1 Supplementary material

3 Appendix S1. Parameter estimates for different rodent populations

5 *S1.1. UK field voles (Microtus agrestis L.) in grassland habitat (Kielder Forest)*

Kielder Forest is a man-made spruce plantation (620km²) situated on the border between
Scotland and England (53°13'N, 2°33'W). Field voles inhabit the grasslands that have
formed in the woodland clear-cuts which are dominated by *Deschampsia caespitosa*Beauv., *Agrostis tenuis* Sibth., and *Juncus effusus* L. Field vole densities in the forest
have been shown to fluctuate cyclically with a 3-4 year period (Lambin, Petty &
MacKinnon, 2000).

12

2

4

13 Instead of calculating a maximum per capita birth rate, a, directly we calculated it using 14 a = (r+b)/L where the maximum per-capita population growth rate, r, reproductive 15 season length, L, and per capita mortality rate, b, were estimated from data. Burthe et al. 16 (in press) give a median cowpox-free monthly survival figure of 0.735 which implies a per capita death rate of b = 3.7. The data we use to estimate maximum per capita growth 17 18 rates and the length of the reproductive season is a collection of longitudinal mark-19 recapture estimates, taken approximately monthly from 21 different sites over differing 20 periods of time. This data was collected during various different studies from 1996 to 21 2005 (Lambin et al., 2000; Ergon et al., 2001; Ergon, 2003; Cavanagh et al., 2004). 22 Following the protocol of Turchin and Ostfeld (1997) we calculated monthly per capita 23 growth rates (pgr) from this data set (485 data points) and calculated r as the intercept

1 of the linear regression between population density (N_t) and per capita growth rate

2
$$(pgr = -0.03N_t + 2.5 \implies r = 2.5).$$

3

Visual inspection of the monthly per capita growth rates also showed that the reproductive season generally started at the beginning of March and continued until the end of September. This was also found by Ergon et al. (2001) for sites that were in the increasing phase of the population cycle. This gave a reproductive season length of seven months. Our maximum population size of K = 250 voles ha⁻¹ was also taken from this population data.

10

11 S1.2. Estimates for cowpox virus in Kielder Forest

12 From Burthe et al. (in press) we estimated that $\alpha = 4.3$. Given this value, the high disease 13 free mortality rate (b = 3.7), and the fact that the recovery rate is also likely to be quite 14 rapid $(1/\gamma = 28$ days in Manor Wood bank voles) (Blasdell, 2006), together mean that $S_C > K$ for values of β estimated by Begon et al. (1998; 1999) for bank voles in Manor 15 Wood ($\beta = 0.05$ makes $S_C > 414$ voles ha⁻¹ whereas K = 250 voles ha⁻¹). However, 16 17 cowpox virus seroprevalence in the Kielder Forest field voles is over an order of 18 magnitude higher than that recorded in Manor Wood bank voles (Begon et al., 1999; 19 Cavanagh et al., 2004). We therefore assume that infection rate is also an order of 20 magnitude higher ($\beta = 0.9$) which gives similar maximum seroprevalences in 21 simulations to the field data. We also assume that the recovery rate of field voles from cowpox virus infection is similar to that found for bank voles in Manor Wood ($1/\gamma = 28$ 22

2	predictions showed that large amplitude (>50 voles ha ⁻¹) multi-year cycles were only
3	predicted when γ was sufficiently high (1/ γ > 36 days).
4	
5	S1.3. UK bank voles (Clethrionomys glareolus Schreber) in mixed woodland habitat
6	(Manor Wood)
7	The Manor Wood and Rake Hey sites are two 1ha mixed woodland sites in North West
8	England (Manor Wood: N53°19' W03°03'; Rake Hey: N53°20' W03°02'). In this study
9	we combine the data for both sites and refer to this combined data set as "Manor Wood".
10	Bank vole densities have been monitored monthly at these sites using mark-recapture
11	techniques since 1995 (Telfer et al., 2005). Time series analysis of this data set suggests a
12	tendency towards biennial cycles in the bank vole population (Carslake et al., 2005).
13	
14	We used the same technique as for the Kielder Forest data to calculate parameters for the
15	maximum per capita birth rate, reproductive season length and maximum population size.
16	We estimated a monthly survival rate of 0.77 from Telfer et al. (2002) to give a per capital
17	death rate of $b = 3.1$.
18	
19	S1.4. Field voles (M. agrestis) in Fennoscandian grassland
20	The Fennoscandinavian rodent populations have perhaps been the most extensively
21	studied cyclic microtine populations in recent decades. Various different species across a
22	wide range of habitats and climates exhibit multi-year fluctuations in abundance with a 3-
23	5 year periodicity (Turchin, 2003). Several previous theoretical studies have estimated

days) (Blasdell, 2006). Numerical analysis into the effects of varying γ on the model

parameter values and parameterised models of these populations. In this study we
 obtained representative parameter estimates from Turchin and Hanski (1997) and Hanski
 et al. (1993).

4

5	S1.5. Japanese grey-sided voles (Clethrionomys rufocanus Sundevall) in woodland
6	(Hokkaido)
7	The grey-sided vole populations towards the north-east of the island of Hokkaido exhibit
8	multi-year density cycles. The parameters used in this study were taken from Yoccoz et al.
9	(1998) who parameterised a seasonal demographic model for a population from mixed
10	natural forest at Mizuho (43°42'N, 142°39'E) exhibiting 2-year multi-year cycles.
11	
12	S1.6. French common voles (Microtus arvalis Pallas) in agricultural habitat
13	Some common vole populations in south-western France exhibit regular 3-year multi-
14	year cycles (Lambin, Bretagnolle & Yoccoz, 2006). Our parameter estimates for the
15	maximum per capita growth rate and the maximum population size come from Lambin et
16	al. (2006). We estimate monthly survival ($b = 3.1$) and the length of the reproductive
17	season (8 months) in line with the other populations (above).
18	
19	Appendix S2. Mathematical analysis of non-seasonal models

20 In this appendix we analyse mathematically the non reproductive season and the

- 21 reproductive season equations separately. We treat each system of equations as if the
- season were infinitely long and look for steady states of interest and analyse their local

stability. Our intention is to demonstrate the predicted dynamics of the equations in the
 absence of seasonal forcing.

3

4 S2.1. Non-reproductive season dynamics

5 The equations for the non-reproductive season are the simplest to analyse and are given6 by,

7

$$8 \qquad \frac{dS}{dt} = -\beta SI - bS \,, \tag{B1a}$$

9
$$\frac{dI}{dt} = \beta SI - (b + \alpha + \gamma)I$$
, (B1b)

10
$$\frac{dY}{dt} = \gamma I - (b+\tau)Y, \qquad (B1c)$$

11
$$\frac{dZ}{dt} = \tau Y - bZ,$$
 (B1d)

12

13 with parameter definitions given in the main paper. The only realistic steady state for 14 these equations is when all component population densities are zero (S = I = Y = Z = 0). 15 The stability of this steady state is analysed in the standard way by linearising equations 16 B1 about this steady state to give the stability matrix:

17

$$19 J_{NR} = \begin{bmatrix} -b & 0 & 0 & 0 \\ 0 & -(b+\alpha+\gamma) & 0 & 0 \\ 0 & \gamma & -(b+\tau) & 0 \\ 0 & 0 & \tau & -b \end{bmatrix}. (B2)$$

1		
2	The characteristic polynomial is	
3		
4	$\det(J_{NR} - \lambda i) = (b + \lambda)^2 (b + \alpha + \delta + \lambda)(b + \tau + \lambda) = 0.$	(B3)
5		
6	Therefore all four eigenvalues are real and negative, implying that the steady st	ate is
7	stable.	
8		
9	S2.2. Reproductive season dynamics	
10	The equations for the reproductive season are more complicated to analyse and	are given
11	by	
12		
13	$\frac{dS}{dt} = a(S + fZ)(1 - qN) - \beta SI - bS,$	(B4a)
14	$\frac{dI}{dt} = \beta SI - (b + \alpha + \gamma)I,$	(B4b)
15	$\frac{dY}{dt} = \gamma I - (b+\tau)Y,$	(B4c)
16	$\frac{dZ}{dt} = \tau Y - bZ .$	(B4d)
17		
18	This system of equations has three realistic steady states. One of these is when	all
19	population components are of zero density ($S = I = Y = Z = 0$) and another is w	hen there

20 is no disease in the system (I = Y = Z = 0) and the susceptible population density is at

carrying capacity (S = K = (a - b)/qa). The third steady state is when disease is endemic 1 2 in the population. The population density of susceptibles at this steady state is 3 $\widetilde{S} = (b + \alpha + \gamma) / \beta$. 4 (B5a). 5 Furthermore the equilibrium densities for the Y and Z classes can be expressed in terms 6 of the equilibrium density of infecteds (\tilde{I}) as 7 8 $\widetilde{Y} = \frac{\widetilde{I}\gamma}{(b+\tau)}$, and 9 (B5b) $\widetilde{Z} = \frac{\widetilde{I} \gamma \tau}{h(h+\tau)}$, respectively. 10 (B5c) 11

Substituting these steady state densities into equation B4a and simplifying gives

14
$$K - \widetilde{S} - \widetilde{I}\left(1 + \frac{\beta}{qa} + \xi\left(1 + \theta\left(1 + f\left(1 - \frac{1}{\widetilde{S}q}\right)\right)\right)\right) + \widetilde{I}^{2} - \frac{f\theta\xi}{\widetilde{S}}\left(1 + \xi(1 + \theta)\right) = 0, \quad (B5d)$$

15

with ξ = γ/(b + τ) and θ = τ/b. Equation B5d can be solved to give two different values
for *I*. Furthermore, since K - S̃ is positive and the coefficient of *I*² is negative we
know equation (B5d) can be solved to give at least one positive equilibrium value for *I*.
To determine whether equation B5d predicts one or two positive equilibrium values for *I* we re-write it as

2
$$K - \tilde{S} - \tilde{I}\left(1 + \frac{\beta}{qa} + \xi(1+\theta)\right) = f\left[\tilde{I}^2 \frac{\theta\xi}{\tilde{S}}\left(1 + \xi(1+\theta)\right) + \tilde{I}\xi\theta\left(1 - \frac{1}{\tilde{S}q}\right)\right]$$
 (B5e)

which shows that the two values for \tilde{I} are predicted at the intersection between a linear 4 expression in \tilde{I} (left hand side expression) and a parabola in \tilde{I} (right hand side 5 expression). The left hand side expression is positive when $\tilde{I} = 0$ and $K > \tilde{S}$ and has a 6 negative slope for increasing \tilde{I} whereas the right hand side expression equals zero when 7 $\tilde{I} = 0$ and has a minimum at $\tilde{I} > 0$ (since $1 - 1/\tilde{S}q < 0$). Straightforward plotting of 8 these as functions \tilde{I} of confirms that equation (B5d) must predict one positive and one 9 negative value for \tilde{I} . 10 11 12 The stability matrix for equations (B4) is

13

$$14 \qquad J_{R} = \begin{bmatrix} (a-b) - aq(2S+2Z+I+Y) - \beta I & -\beta S - aq(S+Z) & -aq(S+Z) & a(1-q(2S+2Z+I+Y))) \\ \beta I & \beta S - (b+\alpha+\gamma) & 0 & 0 \\ 0 & \gamma & -(b+\tau) & 0 \\ 0 & 0 & \tau & -b \end{bmatrix}.$$

$$15 \qquad (B6)$$

$$16$$

$$17 \qquad The characteristic equation at the zero-steady state is simply$$

$$18$$

19
$$\det(J_R - \lambda)|_{S=I=Y=Z=0} = (a - b - \lambda)(b + c + d + \lambda)(b + \tau + \lambda)(b + \lambda)$$
(B7)

- 1 which is unstable providing a > b, otherwise the zero-steady state is stable.
- 2

3 The characteristic equation when the susceptible population is at carrying capacity and
4 the disease is absent is

5

$$6 \quad \det(J_S - \lambda)|_{S = K, I = Y = Z = 0} = (a - b + \lambda)(\lambda + \beta(\widetilde{S} - K))(b + \tau + \lambda)(b + \lambda)$$
(B8)

7

8 This steady state is therefore unstable if $K > \tilde{S}$, otherwise the steady state is unstable and 9 the disease-endemic steady state is stable (see below).

10

11 The characteristic equation for the disease-endemic steady state is cumbersome and is 12 omitted here for brevity. We have so far been unable to determine, using this equation, 13 whether or not this steady state is stable. It is possible to show that the steady state is 14 stable when parameters f, τ or γ equal zero. Moreover, Norman et al. (1994) studied a 15 model that is the same as ours if we assume f = 1 and $\tau = \infty$, and showed a stable 16 disease-endemic steady state. More generally, if we assume that the steady state does 17 become unstable in some region of parameter space then there is a sign change in either a 18 real eigenvalue or the real part of a complex eigenvalue. Therefore, at the point at which stability changes, the critical eigenvalue is $\lambda_c = i\omega$, with ω real. Substituting this into 19 20 the characteristic equation gives.

22
$$\omega^4 + Ai\omega^3 + B\omega^2 + Ci\omega + D = 0,$$
 (B9)

2 where A, B, C, and D are functions of the model parameters with rather complicated 3 algebraic forms. If a real eigenvalue changes sign then $\omega = 0$ which implies that D = 0. 4 It is possible to show that D > 0 (Maple code demonstrating this is available from the 5 corresponding author on request) and, therefore, that the disease endemic steady state 6 does not become unstable through a real eigenvalue becoming positive. 7 8 In the case where the real part of a complex eigenvalue changes sign, the imaginary part of (B9) implies that $A\omega^3 + C\omega = 0$. Since we know that $\omega \neq 0$ this must occur when 9 $\omega^2 = -C/A$. Substituting this back into the real part of (B9) implies that the expression 10 11 $(-C/A)^2 + B(-C/A) + D$ 12 **(B10)** 13 14 must be zero. Extensive numerical calculations of (B10) for a wide range of parameter 15 values (Maple code to run these calculations is available from the corresponding author 16 on request) suggest that (B10) is always negative which would imply that the disease-17 endemic steady state is stable. However we have been unable to confirm this analytically. 18 19 Appendix S3 - Analysis of the critical season length for the existence of voles 20 Here we derive an equation for the multi-year host dynamics in the absence of disease 21 and give conditions for the local stability of the equilibrium dynamics. 22

1 The ordinary differential equation for the dynamics in the reproductive season in the 2 absence of disease is 3 $\frac{dS}{dt} = aS(1 - qS) - bS$ 4 (C1) 5 6 where we assume throughout that a > b. Equation (C1) can be solved exactly to give 7 $S(t) = \frac{(a-b)S(0)e^{(a-b)t}}{(a-b) - qaS(0)(1-e^{(a-b)t})}$ 8 (C2) 9 10 where S(t) is the susceptible population density at time t and S(0) is the susceptible 11 population density at time 0. 12 13 The ordinary differential equation for the dynamics in the non reproductive season is 14 $\frac{dS}{dt} = -bS$ 15 (C3) 16 17 which has the simple solution 18 $S(t) = S(0)e^{-bt}.$ 19 (C4). 20

Equations (C2) and (C4) can be combined to give a difference equation for the population
 size measured once per year

3

4
$$S_{T+1} = \frac{(a-b)S_T e^{aL-b}}{(a-b) - qaS_T (e^{-b(1-L)} - e^{aL-b})} = F(S_T)$$
 (C5)

5

6 where S_T is the susceptible vole population density at discrete time, T, which is the point 7 at which the reproductive season ends and the non-reproductive season begins, and L is 8 the length of the reproductive season, where 0 < L < 1.

9

10 We define $S_{T+1} = S_T = \hat{S}$ as the susceptible population density at which losses in the 11 non-reproductive season are exactly compensated for by the gains in the reproductive 12 season. Substituting this into (C5) and rearranging gives the two steady state solutions 13 $\hat{S} = 0$ and

14

15
$$\hat{S} = \frac{(a-b)(e^{b-aL}-1)}{qa(e^{(b-a)L}-1)}.$$
 (C6)

16

Since equation (C5) is a first order difference equation its steady states are locally stableif and only if

20
$$\left| \frac{d}{dS} [F(S_T)] \right|_{S_T = \hat{S}} \right| < 1.$$
 (C7)

1
2 When
$$\hat{S} = 0$$

3
4 $\frac{d}{dS} \left[F(S_T) \right]_{S_T = \hat{S}} = e^{aL-b}$, (C8)
5
6 which is positive and less than 1 (stable) if $L < b/a$ and greater than 1 (unstable) if
7 $L > b/a$.
8
9 At the positive steady state (C6) the stability condition (C7) becomes,
10
11 $\left| \frac{d}{dS} \left[F(S_T) \right]_{S_T = \hat{S}} \right| = \frac{(a-b)^2 e^{aL-b}}{\left[(a-b) - aq\hat{S}(e^{-b(1-L)} - e^{aL-b}) \right]^2} = \frac{e^{-(a-b)L} - 1}{e^{b(L-1)} - e^{aL-b}}$ (C9)
12
13 Given $a > b$ and $0 < L < 1$, expression (C9) must always be positive. Moreover it
14 approaches positive infinity as $L \rightarrow 0$. To determine whether expression (C9) is
15 decreasing in the range $0 < L < 1$ we need to analyse its derivative with respect to L,
16 which is
17

18
$$\frac{a(-e^{L(2b-a)-b}+2e^{b(L-1)}-e^{aL-b})}{(e^{b(L-1)}-e^{aL-b})^2}.$$
 (C10)

20 For (C9) to decrease with increasing L therefore requires that

$$2 \qquad -e^{L(2b-a)-b} + 2e^{b(L-1)} - e^{aL-b} < 0 \\ \Rightarrow 2 < e^{L}(e^{(a-b)} + e^{-(a-b)}) \qquad (C11)$$

1

4 Since $1 < e^{L} < e$ and $(e^{(a-b)} + e^{-(a-b)}) = 2\cosh(a-b) \ge 2$, inequality (C11) must be 5 true and (C9) is decreasing in the range 0 < L < 1. When L = b/a

7
$$\left. \frac{d}{dS} \left[F(S_T) \right] \right|_{S_T = \hat{S}, L = b/a} = 1$$

\mathbf{O}
×
(\mathbf{n})
~

6

9 Therefore (C9) is a decreasing function of L that starts at positive infinity when L = 0,

10 crosses 1 at L = b/a, and remains positive as L increases to 1. The positive steady state

11 solution (C6) must therefore be locally unstable when L < b/a and locally stable when

12 L > b/a. Furthermore, when L > b/a, small perturbations from this steady state return

13 to the steady state monotonically since (C9) is always greater than zero.

14

15 Appendix S4. Results of systematic analysis of disease parameter space for five

- 16 **different rodent population parameters.**
- 17 Figures are as detailed in Fig. 3 but for different values of β .

1 Kielder Forest field voles

	Dominant Period	n.d. n	.c. 2	2.5	3	3.5	4	4.5	5+
Ka) β=0.05	1/γ=1/52	1/γ=1/12	1/γ=1.	12	1/γ	·=1		1/γ=2	
, ← 0.7 ← 0. 0.2	1 •								α=0
0.7 + 0. 0.2									α=2.1
0.7 + 0. 0.2									α=4.2
0.7 + 0. 0.2									α=6.3
0.7 + 0. 0.2									α=8.4
	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	<u>1</u> <u>1</u> 0.5 52 12 1/τ	12	<u>1</u> <u>1</u> 0 52 12 1	512 /τ	<u>1</u> 1 52 1	_ 0.5 1 2 ² 1/τ	2

Amplitude	n.d.	n.c. 0		50	100		150	200+	
Kb) β=0.05 Γ	1/γ=1/52	2	1/γ=1/12	1/ ₃	/=1/2	1/γ=1		1/γ=2	-
1 0.75 - 0.5 0.25 0									α=0
1 0.75 ← 0.5 0.25 0									α=2.1
1 0.75 - 0.5 0.25 0									α=4.2
1 0.75 - 0.5 0.25 0									α=6.3
1 0.75 ← 0.5 0.25 0									α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 1$	2 <u>1</u> 52	$\frac{1}{12} \frac{0.5}{12} \frac{1}{17} \frac{1}{17}$	<u>1</u> 1 52 12	0.5 1 2 1/τ	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5$ 1	1 2 <u>1</u> 52	$\frac{1}{12} \frac{0.5}{12} \frac{1}{17} \frac{1}{17}$	_

2

Dominant Period		n.d.	n.c. 2 2.5	3 3.5	4 4.5	5+
Κc) β=0 1	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	•
p=0.1 0.75 + 0.5 0.25 0						α=0
1 0.75 						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 + 0.5 0.25 0						α=6.3
1 0.75 + 0.5 0.25 0						α=8.4
	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{0.5}{12}$ $\frac{1}{1/\tau}$	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{0.5} \frac{1}{12} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Amplitude	n.d. r	1.c. 0	50	100 150	200+	
Kd) β=0.1	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	7
1 0.75 - 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 1$	$2 \frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1$	$\begin{array}{ccc} 2 & \frac{1}{52} & \frac{1}{12} & 0.5 & 1 \\ & 52 & 12 & 1/\tau \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{52} \frac{1}{12} \frac{10.5}{1/\tau} 1/\tau$	_

Page 17 of 41

Page 19 of 41

Manor Wood bank voles 1

Do Pe	ominant eriod	n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
Mg) β=0. θ 5 Γ	1/γ=1/52	1/γ=1/12	2	1/γ=1/2	2	1/γ	=1		1/γ=2	.
0.75 - 0.5 0.25 0										α=0
1 0.75 ← 0.5 0.25 0										α=2.1
1 0.75 - 0.5 0.25 0										α=4.2
1 0.75 - 0.5 0.25 0										α=6.3
1 0.75 - 0.5 0.25 0										α=8.4
	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{1}{1/\tau}$	2 <u>1</u> 52	<u>1</u> 0.5 1 ¹² 1/τ	2	<u>1</u> <u>1</u> 0. 52 12 1/	512 τ	$\frac{1}{52}$ $\frac{1}{12}$	0.5 1 2 1/τ	2

2

Amplitude	n.d.	n.c. 0	Ę	50	100	150	200+	
Mb) β=0.05	1/γ=1/5	2	1/γ=1/12	1/γ=1/2) -	1/γ=1	1/γ=2	_
0.75 0.75 0.25 0.25								α=0
1 0.75 ← 0.5 0.25 0								α=2.1
1 0.75 ← 0.5 0.25 0								α=4.2
1 0.75 ← 0.5 0.25 0								α=6.3
1 0.75 ← 0.5 0.25 0								α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 1$	2	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 1$	2 <u>1</u> 1 52 12	$\frac{0.5 \ 1 \ 2}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	_

Dominant Period		n.d.	n.c. 2	2.5	3	3.5	4	4.5	5+
Mc) β=0.1	1/γ=1/52	1/γ=1/12	1/γ=1	/2	1/γ=	:1		l/γ=2	
0.75 0.75 0.25 0									α=0
1 0.75 + 0.5 0.25 0									α=2.1
1 0.75 ← 0.5 0.25 0									α=4.2
1 0.75 ← 0.5 0.25 0									α=6.3
1 0.75 ← 0.5 0.25 0									α=8.4
	<u>1</u> <u>1</u> 0.5 1 2 52 12 1/τ	1/τ 0.5 1 52 12 1/τ	$\begin{array}{ccc} 2 & \frac{1}{52} & \frac{1}{12} & 0.5 \\ & 52 & 12 \\ & 1/\tau \end{array}$	12	<u>1</u> 1 0.5 52 12 1/τ	12	<u>1</u> <u>1</u> 52 12	0.5 1 2 1/τ	
Amplitude	n.d. n.c	5. O	50	100		150		200+	

Md) β=0.1	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	_
1 0.75 ← 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 ← 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	$\frac{1}{52}$ $\frac{1}{12}$ 0.5 1 2 $\frac{1}{12}$ $\frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 1 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{1}{1/\tau}$	

Page 21 of 41

D P	ominant eriod	n.d. r	n.c. 2 2.5	3 3.5	4 4.5	5+
Me) β=0.2	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	
p=0.2 1 0.75 - 0.5 0.25 0						α=0
1 0.75 						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 + 0.5 0.25 0						α=6.3
1 0.75 - 0.5 0.25 0						α=8.4
	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{1/\tau}$	

Amplitude	n.d. n.c.	0 50) 100	150	200+	
Mf) β=0.2	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	
p 0.2 1 0.75 ← 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2 \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2 \\ \frac{1}{52} \frac{1}{1/\tau} 1$	

Page 22 of 41

Page 23 of 41

Page 24 of 41

1 French common voles

D	ominant eriod	n.d. n	c. 2 2.5	3 3.5	4 4.5	5+
FRa)	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	
β=0.05 1 0.75 τ 0.5 0.25 0						α=0
1 0.75 + 0.5 0.25 0						α=2.1
1 0.75 ← 0.5 0.25 0						α=4.2
1 0.75 + 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
·	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{17} \frac{1}{17}$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \frac{1}{2} \frac{1}{1/\tau}$	

Page 25 of 41

Page 26 of 41

Page 27 of 41

Page 28 of 41

Page 29 of 41

1 Fennoscandian field voles

	Dominant Period	n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
FSa) β=0.05	1/γ=1/52	1/γ=1/1	2	1/γ=1/2	2	1/γ=	=1	1	/γ=2	_
0.7 + 0. 0.2	1 5 5 5 5 0 0									α=0
0.7 + 0. 0.2										α=2.1
0.7 + 0. 0.2	$\begin{array}{c} 1\\ 1\\ 5\\ 5\\ 5\\ 5\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$									α=4.2
0.7 + 0. 0.2										α=6.3
0.7 + 0.2										α=8.4
	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\begin{array}{c}2 & \frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \\ \end{array}$	2 <u>1</u> 52	10.5 1 12 1/τ	2	<u>1 1</u> 0.5 52 12 1/	5 1 2 t	<u>1</u> <u>1</u> 52 12	0.5 1 2 1/τ	

Amplitude	n.d. n.c.	0 50	0 100	150	200+	
FSb) β=0.05	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	_
p 0.00 1 0.75 ← 0.5 0.25 0						α=0
1 0.75 + 0.5 0.25 0						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 + 0.5 0.25 0						α=6.3
1 0.75 - 0.5 0.25 0						α=8.4
Ę	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{12} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	_

Page 30 of 41

Di Pe	ominant eriod	n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
FSc) β=0 1	1/γ=1/52	1/γ=1/12	1	1/γ=1/2	2	1/γ	/=1		1 <i>Ι</i> γ=2	
0.75 0.75 0.25 0										α=0
1 0.75 - 0.5 0.25 0										α=2.1
1 0.75 ← 0.5 0.25 0										α=4.2
1 0.75 + 0.5 0.25 0										α=6.3
1 0.75 + 0.5 0.25 0										α=8.4
-	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1}$	2 <u>1</u> 52	<u>1</u> 0.5 1 ¹² 1/τ	2	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$.5 1 2 /τ	<u>1</u> 1 52 12	0.5 1 2 21/τ	
Amplitude	n.d. n.c	. 0	50		100		150		200+	

FSd) 1/γ=1/52 1/γ=1/12 1/γ=1/2 1/γ=1 1*Ι*γ=2 β=0.1 00000 00000 0.75 0.5 0.25 0 Ŏ α=0 1 0.75 0.5 0.25 Ŏ Ŏ Ŏ Ĭ ĕ ĕ Š α=2.1 ĕ 0 1 0.75 0.5 0.25 0 Ì ĕ ĕ Į Š **α=4**.2 1 0.75 0.5 0.25 0 α=6.3 1 0.75 ← 0.5 0.25 0 ĕ **α=8.4** $\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$ $\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$ $\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$ $\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$ $\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$ 2 2 2 2 2

Do Pe	ominant eriod	n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
FSe) β=0.2	1/γ=1/52	2 1/γ=	1/12	1/γ=1/2	2	1/γ	=1	1	/γ=2	_
1 0.75 ← 0.5 0.25 0										α=0
1 0.75 - 0.5 0.25 0										α=2.1
1 0.75 + 0.5 0.25 0										α=4.2
1 0.75 ← 0.5 0.25 0										α=6.3
1 0.75 - 0.5 0.25 0										α=8.4
	1 1 0.5 1 52 12 1/τ	$\begin{array}{ccc} 2 & \frac{1}{52} & \frac{1}{12} & 0 \\ 52 & 12 & 1 \end{array}$	512 τ	<u>1 1</u> 0.5 1 52 12 1/τ	2	<u>1 1</u> 0. 52 12 1/	512 τ	<u>1</u> 1 52 12	0.5 1 2 1/τ	
Amplitude	n.d.	n.c. 0	50		100		150		200+	

Amplitude	n.d. n.c	. 0 50	0 100	150	200+	
FSf) β=0.2	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	
1 0.75 - 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 + 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{2} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{2}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2 \frac{1}{1/\tau}$	1

Page 32 of 41

Page 33 of 41

1 Hokkaido grey-sided voles

	Dominant Period	n.d.	n.c.	2 2	.5 3	3.5	4	4.5	5+
Ha) β=0.05	1/γ=1/52	1/γ=1/1:	2	1/γ=1/2		1/γ=1		Ι/γ=2	
0.7 + 0. 0.2	1 5 5 5 0								α=0
0.7 + 0. 0.2									α=2.1
0.7 + 0. 0.2									α=4.2
0.7 ← 0. 0.2									α=6.3
0.7 + 0. 0.2									α=8.4
	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{12} \frac{1}{1/\tau}$	² <u>1</u> <u>1</u> 0.5 1 52 ¹² 1/τ	2 <u>1</u> 52	<u>1</u> 0.5 1 2 ¹² 1/τ	2 <u>1</u> <u>1</u> 52 <u>1</u> 2	0.5 1 2 1/τ	<u>1</u> 1 52 12	0.5 1 2 1/τ	2

Amplitude	n.d. n.c.	0 50	100	150	200+	
Hb) β=0.05	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	_
1 0.75 ← 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 - 0.5 0.25 0						α=4.2
1 0.75 - 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
L	$\frac{1}{52} \frac{1}{12} \frac{10.5}{1/\tau} 1 2$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2$	$\frac{1}{52} \frac{1}{12} \frac{10.5}{1/\tau} 1 \frac{2}{1/\tau}$	

2

De Pe	ominant eriod	n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
Hc) β=0.1	- 1/γ=1/52	2 1/γ=	=1/12	1/γ=1/	2	1/γ	/=1		1/γ=2	_
0.75 0.75 0.25 0										α=0
1 0.75 + 0.5 0.25 0										α=2.1
1 0.75 ← 0.5 0.25 0										α=4.2
1 0.75 ← 0.5 0.25 0										α=6.3
1 0.75 + 0.5 0.25 0										α=8.4
-	<u>1</u> <u>1</u> 0.5 1 52 12 1/τ	$2 \frac{1}{52} \frac{1}{12} \frac{1}{12}$).5 1 2 /τ	¹ / ₅₂ ¹ / ₁₂ 0.5 ⁻ / ₅₂ 12 1/τ	1 2	<u>1 1</u> 0. 52 12 1/	.5 1 2 /τ	<u>1</u> <u>1</u> 52 12	0.5 1 2 1/τ	
Amplitude	n.d.	n.c. 0	50		100		150		200+	

Hd) β=0.1	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	7
, 0.75 ← 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 ← 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 ← 0.5 0.25 0						α=8.4
	<u>1</u> <u>1</u> 0.5 1 2 ^{52 12} 1/τ	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} 0.5 \ 1 \ 2 \frac{1}{1/\tau}$	$\frac{1}{52} \frac{1}{12} \frac{1}{12} \frac{1}{17} \frac{1}{17} \frac{1}{17}$	<u>1</u> <u>1</u> 0.5 1 2 52 12 1/τ	

Dominant Period		n.d.	n.c.	2	2.5	3	3.5	4	4.5	5+
He) β=0.2	1/γ=1/52	1/γ=1/1	12	1/γ=1/:	2	1/γ	=1		1/γ=2	_
1 0.75 • 0.5 0.25 0										α=0
1 0.75 + 0.5 0.25 0										α=2.1
1 0.75 + 0.5 0.25 0										α=4.2
1 0.75 + 0.5 0.25 0										α=6.3
1 0.75 + 0.5 0.25 0										α=8.4
-	$\frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \frac{0.5}{1/\tau} \frac{1}{1/\tau}$	$\begin{array}{ccc} 2 & \frac{1}{52} \frac{1}{12} \frac{1}{1/\tau} \\ \end{array} \\ \end{array} $	1 2 <u>1</u> 5	L <u>1</u> 0.5 2 12 1/τ	12	<u>1 1</u> 0. 52 12 1/	512 ′τ	<u>1</u> 1 52 12	0.5 1 2 1/τ	
Amplitude	n.d.	n.c. 0	50		100		150		200+	

Hf) β=0.2	1/γ=1/52	1/γ=1/12	1/γ=1/2	1/γ=1	1/γ=2	7
0.75 ← 0.5 0.25 0						α=0
1 0.75 ← 0.5 0.25 0						α=2.1
1 0.75 ← 0.5 0.25 0						α=4.2
1 0.75 ← 0.5 0.25 0						α=6.3
1 0.75 + 0.5 0.25 0						α=8.4
	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{2}$	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{17}$ $\frac{1}{17}$ $\frac{1}{17}$	$\frac{1}{52}$ $\frac{1}{12}$ 0.5 1 2	$\frac{1}{52}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{1/\tau}$ $\frac{1}{2}$	$\frac{1}{52}$ $\frac{1}{12}$ 0.5 1 2	

Page 38 of 41

Page 39 of 41

1 **References**

2	Begon, M., Feore, S.M., Brown, K., Chantrey, J., Jones, T., & Bennett, M. (1998)
3	Population and transmission dynamics of cowpox in bank voles: testing
4	fundamental assumptions. <i>Ecology Letters</i> , 1, 82-86.
5	Begon, M., Hazel, S.M., Baxby, D., Bown, K., Cavanagh, R., Chantrey, J., Jones, T., &
6	Bennett, M. (1999) Transmission dynamics of a zoonotic pathogen within and
7	between wildlife host species. Proceedings of the Royal Society of London Series
8	<i>B-Biological Sciences</i> , 266 , 1939-1945.
9	Blasdell, K.R. (2006) Studies on lymphocytic choriomeningitis virus and cowpox virus in
10	the natural rodent hosts., University of Liverpool.
11	Burthe, S. (2007) The effect of cowpox virus infection on the survival of wild field voles.
12	In submitted.
13	Burthe, S., Telfer, S., Begon, M., Bennett, M., Smith, A., & Lambin, X. (in press)
14	Cowpox virus infection in natural field vole Microtus agrestis populations:
15	significant negative impacts on survival. Journal of Animal Ecology.
16	Carslake, D., Bennett, M., Bown, K., Hazel, S., Telfer, S., & Begon, M. (2005) Space-
17	time clustering of cowpox virus infection in wild rodent populations. Journal of
18	Animal Ecology, 74 , 647-655.
19	Cavanagh, R.D., Lambin, X., Ergon, T., Bennett, M., Graham, I.M., van Soolingen, D., &
20	Begon, M. (2004) Disease dynamics in cyclic populations of field voles (Microtus
21	agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti).
22	Proceedings of the Royal Society of London Series B-Biological Sciences, 271,
23	859-867.
24	Ergon, T. (2003) Fluctuating life-history traits in overwintering field voles (Microtus
25	agrestis), University of Oslo.
26	Ergon, T., MacKinnon, J.L., Stenseth, N.C., Boonstra, R., & Lambin, X. (2001)
27	Mechanisms for delayed density-dependent reproductive traits in field voles,
28	Microtus agrestis: the importance of inherited environmental effects. <i>Oikos</i> , 95 ,
29	185-197.
30	Hanski, I., Turchin, P., Korpimaki, E., & Henttonen, H. (1993) Population Oscillations of
31	Boreal Rodents - Regulation by Mustelid Predators Leads to Chaos. <i>Nature</i> , 364 ,
32	232-235.
33	Lambin, X., Bretagnolle, V., & Yoccoz, N.G. (2006) Vole population cycles in northern
34	and southern Europe: Is there a need for different explanations for single pattern?
35	Journal of Animal Ecology, 75 , 340-349.
36	Lambin, X., Petty, S.J., & MacKinnon, J.L. (2000) Cyclic dynamics in field vole
37	populations and generalist predation. <i>Journal of Animal Ecology</i> , 69 , 106-118.
38	Norman, R., Begon, M., & Bowers, R.G. (1994) The Population-Dynamics of
39	Microparasites and Vertebrate Hosts - the Importance of Immunity and Recovery.
40	Theoretical Population Biology, 46 , 96-119.
41	Telfer, S., Bennett, M., Bown, K., Carslake, D., Cavanagh, R., Hazel, S., Jones, T., &
42	Begon, M. (2005) Infection with cowpox virus decreases female maturation rates
43	in wild populations of woodland rodents. <i>Oikos</i> , 109 , 317-322.

1	Telfer S Bennett M Bown K Cayanagh R Crespin L Hazel S Iones T &
2	Begon M (2002) The effects of cownox virus on survival in natural rodent
4	begon, w. (2002) The effects of cowpox whus on survival in natural rodent
3	populations: increases and decreases. <i>Journal of Animal Ecology</i> , 71 , 558-568.
4	Turchin, P. (2003) Complex population dynamics: a theoretical/empirical synthesis, 1st
5	edn. Princeton University Press, Princeton and Oxford.
6	Turchin, P. & Hanski, I. (1997) An empirically based model for latitudinal gradient in
7	vole population dynamics. American Naturalist, 149, 842-874.
8	Turchin, P. & Ostfeld, R.S. (1997) Effects of density and season on the population rate of
9	change in the meadow vole. Oikos, 78, 355-361.
10	Yoccoz, N.G., Nakata, K., Stenseth, N.C., & Saitoh, T. (1998) The demography of
11	Clethrionomys rufocanus: from mathematical and statistical models to further
12	field studies. Researches on Population Ecology, 40, 107-121.
13	