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Supplementary material 1 
 2 
Appendix S1. Parameter estimates for different rodent populations 3 
 4 

S1.1. UK field voles (Microtus agrestis L.) in grassland habitat (Kielder Forest) 5 

Kielder Forest is a man-made spruce plantation (620km2) situated on the border between 6 

Scotland and England (53˚13’N, 2˚33’W). Field voles inhabit the grasslands that have 7 

formed in the woodland clear-cuts which are dominated by Deschampsia caespitosa 8 

Beauv., Agrostis tenuis Sibth., and Juncus effusus L . Field vole densities in the forest 9 

have been shown to fluctuate cyclically with a 3-4 year period (Lambin, Petty & 10 

MacKinnon, 2000). 11 

 12 

Instead of calculating a maximum per capita birth rate, a , directly we calculated it using 13 

Lbra /)( +=  where the maximum per-capita population growth rate, r , reproductive 14 

season length, L , and per capita mortality rate, b , were estimated from data. Burthe et al. 15 

(in press) give a median cowpox-free monthly survival figure of 0.735 which implies a 16 

per capita death rate of 7.3=b . The data we use to estimate maximum per capita growth 17 

rates and the length of the reproductive season is a collection of longitudinal mark-18 

recapture estimates, taken approximately monthly from 21 different sites over differing 19 

periods of time. This data was collected during various different studies from 1996 to 20 

2005 (Lambin et al., 2000; Ergon et al., 2001; Ergon, 2003; Cavanagh et al., 2004). 21 

Following the protocol of Turchin and Ostfeld (1997) we calculated monthly per capita 22 

growth rates (pgr ) from this data set (485 data points) and calculated r  as the intercept 23 
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of the linear regression between population density ( tN ) and per capita growth rate 1 

( 5.25.203.0 =⇒+−= rNpgr t ). 2 

 3 

Visual inspection of the monthly per capita growth rates also showed that the 4 

reproductive season generally started at the beginning of March and continued until the 5 

end of September. This was also found by Ergon et al. (2001) for sites that were in the 6 

increasing phase of the population cycle. This gave a reproductive season length of seven 7 

months. Our maximum population size of 250=K  voles ha-1 was also taken from this 8 

population data. 9 

 10 

S1.2. Estimates for cowpox virus in Kielder Forest 11 

From Burthe et al. (in press)  we estimated that 3.4=α . Given this value, the high disease 12 

free mortality rate ( 7.3=b ), and the fact that the recovery rate is also likely to be quite 13 

rapid ( 28/1 =γ  days in Manor Wood bank voles) (Blasdell, 2006), together mean that 14 

KSC >  for values of β  estimated by Begon et al. (1998; 1999) for bank voles in Manor 15 

Wood ( 05.0=β  makes 414>CS  voles ha-1 whereas 250=K  voles ha-1). However, 16 

cowpox virus seroprevalence in the Kielder Forest field voles is over an order of 17 

magnitude higher than that recorded in Manor Wood bank voles (Begon et al., 1999; 18 

Cavanagh et al., 2004). We therefore assume that infection rate is also an order of 19 

magnitude higher ( 9.0=β ) which gives similar maximum seroprevalences in 20 

simulations to the field data. We also assume that the recovery rate of field voles from 21 

cowpox virus infection is similar to that found for bank voles in Manor Wood ( 28/1 =γ  22 



 Page 3 of 41 

days) (Blasdell, 2006). Numerical analysis into the effects of varying γ  on the model 1 

predictions showed that large amplitude (>50 voles ha-1) multi-year cycles were only 2 

predicted when γ  was sufficiently high ( 36/1 >γ  days).  3 

 4 

S1.3. UK bank voles (Clethrionomys glareolus Schreber) in mixed woodland habitat 5 

(Manor Wood) 6 

The Manor Wood and Rake Hey sites are two 1ha mixed woodland sites in North West 7 

England (Manor Wood: N53˚19’ W03˚03’; Rake Hey: N53˚20’ W03˚02’). In this study 8 

we combine the data for both sites and refer to this combined data set as “Manor Wood”. 9 

Bank vole densities have been monitored monthly at these sites using mark-recapture 10 

techniques since 1995 (Telfer et al., 2005). Time series analysis of this data set suggests a 11 

tendency towards biennial cycles in the bank vole population (Carslake et al., 2005). 12 

 13 

We used the same technique as for the Kielder Forest data to calculate parameters for the 14 

maximum per capita birth rate, reproductive season length and maximum population size. 15 

We estimated a monthly survival rate of 0.77 from Telfer et al. (2002) to give a per capita 16 

death rate of 1.3=b . 17 

 18 

S1.4. Field voles (M. agrestis) in Fennoscandian grassland 19 

The Fennoscandinavian rodent populations have perhaps been the most extensively 20 

studied cyclic microtine populations in recent decades. Various different species across a 21 

wide range of habitats and climates exhibit multi-year fluctuations in abundance with a 3-22 

5 year periodicity (Turchin, 2003). Several previous theoretical studies have estimated 23 
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parameter values and parameterised models of these populations. In this study we 1 

obtained representative parameter estimates from Turchin and Hanski (1997) and Hanski 2 

et al. (1993). 3 

 4 

S1.5. Japanese grey-sided voles (Clethrionomys rufocanus Sundevall) in woodland 5 

(Hokkaido) 6 

The grey-sided vole populations towards the north-east of the island of Hokkaido exhibit 7 

multi-year density cycles. The parameters used in this study were taken from Yoccoz et al. 8 

(1998) who parameterised a seasonal demographic model for a population from mixed 9 

natural forest at Mizuho (43˚42’N, 142˚39’E) exhibiting 2-year multi-year cycles.  10 

 11 

S1.6. French common voles (Microtus arvalis Pallas) in agricultural habitat 12 

Some common vole populations in south-western France exhibit regular 3-year multi-13 

year cycles (Lambin, Bretagnolle & Yoccoz, 2006). Our parameter estimates for the 14 

maximum per capita growth rate and the maximum population size come from Lambin et 15 

al. (2006). We estimate monthly survival ( 1.3=b ) and the length of the reproductive 16 

season (8 months) in line with the other populations (above). 17 

 18 

Appendix S2. Mathematical analysis of non-seasonal models 19 

In this appendix we analyse mathematically the non reproductive season and the 20 

reproductive season equations separately. We treat each system of equations as if the 21 

season were infinitely long and look for steady states of interest and analyse their local 22 
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stability. Our intention is to demonstrate the predicted dynamics of the equations in the 1 

absence of seasonal forcing. 2 

 3 

S2.1. Non-reproductive season dynamics 4 

The equations for the non-reproductive season are the simplest to analyse and are given 5 

by, 6 

 7 

bSSI
dt

dS −−= β ,  (B1a) 8 

IbSI
dt

dI
)( γαβ ++−= ,  (B1b) 9 

YbI
dt

dY
)( τγ +−= ,  (B1c) 10 

bZY
dt

dZ −= τ ,  (B1d) 11 

 12 

with parameter definitions given in the main paper. The only realistic steady state for 13 

these equations is when all component population densities are zero ( 0==== ZYIS ). 14 

The stability of this steady state is analysed in the standard way by linearising equations 15 

B1 about this steady state to give the stability matrix: 16 

 17 
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 1 

The characteristic polynomial is  2 

 3 

0))(()()det( 2 =++++++=− λτλδαλλ bbbiJ NR .  (B3) 4 

 5 

Therefore all four eigenvalues are real and negative, implying that the steady state is 6 

stable.  7 

 8 

S2.2. Reproductive season dynamics 9 

The equations for the reproductive season are more complicated to analyse and are given 10 

by 11 

 12 

bSSIqNfZSa
dt

dS −−−+= β)1)(( ,  (B4a) 13 

IbSI
dt

dI
)( γαβ ++−= ,  (B4b) 14 

YbI
dt

dY
)( τγ +−= ,  (B4c) 15 

bZY
dt

dZ −= τ .  (B4d) 16 

 17 

This system of equations has three realistic steady states. One of these is when all 18 

population components are of zero density ( 0==== ZYIS ) and another is when there 19 

is no disease in the system ( 0=== ZYI ) and the susceptible population density is at 20 
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carrying capacity ( qabaKS /)( −== ). The third steady state is when disease is endemic 1 

in the population. The population density of susceptibles at this steady state is  2 

 3 

βγα /)(
~ ++= bS .  (B5a). 4 

 5 

Furthermore the equilibrium densities for the Y and Z classes can be expressed in terms 6 

of the equilibrium density of infecteds (I
~

) as 7 

 8 
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 11 

Substituting these steady state densities into equation B4a and simplifying gives 12 

 13 
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 15 

with )/( τγξ += b  and b/τθ = . Equation B5d can be solved to give two different values 16 

for I
~

. Furthermore, since SK
~−  is positive and the coefficient of 2

~
I  is negative we 17 

know equation (B5d) can be solved to give at least one positive equilibrium value for I
~

. 18 

To determine whether equation B5d predicts one or two positive equilibrium values for 19 

I
~

 we re-write it as 20 
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 3 

which shows that the two values for I
~

 are predicted at the intersection between a linear 4 

expression in I
~

 (left hand side expression) and a parabola in I
~

 (right hand side 5 

expression). The left hand side expression is positive when 0
~ =I  and SK

~>  and has a 6 

negative slope for increasing I
~

 whereas the right hand side expression equals zero when 7 

0
~ =I  and has a minimum at 0

~ >I  (since 0
~

/11 <− qS ).  Straightforward plotting of 8 

these as functions I
~

of confirms that equation (B5d) must predict one positive and one 9 

negative value for I
~

. 10 

 11 

The stability matrix for equations (B4) is 12 

 13 
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 16 

The characteristic equation at the zero-steady state is simply 17 

 18 

))()()(()det( 0 λλτλλλ ++++++−−=− ==== bbdcbbaJ ZYISR  (B7) 19 

 20 
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which is unstable providing ba > , otherwise the zero-steady state is stable. 1 

 2 

The characteristic equation when the susceptible population is at carrying capacity and 3 

the disease is absent is 4 

 5 

))())(
~

()(()det( 0, λλτβλλλ +++−++−=− ==== bbKSbaJ ZYIKSS  (B8) 6 

 7 

This steady state is therefore unstable if SK
~> , otherwise the steady state is unstable and 8 

the disease-endemic steady state is stable (see below). 9 

 10 

The characteristic equation for the disease-endemic steady state is cumbersome and is 11 

omitted here for brevity. We have so far been unable to determine, using this equation, 12 

whether or not this steady state is stable. It is possible to show that the steady state is 13 

stable when parameters f , τ  or γ  equal zero. Moreover, Norman et al. (1994) studied a 14 

model that is the same as ours if we assume 1=f  and ∞=τ , and showed a stable 15 

disease-endemic steady state. More generally, if we assume that the steady state does 16 

become unstable in some region of parameter space then there is a sign change in either a 17 

real eigenvalue or the real part of a complex eigenvalue. Therefore, at the point at which 18 

stability changes, the critical eigenvalue is ωλ ic = , with ω  real. Substituting this into 19 

the characteristic equation gives.  20 

 21 

0234 =++++ DCiBAi ωωωω ,  (B9) 22 
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 1 

where A , B , C , and D  are functions of the model parameters with rather complicated 2 

algebraic forms. If a real eigenvalue changes sign then 0=ω  which implies that 0=D . 3 

It is possible to show that 0>D  (Maple code demonstrating this is available from the 4 

corresponding author on request) and, therefore, that the disease endemic steady state 5 

does not become unstable through a real eigenvalue becoming positive. 6 

 7 

In the case where the real part of a complex eigenvalue changes sign, the imaginary part 8 

of (B9) implies that 03 =+ ωω CA . Since we know that 0≠ω  this must occur when 9 

AC /2 −=ω . Substituting this back into the real part of (B9) implies that the expression 10 

 11 

DACBAC +−+− )/()/( 2   (B10) 12 

 13 

must be zero. Extensive numerical calculations of (B10) for a wide range of parameter 14 

values (Maple code to run these calculations is available from the corresponding author 15 

on request) suggest that (B10) is always negative which would imply that the disease-16 

endemic steady state is stable. However we have been unable to confirm this analytically. 17 

 18 

Appendix S3 - Analysis of the critical season length for the existence of voles 19 

Here we derive an equation for the multi-year host dynamics in the absence of disease 20 

and give conditions for the local stability of the equilibrium dynamics. 21 

 22 
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The ordinary differential equation for the dynamics in the reproductive season in the 1 

absence of disease is 2 

 3 

bSqSaS
dt

dS −−= )1(   (C1) 4 

 5 

where we assume throughout that ba > . Equation (C1) can be solved exactly to give 6 

 7 
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 9 

where S(t) is the susceptible population density at time t and S(0) is the susceptible 10 

population density at time 0. 11 

 12 

The ordinary differential equation for the dynamics in the non reproductive season is 13 

 14 

bS
dt

dS −=   (C3) 15 

 16 

which has the simple solution 17 

 18 

bteStS −= )0()( .  (C4). 19 

 20 
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Equations (C2) and (C4) can be combined to give a difference equation for the population 1 

size measured once per year 2 

 3 
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)()(
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)1(1 TbaLLb

T

baL
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T SF
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S =

−−−
−= −−−

−

+  (C5) 4 

 5 

where ST is the susceptible vole population density at discrete time, T, which is the point 6 

at which the reproductive season ends and the non-reproductive season begins, and L is 7 

the length of the reproductive season, where 10 << L . 8 

 9 

We define SSS TT
ˆ

1 ==+  as the susceptible population density at which losses in the 10 

non-reproductive season are exactly compensated for by the gains in the reproductive 11 

season. Substituting this into (C5) and rearranging gives the two steady state solutions 12 

0ˆ =S  and  13 

 14 
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 16 

Since equation (C5) is a first order difference equation its steady states are locally stable 17 

if and only if 18 

 19 
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 1 

When 0ˆ =S  2 

 3 
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 5 

which is positive and less than 1 (stable) if abL /<  and greater than 1 (unstable) if 6 

abL /> . 7 

 8 

At the positive steady state (C6) the stability condition (C7) becomes, 9 

 10 
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 12 

Given ba >  and 10 << L , expression (C9) must always be positive. Moreover it 13 

approaches positive infinity as 0→L . To determine whether expression (C9) is 14 

decreasing in the range 10 << L  we need to analyse its derivative with respect to L, 15 

which is 16 

 17 
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For (C9) to decrease with increasing L  therefore requires that  20 



 Page 14 of 41 

 1 
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 3 

Since eeL <<1  and 2)cosh(2)( )()( ≥−=+ −−− baee baba , inequality (C11) must be 4 

true and (C9) is decreasing in the range 10 << L . When abL /=   5 

 6 
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d
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 8 

Therefore (C9) is a decreasing function of L  that starts at positive infinity when 0=L , 9 

crosses 1 at abL /= , and remains positive as L  increases to 1. The positive steady state 10 

solution (C6) must therefore be locally unstable when abL /<  and locally stable when 11 

abL /> . Furthermore, when abL /> , small perturbations from this steady state return 12 

to the steady state monotonically since (C9) is always greater than zero. 13 

 14 

Appendix S4. Results of systematic analysis of disease parameter space for five 15 

different rodent population parameters. 16 

Figures are as detailed in Fig. 3 but for different values of β . 17 
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Manor Wood bank voles 1 
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French common voles 1 
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Fennoscandian field voles 1 
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