution
branches. If a variable name is given (one of the names listed in variables.input),
then the properties of that variable (maximum, minimum, L2-norm, and average)
are written to the output files, for use in plotting. Otherwise, plotting can only be
done using the L2-norm of the whole periodic travelling wave solution, or the wave
period. If optional arguments are used, the order of arguments two and above is
arbitrary.

cleanup

This command deletes various temporary files created during calculations. It is
run automatically as the final stage of commands if the constant iclean (defined
in constants.input) is set to 1, but it can be run manually. Specifically, the
command deletes all files in the directories ∗/cleaned up files, ∗/data files and
temp files. None of these files are needed for plotting, but it is sometimes helpful
to retain them after a run for debugging purposes.

convergence table <subdirectory> <ecode> <evalue list>
This command displays the results of a previous run of the eigenvalue convergence

command. The third and subsequent arguments are a list of eigenvalue numbers,
between 1 and the total number of calculated eigenvalues. Alternatively all (or
All or ALL) can be entered in place of <evalue list> to give results for all of the

151

calculated eigenvalues. The command produces a convergence table for the real and
imaginary parts of the specified eigenvalues, and also lists estimated error bounds
for each of these eigenvalues. Note that the error bounds are only approximate,
and when one or more of the original partial differential equations do not contain
time derivatives (i.e. (1.1b,c) applies) then the error bounds are particularly crude:
see §3.1.13 for details. Eigenvalue numbers that are out of range (i.e. that exceed
the total number of calculated eigenvalues) generate a warning but are otherwise
ignored.

copy fold loci <subdirectory> <pcode1> <pcode2>
This command copies the data files corresponding to fold loci from pcode1 to
pcode2. All loci are copied, but the fcode values may be changed so that any
existing loci data files for pcode2 are not overwritten.

copy hopf loci <subdirectory> <pcode1> <pcode2>
This command copies the data files corresponding to Hopf bifurcation loci from
pcode1 to pcode2. All loci are copied, but the hcode values may be changed so that
any existing loci data files for pcode2 are not overwritten.

copy period contours <subdirectory> <pcode1> <pcode2>
This command copies the data files corresponding to contours of constant period
from pcode1 to pcode2. All contours are copied, but the ccode values may be
changed so that any existing contour data files for pcode2 are not overwritten.

copy stability boundaries <subdirectory> <pcode1> <pcode2>
This command copies the data files corresponding to stability boundaries from
pcode1 to pcode2. All stability boundaries are copied, but the scode values may
be changed so that any existing stability boundary data files for pcode2 are not
overwritten.

eigenvalue convergence <subdirectory> <pvalue> <speed> <nmesh2 list>
This command calculates a convergence table for eigenvalues corresponding to peri-
odic eigenfunctions, as the computational constant nmesh2 is varied; larger nmesh2
values correspond to finer numerical discretisations. The intended use of this com-
mand is to determine a suitable value of nmesh2 (set in the file constants.input)
when calculating periodic travelling wave stability. The results of this command are
displayed using the command convergence table.

fold locus <subdirectory> <pcode> <pvalue1> <speed1> <pvalue2>
<speed2>

This command calculates a locus of folds in the periodic travelling wave solution
branch. The arguments must satisfy either pvalue1=pvalue2 or speed1=speed2.
The starting point for the locus is determined by finding the periodic travelling wave
at control parameter pvalue1 and wave speed speed1, and then varying either the
wave speed (if pvalue1=pvalue2) or the control parameter (if speed1=speed2)
until a fold is located. Note that usually there will not be a periodic travelling wave
at control parameter pvalue2 and wave speed speed2.

152

fortrantest

This command runs a test of the Fortran77 compiler, which is a system require-
ment. If the resulting screen output is “Test completed” then the compiler has
passed the test. If an error message appears, such as “f77: Command not found”,
this indicates that a compiler needs to be installed. A third possibility is that
“Test completed” appears, but is preceded by a list of subroutines. This indi-
cates that by default, the compiler operates in a non-silent mode. This type of
compiler output will make the screen output produced by wavetrain very diffi-
cult to follow, and it should be suppressed. This can be done by editing the file
input files/defaults.input and adding a suitable compiler flag on the line indi-
cated. The appropriate flag is compiler dependent, but “-silent” or “-fsilent”
are likely possibilities.

hopf locus <subdirectory> <pcode> <pvalue1> <speed1> <pvalue2>
<speed2>

This command calculates a locus of Hopf bifurcation points in the travelling wave
equations. The starting point for the locus is determined by searching for a Hopf
bifurcation between the two specified points in the control parameter–wave speed
plane. Only horizontal or vertical searches in this parameter plane are allowed, so
that the arguments must satisfy either pvalue1=pvalue2 or speed1=speed2.

list crossings <subdirectory> <pcode> <scode>
list crossings <subdirectory> <pcode> <ccode>

The commands stability boundary and period contour allow optional argu-
ments specifying control parameter or wave speed values for which any crossing
points of the period contour or stability boundary curve are to be recorded. This
command lists these crossing points. If both scode and ccode output subdirectories
exist for the code number given in the third argument, then the user is asked to
specify to which the command refers. If the command reports that there are no
crossing points, this may either be because no optional arguments were given to
the stability boundary or period contour command, or because the boundary
curve or contour did not pass through the specified values. Periodic travelling wave
solutions corresponding to the crossing points are recorded in the relevant output
subdirectory for period contours, but not for stability boundaries.

list periods <subdirectory> <pcode>
This command lists the period associated with each period contour that has been
calculated.

list rcodes <subdirectory> optional:<pcode>
This command lists the control parameter and wave speed associated with each
rcode value, plus the overall outcome of the calculation, and the period of the wave
if one was found. If the value of pcode is omitted, it is taken to be 100, which
corresponds to individual runs, rather than those performed via a loop through
control parameter–wave speed values.

153

new pcode <subdirectory>
This command creates a new output directory and copies the input files into this
new directory. It does no calculations. The command is intended to enable Hopf
bifurcation loci, period contours, and stability boundaries to be calculated without
running ptw loop or stability loop.

pathtest

This command examines the search path to check whether it includes the current
directory. If not, it attempts to determine which unix shell is being used, and on the
basis of this produces screen output advising the user on how to change the search
path. Note that because the search path might not include the current directory
when this command is run, it should be entered as ./pathtest.

period contour <subdirectory> <pcode> <pvalue> <speed> <optional arguments>
period contour <subdirectory> <pcode> period=<period> <pvalue1>

<speed1> <pvalue2> <speed2> <optional arguments>
This command calculates a contour of fixed period for periodic travelling wave so-
lutions. In the first usage, the wave is located for the given values <pvalue> and
<speed>, and the contour is drawn for the period of this wave. In the second usage,
the contour is drawn for the specified value of the period. In this case, the periodic
travelling wave with <pvalue1> and <speed1> is found, and then the starting
point for the contour is determined by searching the control parameter–wave speed
plane between (<pvalue1>,<speed1>) and (<pvalue2>,<speed2>), looking for
a wave with the required period. Only horizontal or vertical searches in this param-
eter plane are allowed, so that the arguments must satisfy either pvalue1=pvalue2
or speed1=speed2. Note that it is necessary that a periodic travelling wave ex-
ists for (<pvalue>,<speed>) in the first usage, and for (<pvalue1>,<speed1>)
in the second usage. However, it is not necessary for there to be a wave for
(<pvalue2>,<speed2>) in the second usage. In both usages, the computational
constant iwave is used (see §3.1.9 for details), and it is required that the periodic
travelling wave branch does not have a fold between (<pvalue1>,<speed1>) and
(<pvalue2>,<speed2>): no check is made on this during execution. The optional
arguments have one of two possible forms: <control parameter name>=<value>
or <wave speed name>=<value>, andwavetrain records any points at which the
contour crosses the specified values, and the corresponding periodic travelling wave
solutions. These crossing points can be listed using the list crossings command;
they are not used in plotting. Data files containing the corresponding periodic trav-
elling wave solutions are in the output subdirectory for the relevant pcode and ccode
(see §4.4.4).

plot <subdirectory> optional:<pcode>
This command runs the plotter. If the value of pcode is omitted, it is taken to be
100, which corresponds to individual runs, rather than those performed via a loop
through the control parameter–wave speed plane.

ptw <subdirectory> <pvalue> <speed>

154

This command calculates the periodic travelling wave solution for the specified val-
ues of the control parameter and wave speed. Stability of the wave is not calculated.

ptw loop <subdirectory>
This command calculates the periodic travelling wave solutions for a grid of points
in the control parameter–wave speed plane, as specified in parameter range.input.
Stability of the waves is not calculated.

rmbcode <subdirectory> <bcode>
rmbcode <subdirectory> all

This command deletes all output files associated with the bifurcation diagram cal-
culation with the specified bcode value, and also deletes the corresponding output
directory. If the second argument is all (All and ALL are also allowed), then the
files and directories associated with all bcode values are deleted.

rmccode <subdirectory> <pcode> <ccode>
rmccode <subdirectory> <pcode> all

This command deletes all output files associated with the period contour calculation
with the specified ccode value, and also deletes the corresponding output directory.
If the second argument is all (all and ALL are also allowed), then the files and
directories associated with all ccode values are deleted.

rmecode <subdirectory> <ecode>
rmecode <subdirectory> all

This command deletes all output files associated with the eigenvalue convergence
calculation with the specified ecode value, and also deletes the corresponding output
directory. If the second argument is all (all and ALL are also allowed), then the
files and directories associated with all ecode values are deleted.

rmfcode <subdirectory> <pcode> <fcode>
rmfcode <subdirectory> <pcode> all

This command deletes all output files associated with the fold locus calculation with
the specified fcode value, and also deletes the corresponding output directory. If the
second argument is all (all and ALL are also allowed), then the files and directories
associated with all fcode values are deleted.

rmhcode <subdirectory> <pcode> <hcode>
rmhcode <subdirectory> <pcode> all

This command deletes all output files associated with the Hopf bifurcation locus
calculation with the specified hcode value, and also deletes the corresponding output
directory. If the second argument is all (all and ALL are also allowed), then the
files and directories associated with all hcode values are deleted.

rmpcode <subdirectory> <pcode>
rmpcode <subdirectory> all

This command deletes all output files associated with all calculations for the speci-
fied pcode value, and also deletes the corresponding output directory. If the second

155

argument is all (all and ALL are also allowed), then the files and subdirectories as-
sociated with all pcode values are deleted, followed by the (empty) output directory
for <subdirectory>. Various prompts are issued to confirm that the user wishes
to proceed.

rmps <subdirectory> <name>
rmps <subdirectory> all

This command deletes the postscript file <name>.eps for the specified subdirec-
tory, and also deletes the corresponding plotting record if there is one. If the sec-
ond argument is all / All / ALL, then the command first checks whether the file
all.eps / All.eps / ALL.eps exists in the specified postscript files subdirectory. If
so, the file and any associated record are deleted; if not, all files and associated
records in that subdirectory are deleted.

rmrcode <subdirectory> <rcode>
rmrcode <subdirectory> <pcode> <rcode>

This command deletes all output files associated with the periodic travelling wave
calculation with the specified rcode value, and also deletes the corresponding output
directory. If no pcode value is specified then pcode is set to 100, corresponding to
calculations that are run individually, rather than as part of a parameter plane loop.
If pcode is greater than 100, the list of convergence failures is also updated.

rmscode <subdirectory> <pcode> <scode>
rmscode <subdirectory> <pcode> all

This command deletes all output files associated with the stability boundary cal-
culation with the specified scode value, and also deletes the corresponding output
directory. If the second argument is all (all and ALL are also allowed), then the
files and directories associated with all scode values are deleted.

set homoclinic <subdirectory> <pcode> <ccode>
This command designates the period contour with the specified ccode value as being
a homoclinic solution. There is no facility within wavetrain to calculate the true
loci of homoclinic solutions: rather these must be approximated by the loci of
solutions with constant (large) period. This command should be used after a locus
of large period has been calculated. It does not involve any new computation: it
is just a change of labelling that effects the way in which the contour is plotted.
Its effect can be reversed by the command unset homoclinic. If the contour has
already been designated as homoclinic then no error is reported, but the command
has no effect.

set worked example inputs <stage>
This command performs the various input stages of the worked example described
in §2.3, up to and including the specified stage. Thus for example the command
“set worked example inputs 5” first empties the workedex input subdirectory (if
it exists) and then performs the various steps in stages 1, 3 and then 5 of the worked
example.

156

show text expansions

This command is provided as a tool to assist in the setting of text expansion factors
in plot defaults.input when plotting using gnuplot. For the standard x11 ter-
minal setting, text expansion in screen plots in gnuplot is not continuous; rather,
there is a discrete set of possible text sizes. This command lists the critical expan-
sion factors at which the text size will change; these depend on the fonts defined on
the user’s computer. The expansion factors specified in plot defaults.input will
be replaced by the closest value in this list for screen plots. Note however that for
postscript plots in gnuplot, text expansion occurs on a continuous scale, and will
be based on the expansion factors given in plot defaults.input. This command
is not relevant to plotting using sm.

stability <subdirectory> <pvalue> <speed>
This command calculates the periodic travelling wave solution for the specified val-
ues of the control parameter and wave speed, and then calculates its stability.

stability boundary <subdirectory> <pcode> <pvalue1> <speed1>
<pvalue2> <speed2> <optional arguments>

This command calculates a curve separating regions of stable and unstable periodic
travelling waves. The starting point for the curve is determined by searching for a
change in stability between the two specified points in the control parameter–wave
speed plane. Only horizontal or vertical searches in this parameter plane are allowed,
so that the arguments must satisfy either pvalue1=pvalue2 or speed1=speed2.
The optional arguments have the form <control parameter name>=<value>
or <wave speed name>=<value>; if present, the program records any points at
which the stability boundary crosses the specified values. These crossing points
can be listed using the list crossings command; they are not used in plotting.
Note that the computational constant iwave applies to calculations done using
this command (see §3.1.9 for details), and it is required that the periodic trav-
elling wave branch does not have a fold between (<pvalue1>,<speed1>) and
(<pvalue2>,<speed2>): no check is made for this during execution. Warning:
this calculation can be quite time-consuming. It may be helpful to experiment with
the stability command in order to obtain starting points in the control parameter–
wave speed plane that are relatively close together (and are on either side of the
stability boundary). The trade-off in computation time between such experiments
and a longer run of stability boundary is dependent on the problem and on the
various input parameters set in the file constants.input.

stability loop <subdirectory>
This command calculates the periodic travelling wave solutions, and their stability,
for a grid of points in the control parameter–wave speed plane, as specified in the
file parameter range.input.

unset homoclinic <subdirectory> <pcode> <ccode>
This command designates the period contour with the specified ccode value as not
being a homoclinic solution, reversing the effect of a previous use of the command

157

set homoclinic. If the contour has not previously been designated as homoclinic
then no error is reported, but the command has no effect.

wt help <command>
This command gives a brief description of the syntax and use of the specified com-
mand, which can be either a run command or a plot command. If no argument is
given, then the available run and plot commands are listed.

4.2 Alphabetical List of Plot Commands

@bd <bcode>
This is an abbreviation for @bifurcation diagram.

@bifurcation diagram <bcode>
These commands plot the bifurcation diagram associated with the specified bcode
value. The user will be prompted to enter what should be plotted on the vertical
axis (wave period, L2-norm of the solution etc). The default axes limits are based
on the whole data file, but the user will be given an opportunity to override these
limits; it is particularly useful to override the vertical axes limits when plotting the
period close to parameter values for which there is a homoclinic solution. When the
user selects to plot only one solution measure, the plot will only contain a single
curve, making a key unnecessary, but in other cases the plot includes a key, showing
the meaning of the various line types.

@exit

This command deletes some temporary files before exitting from the plotter. It is
equivalent to the command @quit.

@fl <fcode>
@fl all

This is an abbreviation for @fold locus.

@fold locus <fcode>
@fold locus all

These commands plot the fold locus associated with the specified fcode value, or
with all fcode values if the argument is all (All and ALL are also allowed).

@help optional:<command>
This command provides a brief summary of the syntax and use of the specified
command. If no argument is given then a list of plot commands is displayed.

@hl <hcode>
@hl all

This is an abbreviation for @hopf locus.

@hopf locus <hcode>
@hopf locus all

These commands plot the Hopf bifurcation locus associated with the specified hcode
value, or with all hcode values if the argument is all (All and ALL are also allowed).

158

@line <x coordinate1> <y coordinate1> <x coordinate2> <y coordinate2>
This command draws a line between the two specified points. When plotting with
gnuplot (but not sm), negative coordinates must be enclosed in double quotes, e.g.
"-1.2".

@linesfile <file name>
This command plots a series of line segments connecting the points given in the
first two columns of the specified file, which must be located in the relevant input
subdirectory. If gnuplot is being used as the plotter, the file name must be given in
quotes (e.g. "myfile.dat"); in sm, this is optional. The data file can contain more
than two columns: other columns will be ignored.

@pc <ccode>
@pc all

This is an abbreviation for @period contour.

@period contour <ccode>
@period contour all

These commands plot the period contour associated with the specified <ccode>
value, or with all ccode values if the argument is all (All and ALL are also allowed).

@point <x coordinate> <y coordinate>
This command draws a single dot (or other symbol, as defined by extrapointtype

in the plotter style file) at the specified location.

@pointsfile <file name> <point type>
This command plots a series of dots (or other symbols) at the location specified
by the first two columns of the specified file, which must be located in the relevant
input subdirectory. If gnuplot is being used as the plotter, the file name must be
given in quotes (e.g. "myfile.dat"); in sm, this is optional. The second argument
specifies the symbol type. The meanings of the symbol type code numbers are given
on page 146 and also in the comments of the style file(s). The data file can contain
more than two columns: other columns will be ignored.

@postscript <filename> optional:<aspect ratio>
These commands cause subsequent plotter commands to be written to the file
<filename>.eps in the appropriate subdirectory of @postscript files. If the
plotter setting keeprecords is set to yes, the command also causes the plotter
command record file<filename> record/<filename>.plt and the run command
and data record archive <filename> record/<filename>.tar to be generated,
which contain full details of the plotter commands and output data (respectively)
that were used to create the plot. The optional second argument specifies the as-
pect ratio of the plot (that is, the horizontal size divided by the vertical size); the
default value is 1.0. Note that the aspect ratio applies to the entire plot including
axes labels, titles, etc, rather than to the region within the coordinate axes. Note
also that plot commands are actually written to a buffer, and are only output to
the postscript file when either the plotter device is changed (usually with either the

159

@screen command, or with another @ps or @postscript command), or when the
plotter is exited (via the @exit or @quit command).

@pp

This is an abbreviation for @pplane.

@pplane

This command plots the control parameter–wave speed plane, indicating the exis-
tence of periodic travelling waves, and their stability if that has been calculated.
There are three different plot types, denoting the waves by their rcode numbers,
their periods, or a symbol. The default is set in plot defaults.input, and the
user is asked whether to use this default or override it. A key to the colours and
symbols used in this plot is given in the file postscript files/pplane key.eps;
the key also shows the colours and styles of curves that may be added by subsequent
plot commands. This file is regenerated each time the plotter is started, and also
whenever the @set style command is used; the choice of which symbols/lines are
included in the key is specified in plot defaults.input. The @pplane command
can also be used to plot wavelength or wavenumber against the control parameter,
by changing the plotter variable pplanetype in plot defaults.input.

@pplane key optional:<width scaling>
This command draws a key to the colours and symbols used in control parameter
– wave speed plots. A postscript file with the key is regenerated each time the
plotter is started, and also whenever the set style command is used; the command
@pplane key can be used to display a version on the screen. The choice of which
symbols/lines are included in the key is specified in the file plot defaults.input.
The optional argument is a scaling factor applied to the width of the box surrounding
the key. Wavetrain attempts to choose a box width appropriate to the font size
and other relevant settings, but this is by necessity a crude estimate, so that it may
be useful to adjust it by providing an appropriate scaling factor.

@ps <filename>
This is an abbreviation for @postscript.

@ptw <rcode>
This command plots the periodic travelling wave solution, as a function of the
travelling wave coordinate, for the specified value of rcode.

@quit

This command deletes some temporary files before exitting from the plotter. It is
equivalent to the command @exit.

@sb <scode>
@sb all

This is an abbreviation for @stability boundary.

@screen

This command sets the plotter to write to the screen, and clears the plotting area

160

(i.e. it starts a new plot). This is typically used to begin a new screen plot after
plotting to a postscript file. If the plotter being used is gnuplot, “the screen”
denotes whatever is set as the plotting terminal in plot defaultsinput. If the
plotter being used is sm, “the screen” denotes whatever is set as the default plotter
device in the user’s .sm file.

@set style <style name>
This command sets the default colours, line thicknesses and line styles, by reading
them from <style name>.style (in the input files directory). It then regen-
erates the postscript file containing the key to the lines and symbols used in plots
of the control parameter–wave speed plane. For this reason, if a postscript file is
currently being written then it is ended by the @set style command, with plotting
returned to the screen at the end of the command.

@shade <colour> <pattern> "<bounding curves>" optional:"<key text>"
This command shades a region of the control parameter–wave speed plane. Any
wavetrain colour can be used for shading (see Figure 3.20). The shading pattern
is specified by an integer between 1 and 7 (see page 131). The (closed) bound-
ary of the region to be shaded will be formed from parts of Hopf bifurcation loci,
period contours, fold loci or stability boundaries. Each of these parts is specified
by a triplet of values, and the third argument consists of a series of these triplets,
enclosed in double quotes. The first item in each triplet is a two letter code indi-
cating the curve type: hl, pc, fl, sb denote Hopf bifurcation locus, period contour,
fold locus or stability boundary respectively. The second item in the triplet is the
hcode / ccode / fcode / scode number. The third item is one or more inequalities in-
volving the control parameter or wave speed, to indicate which part of the curve
is to be included. Multiple inequalities are separated by & (without any spaces),
while if the whole curve is required then the inequality is replaced by all. The
various curves forming the boundary of the region to be shaded must be specified in
order, which can be either clockwise or anti-clockwise. If two consecutive curves do
not have matching ends, then a straight line joining the ends will be inserted into
the boundary of the shaded region; one important application of this is to regions
bounded in part by the edge of the plot. The key text is optional; if present, it
specifies an entry to be inserted into the shading key. The text must be given in
double quotes, and may contain multiple lines, with two back-slashes (\\) indicating
a new line. The key is initialised by the @pplane command, and any subsequent
run of @shade with a fourth argument adds an entry to the key. The key is plotted
by the @shade key command.

@shade key optional:<width scaling>
This command generates a key for the shading patterns used in previous runs of
@shade. The key is initialised whenever @pplane is run. The key is created as
a separate plot from the (shaded) parameter plane; once postscript files of both
plots have been generated, they can be combined within a word processor to give
a composite figure if required. The optional argument is a scaling factor applied
to the width of the box surrounding the key. Wavetrain attempts to choose a

161

box width appropriate to the font size and other relevant settings, but this is by
necessity a crude estimate, so that it may be useful to adjust it by providing an
appropriate scaling factor.

@sp <rcode>
This is an abbreviation for @spectrum.

@spectrum <rcode>
This command plots the eigenvalue spectrum for the periodic travelling wave solu-
tion corresponding to the specified value of rcode; if stability was not calculated for
that value of rcode, then an error is reported. If spectrumcolour (defined in the
plotter style file) is set to “rainbow” or “greyscale” (or “grayscale”) then a key
for interpreting the colours is included in the plot.

@stability boundary <scode>
@stability boundary all

This command plots the stability boundary associated with the specified scode value,
or with all scode values if the argument is all (All and ALL are also allowed). The
boundary can correspond to a change in stability of either Eckhaus or Hopf type,
and this is indicated by the colour and/or style of the line.

@text <x coordinate> <y coordinate> <text string>
This command writes a piece of text (which must be in double quotes if it contains
spaces) centred at the specified point.

4.3 WAVETRAIN Directory Structure

4.3.1 The Structure of Subdirectories of the Main WAVETRAIN Directory

For the benefit of users wanting to delve into the inner workings of wavetrain, this
section summarises the overall directory structure of the wavetrain code. The main
wavetrain directory contains a formal copyright and disclaimer statement in the file
COPYRIGHT DISTRIBUTION DISCLAIMER, plus a file README containing the wavetrain

version name / number. All other files in this directory are relatively simple Bourne shell
scripts for the various commands. Most of the wavetrain code is divided into a series
of subdirectories:

auto code This subdirectory contains the required parts of auto97. Some very minor
changes have been made to the auto code, mainly removal of the “unknown” file
status, for consistency with other Fortran77 programs in wavetrain. The com-
mand names have also been altered, so that for example the standard auto com-
mand @r has been replaced by auto r. This prevents any interference with existing
auto code for users who have previously installed auto. At the start of each
run command, a check is made on the auto files auto code/include/auto.h and
auto code/include/fcon.h to see whether the auto code needs to be recompiled:
each run of wavetrain is performed using the smallest possible values of the auto
constants nintx, ndimx, nbcx and ntstx, in order to reduce run times.

162

auto test This subdirectory contains files associated with the command auto97test.

cleaning up This subdirectory contains the shell scripts associated with the deletion of
data files (see §3.1.11).

controller This subdirectory contains the basic shell scripts and a few associated files
for all of the wavetrain commands. These scripts control the overall structure of
the commands; for example the period contour command is controlled primarily
by the file periodcontour.script which runs various programs contained in the
loci subdirectory.

documentation This subdirectory contains a pdf file of this user guide. It also contains
a sub-subdirectory worked example containing files associated with the command
set worked example inputs.

gammazero This subdirectory contains files associated with the calculation of eigenvalues
corresponding to periodic eigenfunctions.

help files This subdirectory contains files associated with the help system for run com-
mands. Note the plotter help files are stored separately, in plotting/help files.

input files This subdirectory was discussed extensively in §2.2. It contains the two
files defaults.input and plot defaults.input, plotter “style” files which have
the extension .style, and a series of sub-subdirectories, each of which contains
input files associated with a particular set of equations.

loci This subdirectory contains files associated with the calculation of the Hopf bifurca-
tion loci, fold loci, contours of constant wave period, and stability boundaries.

managing info This subdirectory contains all files associated with the writing of infor-
mation and error messages to output files and the screen.

output files This subdirectory will be discussed in detail in §4.4. It contains a series of
sub-subdirectories, each of which contains output files associated with a particular
set of equations. It also contains four files. The file logfile contains the code num-
bers of any runs performed with info=1. This setting is intended for background
runs, and no output is written to the screen; the code numbers are needed in order
to plot the results. Each successive entry to logfile is simply appended to the
current file (or the file is created if it does not exist), and the file can be emptied
or deleted by the user whenever convenient. The files auto compile.output and
auto fc compile.output contain any warning messages generated during the most
recent compilations of the auto97 main source code and the auto97 file conver-
sion code, respectively. If no warnings were generated then the files will exist but
be empty. The fourth file in the output files subdirectory is README, which gives
the version of wavetrain being used (e.g. wavetrain1.0).

plotting This subdirectory contains all programs associated with the wavetrain plot-
ter. General plotting programs are located in this subdirectory itself, while macros

163

associated with a particular plotter (gnuplot or sm) are in sub-subdirectories. The
sub-subdirectory help files contains the files associated with the plotter’s help sys-
tem. There is also a sub-subdirectory temp files, which contains temporary data
files generated during plotting; these are deleted by the @quit or @exit commands.

postscript files This subdirectory contains the single file colour list.eps (see §3.3.1),
plus a series of subdirectories containing postscript files associated with runs of the
plot command.

processing This subdirectory contains the shell scripts and text files that are used to pro-
cess the files variables.input and equations.input. The scripts convert the file
variables.input into a more usable form, and convert the file equations.input

into Fortran77 code. There is also a sub-subdirectory most recent run, which con-
tains details of the equations.input file and associated constants that were last
converted to Fortran77. This is checked whenever a new run command is entered,
to determine whether processing must be redone.

ptwcalc This subdirectory contains files associated with the calculation of periodic travel-
ling wave existence and form, and also those associated with bifurcation diagram

calculations.

spectrum This subdirectory contains files associated with the calculation of the portions
of the spectrum in between the eigenvalues corresponding to periodic eigenfunctions.

temp files This subdirectory is a “dumping ground” for temporary files created during
runs. The directory is emptied at the end of runs if iclean (set in constants.input)
has the value 1. The files are not needed for plotting, but users wishing to retain
them for debugging can do so by setting iclean=2.

The subdirectories controller, gammazero, loci, ptwcalc and spectrum all contain sub-
subdirectories named cleaned up files and data files, which are used as repositories
for temporary files generated during runs. Roughly, the <subdir>/cleaned up files

sub-subdirectories contain temporary program files, while the <subdir>/data files

sub-subdirectories contain temporary data files used mainly by programs in <subdir>,
and temp files contains temporary data files used in a variety of different subdirectories.
Like temp files, the cleaned up files and data files sub-subdirectories are emptied
at the end of each run if iclean (set in constants.input) has the value 1. The files
are not needed for plotting, but users wishing to retain them for debugging can do so by
setting iclean=2 in constants.input.

4.4 Details of Output Data Files

In normal use, there is no need for the user to be concerned with the data files generated
by wavetrain: in particular, this is not required in order to visualise the results using
the plotter. However, occasionally users may wish to export data from wavetrain cal-
culations into other software. To assist in this, this section summarises the structure of

164

the wavetrain output files directory, and gives details of the data files that will be
present in the various output subdirectories after runs of wavetrain commands. The in-
formation on output files applies to cases in which runs have been successful and periodic
travelling waves have been detected: for instance, if a run of ptw does not find a periodic
travelling wave, then clearly the data files associated with periodic travelling wave form
will not be present.

4.4.1 The Directory Structure of WAVETRAIN Output

Output data falls into two basic categories: (i) data that is associated with control
parameter–wave speed planes; (ii) data this is not associated with control parameter–
wave speed planes. Output in category (i) is all associated with a particular pcode value
(101–999), and it is stored in the directory output files/pcode<code number>. Within
such a directory, there are a small number of data files, which are copies of the input files
as they were when the directory was created. The remainder of the data is stored in a
series of subdirectories:

output files/pcode<code number>/ccode<code number>
contains data on calculations of the contour of constant wave period with the spec-
ified code number.

output files/pcode<code number>/fcode<code number>
contains data on calculations of the fold locus associated with the specified code
number.

output files/pcode<code number>/hcode<code number>
contains data on calculations of the Hopf bifurcation locus associated with the spec-
ified code number.

output files/pcode<code number>/rcode<code number>
contains data on calculations of periodic travelling wave existence, form and possibly
stability. Note that rcode numbers are four digits (1001-9999) while all other code
numbers in wavetrain are three digits.

output files/pcode<code number>/scode<code number>
contains data on calculations of the stability boundary with the specified code num-
ber.

Details of the files in these various subdirectories are given in the following subsections.
Data in category (ii) is all stored in the directory output files/pcode100. Note

that 100 is not a valid pcode value for a parameter plane run (which must have a pcode
between 101 and 999); the directory name pcode100 is simply chosen for compatibility.
There are no files directly in the pcode100 directory: all files are in subdirectories, which
are of three possible types:

output files/pcode100/bcode<code number>
contains data on calculations associated with bifurcation diagrams with the specified
code number.

165

output files/pcode100/ecode<code number>
contains data on eigenvalue convergence calculations associated with the specified
code number.

output files/pcode100/rcode<code number>
contains data on calculations of periodic travelling wave existence, form and (possi-
bly) stability associated with the specified (four digit) code number. These are runs
done using either the command ptw or the command stability.

All of these various directories are created by wavetrain as required. Thus if the
first run of a wavetrain command using the input directory demo (say) is ptw, then this
command creates the directories output files/demo, output files/demo/pcode100 and
output files/demo/pcode100/rcode1001; the next run of the same command will create
just output files/demo/pcode100/rcode1002.

Although all code numbers of a particular type are created sequentially, gaps can
arise via the file deletion commands (see §3.1.11). For example, the first three runs of
bifurcation diagram for input directory demo will create the directories output file/-

demo/pcode100/bcode1001, output file/demo/pcode100/bcode1002 and output file-

/demo/pcode100/bcode1003. If the command

rmbcode demo 1002

is given, then the second of these three output directories will be deleted. A subse-
quent run of bifurcation diagram will then “fill the gap” by re-creating the directory
output file/demo/pcode100/bcode1002.

4.4.2 pcode Subdirectories

As discussed in §4.3.1, all output data is contained in a subdirectory of a directory named
pcode<value>, where “value” is in the range 100-999. The pcode100 contains subdi-
rectories with data files associated with runs of the commands bifurcation diagram,
eigenvalue convergence, ptw and stability; there are no files in the pcode100 direc-
tory itself. Directories pcode101–pcode999 contain data associated with studies of control
parameter–wave speed parameter planes. These directories themselves contain copies of
the input files, and also the following files:

equations.f This is the Fortran77 file that is generated using equations.input and
that forms the basis of all wavetrain calculations. It is included simply as a
reference for any users wishing to see the source code used by wavetrain.

errors.txt If any errors or warnings occur during the run, they will be listed in this
file; otherwise the file will be present but empty. Note that this file contains a
compilation of all error and warning messages that are generated during all runs
associated with the pcode value. The messages are duplicated in the errors.txt

file in the relevant subdirectory (see below).

166

info.txt This file contains information on the run of whichever of new pcode, ptw loop

or stability loop created the subdirectory. This file itself contains only general
information about the progression through the command: detailed information is
contained in the separate rcode subdirectories. If the command add points list

or add points loop has been run for this pcode value, then corresponding general
information will be appended to this file.

onlyptw.data This file contains the character n or the character y, indicating (respec-
tively) whether stability was or was not determined for runs with this pcode value.
This file will not be present if the pcode directory was generated using the new pcode

command.

plot range.data This two-line file will be present if the command add points list or
add points loop has been run for this pcode. It contains the minimum (column 1)
and maximum (column 2) values of the control parameter (row 1) and wave speed
(row 2) in all of the rcode subdirectories. If plot range.data is present, then it
is used as the basis for axes limits in plots of the control parameter– wave speed
plane. Otherwise the axes limits are based on the file parameter range.input.

The computational output data itself is contained in a directory of one of seven
types: bcode<value>, ecode<value> (which are subdirectories of output files/-

<subdir>/pcode100/), ccode<value>, fcode<value>, hcode<value>, scode<value>
(which are subdirectories of output files/<subdir>/pcode101/,. . ., output files/-

<subdir>/pcode999/), and rcode<value> (which can be subdirectories of any pcode
output directory). These seven subdirectory types all contain copies of the input files,
and also all contain the following files:

command.txt This one-line file contains thewavetrain command (with arguments) that
generated the directory. This file is not present in rcode<value> subdirectories
for pcode values 101-999, since these are not generated directly by a wavetrain

command; however it is present in rcode<value> subdirectories for pcode 100, and
for all cases of the other five types of output subdirectory.

equations.f This is the Fortran77 file that is generated using equations.input and
that forms the basis of all wavetrain calculations. It is included simply as a
reference for any users wishing to see the source code used by wavetrain.

errors.txt If any errors or warnings occur during the run, they will be listed in this file;
otherwise the file will be present but empty.

info.txt This file contains detailed information on the run. It is the key to understand-
ing any unexpected results during the run; this file and errors.txt are the only
output files that users are expected to want to access unless they are exporting data
from wavetrain. Note that the contents of errors.txt is replicated in info.txt.

The remainder of this section documents the other files that are present in the seven types
of output directory.

167

4.4.3 bcode Subdirectories

These are associated with calculations of bifurcation diagrams. After a successful run of
the bifurcation diagram command, the following files will be present:

bd.data This is the main data file containing the calculated points along the period
contour.

Column 1: the bifurcation parameter, which can be either the control parameter or
the wave speed.

Column 2: the norm of the whole wave solution.

Column 3: the wave period.

Column 4: the maximum of the selected variable.

Column 5: the mean of the selected variable.

Column 6: the minimum of the selected variable.

Column 7: the norm of the selected variable.

Column 8: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. Such dummy lines are used to separate
different branches of periodic travelling wave solutions, associated with differ-
ent Hopf bifurcations. If this column contains 0 then the data in the other
columns is irrelevant.

Columns 4–7 are only relevant if the bifurcation diagram command used the
optional argument “variable=”: otherwise they contain the specified information
for the first travelling wave variable listed in variables.input, but they are not
used.

bd.stst This file contains the calculated value of the steady state from which periodic
travelling waves bifurcate.

Column 1: the bifurcation parameter, which can be either the control parameter or
the wave speed.

Column 2: the norm of the steady state.

Column 3: the steady state value of the selected variable.

Column 4: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. Such dummy lines are used to delimit
separate regions of steady state existence. If this column contains 0 then the
data in the other columns is irrelevant.

Column 3 is only relevant if the bifurcation diagram command used the optional
argument “variable=”: otherwise it contains the specified information for the first
travelling wave variable listed in variables.input, but this is not used. The file
bd.stst is not present if a steady state was not found. This will of course have
prevented the detection of Hopf bifurcation points, but the bifurcation diagram may
still have been calculated successfully if one or more “file=” optional argument(s)
were given to the command.

168

hb and folds.data This file contains information used to label Hopf bifurcation points,
folds and end points on the bifurcation diagram.

Column 1: the bifurcation parameter, which can be either the control parameter or
the wave speed.

Column 2: the norm of the whole wave solution.

Column 3: the wave period.

Column 4: the maximum of the selected variable.

Column 5: the mean of the selected variable.

Column 6: the minimum of the selected variable.

Column 7: the norm of the selected variable.

Columns 8 and above: a code number and explanatory text string indicating the
label type: it is either “1 HOPF BIFN POINT”, “2 FOLD” or “3 END OF SOLN

BRANCH”.

variable.data This file contains information about the specification of a plotting vari-
able using the “variable=” option in the bifurcation diagram command.

Line 1: the number of the selected variable (variables are ordered as listed in the
variables.input file), or 1 if “variable=” was not used.

Line 2: the number of the selected variable (variables are ordered as listed in the
variables.input file), or 0 if “variable=” was not used. This line indicates
whether or not “variable=” was used.

Line 3: the name of the selected variable, or L2norm if “variable=” was not used.

Line 4: the name of the bifurcation parameter (which will either be the name of the
control parameter or the name of the wave speed, as given in variables.input).

Line 5: the equality fixing whichever of the control parameter or wave speed is not
the bifurcation parameter, as it appears in the command line.

If an optional argument file=<filename> is used with bifurcation command, then the
corresponding files <filename>.soln and <filename>.params will also be copied to
this output subdirectory.

4.4.4 ccode Subdirectories

These are associated with calculations of contours of constant wave period. After a
successful run of the period contour command, the following files will be present:

outcome.data This file contains a code number (the “outcome code”) indicating the
outcome of the calculation, followed by comments explaining the meanings of the
various possible outcome codes.

periodcontour.contourdata This is the main data file containing the calculated points
along the period contour.

169

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. Such a dummy line will always be present
in the middle of the file, since the locus is calculated in two parts, corresponding
to the two possible continuation directions at the calculated starting point. If
this column contains 0 then the data in the other columns is irrelevant.

Column 4: always the two characters hc.

Column 5: 1 or 0, according to whether the period contour has or has not been
designated as a homoclinic solution (see §3.1.4).

Column 6: the period of the wave.

periodcontour.labels If labelling of period contours is selected as a plot option, then by
default, labels are placed where (and if) the contours intersect the edge of the plot-
ting region. This file contains the data used to plot these labels. Note that if the user
overrides the default labelling when running the plot command period contour,
then this file will not be used. The contents of the file are:

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: an orientation code specifying where the label is to be placed relative to
the point specified in columns 1 and 2.

Column 4: the period of the wave.

Column 5: always the two characters hc.

Column 6: 1 or 0, according to whether the period contour has or has not been
designated as a homoclinic solution (see §3.1.4).

period.data This one-line file contains the ccode value, the period of the contour, the
outcome code, and then either “hc 0” or “hc 1”, indicating that the contour has
not or has (respectively) been designated as homoclinic solution (see §3.1.4).

If optional arguments were given to the period contour command (see §3.1.3), and if
the period contour did cross the specified control parameter or wave speed value(s), then
the following files will also be present:

pcsolution.list This file contains a list of the points at which the period contour
crossed the values of the control parameter or wave speed specified in the optional
arguments, together with the two-digit code number given to each crossing point.
The contents of the file are:

Column 1: the code number, preceeded by “Code=”

Column 2: the control parameter, preceeded by “<control parameter name>=”

Column 3: the wave speed, preceeded by “<wave speed name>=”

170

Column 4: the period, preceeded by “period=”. This will be the same for each row.

pcsolution<code>.params This one-line file contains the control parameter (first row)
and wave speed (second row) for the crossing point with code number <code>.

pcsolution<code>.soln This file contains the periodic travelling wave solution for the
crossing point with code number <code>.

Column 1: the travelling wave coordinate.

Columns 2 and above: the solution components of the periodic travelling wave, in
the order that they are listed in variables.input.

The solution is given over exactly one period of the wave. Therefore the first column
of the last row contains the period, and in columns 2 and above, the first and last
rows are the same.

4.4.5 ecode Subdirectories

These are associated with eigenvalue convergence calculation. After a successful run of
the eigenvalue convergence command, the following files will be present:

control parameters.data This two-line file lists the parameter values specified in the
command line.

Row 1: the control parameter.

Row 2: the wave speed.

convergence.table This is the main data file used by the convergence table command
to generate convergence information.

Column 1: the value of nmesh2. The numbers in this column will be those given in
arguments 4 and above in the command line.

Columns 2 and above: the real and imaginary parts of the eigenvalues correspond-
ing to periodic eigenfunctions, and the estimated bound on the error in the
eigenvalue. Thus the file has (1+3×nevalues) columns in total. Columns 2
and 3 containing the real and imaginary parts of the eigenvalue with largest
real part, and column 4 contains the estimated error bound for this eigenvalue.
Columns 5 and 6 containing the real and imaginary parts of the eigenvalue with
the next largest real part, and column 7 contains the estimated error bound
for this eigenvalue, etc. Note that output will include either all eigenvalues or
just those with non-negative real part, according to the value of iposim (which
is set in constants.input). Note also that the error bounds are only approx-
imate, and when one or more of the original partial differential equations do
not contain time derivatives (i.e. (1.1b,c) applies) then the error bounds are
particularly crude: see §3.1.13 for details.

number of eigenvalues.data This file contains only one number: (100+nevalues).
Note that nevalues is set in constants.input.

171

4.4.6 fcode Subdirectories

These are associated with calculations of fold loci. After a successful run of the fold locus

command, the following files will be present:

foldlocus.locusdata This is the main data file containing the calculated points along
the fold locus.

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. Such a dummy line will always be present
in the middle of the file, since the locus is calculated in two parts, corresponding
to the two possible continuation directions at the calculated starting point. If
this column contains 0 then the data in the other columns is irrelevant.

Column 4: the period of the wave.

outcome.data This file contains a code number (the “outcome code”) indicating the
outcome of the calculation, followed by comments explaining the meanings of the
various possible outcome codes.

4.4.7 hcode Subdirectories

These are associated with calculations of Hopf bifurcation loci. After a successful run of
the hopf locus command, the following files will be present:

hopflocus.locusdata This is the main data file containing the calculated points along
the Hopf bifurcation locus.

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. Such a dummy line will always be present
in the middle of the file, since the locus is calculated in two parts, corresponding
to the two possible continuation directions at the calculated starting point. If
this column contains 0 then the data in the other columns is irrelevant.

Column 4: the period of the zero-amplitude wave. That is, 2π divided by the mod-
ulus of the imaginary part of the pair of purely imaginary eigenvalues.

hopf.startdata This one-line file contains the two pairs of control parameter and wave
speed values specified in the command line.

outcome.data This file contains a code number (the “outcome code”) indicating the
outcome of the calculation, followed by comments explaining the meanings of the
various possible outcome codes.

172

4.4.8 rcode Subdirectories

These are associated with calculations of periodic travelling waves. They are generated
by one of the four commands ptw, stability, ptw loop, or stability loop. In the
first two cases, the parent directory will be pcode100, and in the third and fourth cases
the parent directory will be pcode101–pcode999. If the subdirectory is generated using
the ptw or ptw loop command, with a periodic travelling wave being detected, then the
following files will be present:

accurate ptw.params This one line file contains parameters associated with the travel-
ling wave solution.

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: the period of the travelling wave solution.

Column 4: the number of points in the travelling wave solution. (This is the number
of lines in the file accurate ptw.soln).

accurate ptw.soln This is the main data file containing the calculated periodic travel-
ling wave solution. The solution that is recorded is the one calculated using nmesh1,
which can be greater than nmesh2 (these constants are set in constants.input).

Column 1: the travelling wave variable divided by the period. Therefore this column
ranges from 0.0 to 1.0 in all cases.

Columns 2 and above: the solution components of the periodic travelling wave, in
the order that they are listed in variables.input.

control parameters.data This file contains key parameter values.

Row 1: the control parameter value.

Row 2: the wave speed value.

Row 3: the pcode value (100-999).

Row 4: the rcode value (1001-9999).

outcome.data This file contains a code number (the “outcome code”) indicating the
outcome of the calculation, followed by comments explaining the meanings of the
various possible outcome codes.

An rcode subdirectory generated using the stability or stability loop command,
with a periodic travelling wave being detected and with stability calculated successfully,
contains the files listed above, and also the following additional files:

evalues.data This file contains the eigenvalues corresponding to periodic eigenfunctions.

Column 1: the real part of the eigenvalue.

Column 2: the imaginary part of the eigenvalue.

173

Column 3: a convergence code. If continuation along the spectrum starting from
this eigenvalue is successful, the code is 0. Continuation along the spectrum is
done in four stages: (1) continuation in a dummy parameter to obtain a suitable
starting solution for the eigenfunction; (2) continuation for a few steps to
establish the correct direction for continuation; (3) continuation backwards to
obtain a starting point for which the phase shift in the eigenfunction is zero; (4)
continuation to calculate the spectrum. If there is a convergence error during
any of these stages, then the calculation terminates and the stage number in
which the error occurred is written to this column. Wavetrain will then move
on and begin continuation starting from the next eigenvalue corresponding to
a periodic eigenfunction. Note that convergence errors typically occur because
the discretisation used to calculate the eigenvalues corresponding to periodic
eigenfunctions is too coarse, so that these eigenvalues are poor approximations
to the true eigenvalues. Usually the remedy is to increase nmesh2, nmesh3 or
order.

Column 4: a code number for the eigenvalue, which ranges from 101 up to (100+
nevalues).

Column 5: the estimated error bound for the eigenvalue. Note that the error bound
is only approximate, and when one or more of the original partial differential
equations do not contain time derivatives (i.e. (1.1b,c) applies) then the error
bound is particularly crude: see §3.1.13 for details.

The eigenvalues are ordered in decreasing size of their real part.

failures.list This file contains a list of the eigenvalues corresponding to periodic eigen-
functions for which there was a convergence error in the spectrum continuation
starting from that eigenvalue.

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: the real part of the eigenvalue that was the starting point for continua-
tion.

Column 4: the imaginary part of the eigenvalue that was the starting point for
continuation.

Column 5: the continuation stage during which the convergence error occurred
(=1, 2, 3 or 4) (see description of column 4 of evalues.data).

spectrum.max This one-line file contains data on the fold in the eigenvalue spectrum with
largest real part, away from the origin.

Column 1: the real part of the eigenvalue at the fold.

Column 2: the imaginary part of the eigenvalue at the fold.

Column 3: the phase difference in the eigenfunction across one period of the wave,
at the fold.

174

Column 4: the real part of the eigenvalue that was the starting point for contin-
uation of the portion of the spectrum containing the fold. (This eigenvalue
corresponds to a periodic eigenfunction).

Column 5: the imaginary part of the eigenvalue that was the starting point for con-
tinuation of the portion of the spectrum containing the fold. (This eigenvalue
corresponds to a periodic eigenfunction).

Column 6: the code number of the eigenvalue that was the starting point for con-
tinuation of the portion of the spectrum containing the fold. The code num-
bers range from 101 up to (100+nevalues) (see description of column 4 of
evalues.data).

If no folds are detected away from the origin in the calculated part of the spectrum,
all columns contain zero.

spectrum.plotdata This is the main data file containing the calculated spectrum.

Column 1: the real part of the eigenvalue.

Column 2: the imaginary part of the eigenvalue.

Column 3: 1 or 0, according to whether this line is a genuine data point or a dummy
line, indicating a break in the curve. If this column contains 0 then the data
in the other columns is irrelevant.

Column 4: the phase difference in the eigenfunction across one period of the periodic
travelling wave.

4.4.9 scode Subdirectories

These are associated with calculations of stability boundaries. After a successful run of
the stability boundary command, the following files will be present:

crossings.data Each line of this file is a sentence documenting a point at which the
stability boundary curve crosses one of the control parameter or wave speed values
specified via the optional arguments in the command line (see §3.1.2). If no optional
arguments were given, or if optional arguments were given but no crossings were
detected, then the file will be present but empty.

outcome.data This file contains either one or two code numbers (the “outcome code(s)”)
indicating the outcome of the calculation, followed by comments explaining the
meanings of the various possible outcome codes. If there is one code number, this
refers to change of stability of Eckhaus type, and the number refers to the detection
and tracing of the Eckhaus stability boundary curve. If there are two code numbers,
this indicates that the search for a change of stability of Eckhaus type was completed
without error but without finding an Eckhaus point, so that wavetrain moved on
to look for a change in stability of Hopf type. This is done first starting from the
control parameter and wave speed values given in the third and fourth arguments,
and then (if that is unsuccessful) starting from the control parameter and wave

175

speed values given in the fifth and sixth arguments. The two code numbers refer to
the outcomes of these two calculations; the second code number is zero if the second
calculation is not done, which will occur if the first calculation successfully detects
and calculates a stability boundary curve.

stabilityboundary.boundarydata This is the main data file containing the calculated
points along the stability boundary.

Column 1: the control parameter.

Column 2: the wave speed.

Column 3: 0, 1 or 2. The value 0 denotes a dummy line, indicating a break in the
curve; in this case the data in the other columns is irrelevant. Such a dummy
line will always be present in the middle of the file, since the locus is calculated
in two parts, corresponding to the two possible continuation directions at the
calculated starting point. The value 1 or 2 indicates that this is a genuine data
point, with the change in stability being of Eckhaus or Hopf type respectively.

Column 4: the period of the wave.

176

Appendix: Commands Used to
Generate Figures

This Appendix lists the various run and plot commands used to generate the graphical
figures in this user guide. The code numbers assume that no previous runs have been
performed, and that the commands are run in order. Therefore, for each command, it
is assumed that all previous run commands listed in the table have been run. It is also
assumed that after plotting each figure, the plotter is exited by typing either @exit or
@quit. In all of these plots the default setting of rainbow is used for spectrumcolour.
Consequently, if the plots are done using gnuplot rather than sm, there is an additional
plotting option in which the user can alter the overall scaling of the plot. In all cases, the
default scaling is appropriate.

177

Figure Run commands Plot commands Plot options
2.2a ptw demo 2.0 1.0 @ptw 1001

plot demo

2.2b ptw demo 1.5 0.8 @ptw 1002

plot demo

2.3a ptw loop demo @pplane Plot type: rcode
plot demo 101

2.3b plot demo 101 @pplane Plot type: period
2.5 hopf locus demo 101 2.0 0.8 3.5 0.8 @pplane Plot type: symbol

period contour demo 101 period=3000 1.5 0.8 0.0 0.8 @hopf locus 101

period contour demo 101 period=80 2.5 0.8 0.5 0.8 @period contour 101 Label location: default
plot demo 101 @period contour 102 Label location: default

2.7 stability demo 2.2 0.8 @spectrum 1003 Axes limits: default
plot demo

2.8 stability loop demo @pplane Plot type: rcode
plot demo 102

2.9a plot demo 102 @spectrum 1002 Axes limits: default
2.9b plot demo 102 @spectrum 1013 Axes limits: default
2.10 stability boundary demo 102 1.75 0.3 1.75 0.7 @pplane Plot type: rcode

plot demo 102 @stability boundary 101

2.11 copy hopf loci demo 101 102 @pplane Plot type: symbol
copy period contours demo 101 102 @hopf locus 101

plot demo 102 @period contour all Label locations: default
@stability boundary 101

2.12 set worked example inputs 1 @pplane Plot type: rcode
new pcode workedex @hopf locus 102

hopf locus workedex 101 -1 0 -1 6

hopf locus workedex 101 1 0 1 6

plot workedex 101

178

Figure Run commands Plot commands Plot options
2.13 set worked example inputs 7 @pplane Plot type: rcode

ptw loop workedex @hopf locus 101

hopf locus workedex 102 1 0 1 6

plot workedex 102

2.14 plot workedex 102 @ptw 1037

2.17a set worked example inputs 14 @spectrum 1008 Axes limits: default
stability loop workedex

plot workedex 103

2.17b plot workedex 103 @spectrum 1008 Axes limits:
-0.036 0.002 -0.05 0.4

2.17c set worked example inputs 16 @spectrum 1022 (The rcode number Axes limits: default
stability workedex -2.0 3.0 will be depend on how many test runs

plot workedex were performed in earlier stages)

2.18 plot workedex 103 @pplane Plot type: rcode
2.19 stability boundary workedex 103 @pplane Plot type: symbol

0.857 2.171 0.285 2.171 @stability boundary all

stability boundary workedex 103

-0.857 2.171 -1.428 2.171

plot workedex 103

2.20 set worked example inputs 21 @pplane Plot type: period
stability boundary workedex 103

0.857 2.171 0.285 2.171

stability boundary workedex 103

-0.857 2.171 -1.428 2.171

Note: the stability boundary runs are not

needed for this plot but are included here for

consistency with the order in §2.3

plot workedex 103

179

Figure Run commands Plot commands Plot options
2.21 period contour workedex 103 period=50 @pplane Plot type: symbol

-1.0 0.9 -0.2 0.9 @hopf locus 101

period contour workedex 103 period=100 @stability boundary 103

0.85 1.6 0.85 2.2 @stability boundary 104

period contour workedex 103 period=150 @period contour all Label locations:
0.9 2.2 0.2 2.2 delta=-1.8 delta=1.55

period contour workedex 103 period=200 @pointsfile "pde stable.data" 9

1.0 2.6 -0.4 2.6 @pointsfile "pde unstable.data" 8

set worked example inputs 24

hopf locus workedex 103 1 0 1 6

plot workedex 103

2.22 new pcode workedex @pplane

copy hopf loci 103 104 @hopf locus 101

copy period contours 103 104 @stability boundary 103

copy stability boundaries 103 104 @stability boundary 104

plot workedex 104 @period contour all Label locations:
delta=-1.8 delta=1.55

@pointsfile "pde stable.data" 9

@pointsfile "pde unstable.data" 8

3.1 set homoclinic demo 101 101 @pplane Plot type: symbol
plot demo 101 @hopf locus 101

@period contour all Label location: default
3.2a bifurcation diagram demo c=0.8 @bifurcation diagram 101 Vertical axis: norm

plot demo Axes limits: both default
Line type: default

3.2b bifurcation diagram demo A=2.6 @bifurcation diagram 102 Vertical axis: period
plot demo Axes limits: both default

Line type: default

180

Figure Run commands Plot commands Plot options
3.3a bifurcation diagram demo c=0.6 variable=W @bifurcation diagram 103 Vertical axis:

norm max min
plot demo Axes limits: both default

3.3b plot demo @bifurcation diagram 103 Vertical axis:
max mean stst
Axes limits: both default

3.4 bifurcation diagram demo A=2.6 @bifurcation diagram 102 Vertical axis: period
plot demo Axes limits: both default

Line type: c>0.66
3.6a ptw loop demo1 @pplane Plot type: symbol

plot demo1 101

3.6b hopf locus demo1 101 1.065 21.0 1.08 21.0 @pplane Plot type: symbol
period contour demo1 101 period=3000 1.085 @hopf locus 101

20.0 1.08 20.0 @period contour 101

set homoclinic demo1 101 101

plot demo1 101

3.7 bifurcation diagram demo1 c=20.2 @bifurcation diagram 101 Plot choice: norm
plot demo1 Axes limits: both default

Line type: default
3.8a Change grid to 50× 15 in demo1/parameter range.input @pplane Plot type: symbol

ptw loop demo1

plot demo1 102

3.8b Change iwave to 2 in demo1/constants.input @pplane Plot type: symbol
ptw loop demo1

Reset iwave to 1 in demo1/constants.input

Reset grid to 5× 5 in demo1/parameter range.input

plot demo1 103

181

Figure Run commands Plot commands Plot options
3.9 Change iwave to 0 in demo/constants.input @pplane Plot type: symbol

ptw loop demo @hopf locus 101

copy hopf loci demo 101 103 (at warning: y) @period contour all Label location: default
copy period contours demo 101 103 (at warning: y)
Reset iwave to 1 in demo/constants.input

plot demo 103

3.10 fold locus demo1 102 1.07 21 1.05 21 @pplane Plot type: symbol
copy hopf loci demo1 101 102 @hopf locus 101

copy period contours demo1 101 102 @period contour 101

plot demo1 102

3.17a stability loop demo3 @pplane Plot type: rcode
plot demo3 101

3.17b stability boundary demo3 101 @pplane Plot type: symbol
8.21E-4 9.75 8.22E-4 9.75 @stability boundary 101

plot demo3 101

3.18a plot demo3 101 @spectrum 1003 Axes limits: default
3.18b plot demo3 101 @spectrum 1002 Axes limits: default
3.21 plot demo 101 @pplane Plot type: symbol

@hopf locus 101

@period contour 101 Label location:
c=0.8 c=0.5

@period contour 102 Label location:
c=0.7 A=0.5 A=0.8 c=0.4

3.22 plot demo @bifurcation diagram 102 Vertical axis: period
Axes limits: both default
Line type: default

@line 0.66 10.0 0.66 20.5

@text 0.5 13.5 "Unstable"

@text 0.9 13.5 "Stable"

182

Figure Run commands Plot commands Plot options
3.23a Change pplanetype to @pplane Axis limits: 9.7 17.5

vswavelength in @hopf locus 101

plot defaults.input @stability boundary 101

plot demo 102

3.23b Change pplanetype to @pplane Axis limits: 0.36 0.65

vswavenumber in @hopf locus 101

plot defaults.input @stability boundary 101

plot demo 102

3.24a Reset pplanetype to @pplane Plot type: rcode
codes in @hopf locus 101

plot defaults.input @period contour all Label locations: default
plot demo 102 @stability boundary 101

@shade red 1

"hl 101 c>0.91 pc 101 c>0.51 sb 101 all"

"Stable periodic\\travelling waves"

@shade blue 1

"hl 101 c<0.91 pc 101 c<0.51 sb 101 all"

"Unstable periodic\\travelling waves"

Note: Figure 3.24b must be plotted before exitting.
3.24b @shade key

183

References

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, D. Sorensen: Lapack Users’ Guide (Third
ed.), Society for Industrial and Applied Mathematics, Philadelphia, USA (1999).

F.V. Atkinson: Discrete and Continuous Boundary Problems, Academic Press, New York,
USA (1964).

C. de Boor, B. Swartz: Collocation approximation to eigenvalues of an ordinary differen-
tial equation: the principle of the thing. Math. Comp. 35, 679-694 (1980).

G. Bordiougov, H. Engel: From trigger to phase waves and back again. Physica D 215,
25-37 (2006).

F. Chatelin: The spectral approximation of linear operators with applications to the
computation of eigenelements of differential and integral operators. SIAM Rev. 23, 495-
522 (1981).

E.J. Doedel, H.B. Keller, J.P. Kernévez: Numerical analysis and control of bifurcation
problems: (I) Bifurcation in finite dimensions. Int. J. Bifurcation Chaos 1, 493-520 (1991).

E.J. Doedel: AUTO, a program for the automatic bifurcation analysis of autonomous
systems. Cong. Numer. 30, 265-384 (1981).

J.J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson: An extended set of fortran
basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 1-17 (1988a).

J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson: Algorithm 656: an extended
set of fortran basic linear algebra subprograms. ACM Trans. Math. Soft. 14, 18-32
(1988b).

J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling: A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft. 16, 1-17 (1990a).

J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling: Algorithm 679: a set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft. 16, 18-28 (1990b).

B. Fornberg: Calculation of weights in finite difference formulas. SIAM Rev. 40, 685-691

184

(1998).

C.A. Klausmeier: Regular and irregular patterns in semiarid vegetation. Science 284,
1826-1828 (1999).

H.O. Kreiss: Difference approximation for boundary and eigenvalue problems for ordinary
differential equations. Math. Comp. 26, 605-624 (1972).

C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh: Basic linear algebra subprograms for
fortran usage. ACM Trans. Math. Soft. 5, 308-323 (1979).

J.J. Moré, K.E. Hillstrom, B.S. Garbow: The minpack project. In: Sources and Devel-
opment of Mathematical Software, ed. W.J. Cowell, Prentice-Hall, Upper Saddle River,
New Jersey, USA pp. 88-111 (1984).

J.D.M. Rademacher, B. Sandstede, A. Scheel: Computing absolute and essential spectra
using continuation. Physica D 229, 166-183 (2007).

J.D.M. Rademacher, A. Scheel: Instabilities of wave trains and Turing patterns in large
domains. Int. J. Bifur. Chaos 17, 2679-2691 (2007).

J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-
arid environments II. Patterns with the largest possible propagation speeds. Proc. R. Soc.
Lond. A 467, 3272-3294 (2011).

J.A. Sherratt: Numerical continuation methods for studying periodic travelling wave
(wavetrain) solutions of partial differential equations. Appl. Math. Computation 218,
4684-4694 (2012).

J.A. Sherratt: History-dependent patterns of whole ecosystems. Ecological Complexity
14, 8-20 (2013a)

J.A. Sherratt: Numerical continuation of boundaries in parameter space between stable
and unstable periodic travelling wave (wavetrain) solutions of partial differential equa-
tions. Adv. Comput. Math. 39, 175-192 (2013b).

J.A. Sherratt, M.J. Smith: Periodic travelling waves in cyclic populations: field studies
and reaction-diffusion models. J. R. Soc. Interface 5, 483-505 (2008).

B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. Ikebe, V. Klema, C. Moler: Matrix
eigensystem routines, eispack guide. Lecture Notes in Computer Science 6, Springer-
Verlag, New York, USA (1976).

M.J. Smith, J.A. Sherratt: The effects of unequal diffusion coefficients on periodic trav-
elling waves in oscillatory reaction-diffusion systems. Physica D 236, 90-103 (2007).

185

	Introduction to WAVETRAIN and Installation
	Aims and Scope
	System Requirements
	Authorship and Use of Other Software
	Copyright, Distribution and Disclaimer
	Acknowledgements
	Feedback
	Installation

	How to Use WAVETRAIN
	Getting Started With Wavetrain
	Investigation of Periodic Travelling Wave Existence
	Investigation of Periodic Travelling Wave Stability

	Details of the Wavetrain Input Files
	Details of constants.input
	Details of equations.input
	Details of other_parameters.input
	Details of parameter_list.input
	Details of parameter_range.input
	Details of variables.input

	A Worked Example
	Stage 1 (Input): Create the Initial Input Files
	Stage 2 (Run): Formulate a Wave Search Method
	Stage 3 (Input): Add a Preliminary Wave Search Method
	Stage 4 (Run): Look for Waves near the Hopf Bifurcation Locus
	Stage 5 (Input): Amend the Wave Search Method
	Stage 6 (Run): Test Runs of the ptw Command
	Stage 7 (Input): Alter the File constants.input
	Stage 8 (Run): Further Test Runs of ptw, and a Run of ptw_loop
	Stage 9 (Run): Choose nmesh2 for Stability Calculations
	Stage 10 (Input): Change order in constants.input
	Stage 11 (Run): Further Tests of Eigenvalue Convergence
	Stage 12 (Input): Change nmesh1 and nmesh2 in constants.input
	Stage 13 (Run): Test Runs of the stability Command
	Stage 14 (Input): Change nmesh3 in constants.input
	Stage 15 (Run): Further Test Runs of stability, and a Run of stability_loop
	Stage 16 (Input): Change nmesh1 and nmesh2 in constants.input
	Stage 17 (Run): Run of stability for =-2, c=3
	Stage 18 (Input): Reset nmesh1 and nmesh2 in constants.input
	Stage 19 (Run): Plot the Results of the stability_loop Run
	Stage 20 (Run): Run of stability_boundary
	Stage 21 (Input): Reduce the Step Sizes for stability_boundary
	Stage 22 (Run): Rerun of stability_boundary
	Stage 23 (Run): Calculate Contours of Constant Period
	Stage 24 (Input): Copy PDE Simulation Data File
	Stage 25 (Run): Final Plots
	Stage 26 (Run): Delete Unwanted Output Files

	Documentation and Help Facilities
	Troubleshooting

	Advanced Features of WAVETRAIN
	Further Details of Run Commands
	The Format of Numerical Inputs, and Precision
	Optional Arguments of the stability_boundary Command
	Optional Arguments of the period_contour Command
	The Commands set_homoclinic and unset_homoclinic
	The Command new_pcode
	The Command bifurcation_diagram
	Keeping Track of Wavetrain Runs
	The Parameter iposim
	The Parameter iwave
	Tracing the Loci of Folds
	Commands for Deleting Data Files
	Setting the Wave Search Method and Hopf Bifurcation Search Rangein Complicated Cases
	Details of the Matrix Eigenvalue Calculation
	An Outline of How the stability_boundary Command Works
	Multiple Simultaneous Runs of wavetrain

	Details of defaults.input
	Further Details of Plot Commands
	Changing Plotter Styles
	Changing Other Plotter Settings
	Labelling of Contours of Constant Period
	Adding Additional Lines, Points and Text to Plots
	Plotting Parameter Planes Using Wavelength or Wavenumber
	Shading Regions of the Control Parameter–Wave Speed Plane
	Record Keeping for Postscript Plots
	The Bounding Box for Postscript Plots
	Abbreviations for Plot Commands

	Details of Plotter Input Files
	Details of plot_defaults.input
	Details of Plotter Style File

	Reference Guide to WAVETRAIN
	Alphabetical List of Run Commands
	Alphabetical List of Plot Commands
	Wavetrain Directory Structure
	The Structure of Subdirectories of the Main wavetrain Directory

	Details of Output Data Files
	The Directory Structure of wavetrain Output
	pcode Subdirectories
	bcode Subdirectories
	ccode Subdirectories
	ecode Subdirectories
	fcode Subdirectories
	hcode Subdirectories
	rcode Subdirectories
	scode Subdirectories

	Appendix: Commands Used to Generate Figures
	References

